• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "precomp.hpp"
44 
45 using namespace cv;
46 using namespace cv::cuda;
47 
48 #if !defined(HAVE_CUDA) || defined(CUDA_DISABLER) || !defined(HAVE_OPENCV_IMGPROC) || !defined(HAVE_OPENCV_CUDAARITHM) || !defined(HAVE_OPENCV_CUDAIMGPROC)
49 
FGDParams()50 cv::cuda::FGDParams::FGDParams() { throw_no_cuda(); }
51 
createBackgroundSubtractorFGD(const FGDParams &)52 Ptr<cuda::BackgroundSubtractorFGD> cv::cuda::createBackgroundSubtractorFGD(const FGDParams&) { throw_no_cuda(); return Ptr<cuda::BackgroundSubtractorFGD>(); }
53 
54 #else
55 
56 #include "cuda/fgd.hpp"
57 #include "opencv2/imgproc/imgproc_c.h"
58 
59 /////////////////////////////////////////////////////////////////////////
60 // FGDParams
61 
62 namespace
63 {
64     // Default parameters of foreground detection algorithm:
65     const int BGFG_FGD_LC  = 128;
66     const int BGFG_FGD_N1C = 15;
67     const int BGFG_FGD_N2C = 25;
68 
69     const int BGFG_FGD_LCC   = 64;
70     const int BGFG_FGD_N1CC = 25;
71     const int BGFG_FGD_N2CC = 40;
72 
73     // Background reference image update parameter:
74     const float BGFG_FGD_ALPHA_1 = 0.1f;
75 
76     // stat model update parameter
77     // 0.002f ~ 1K frame(~45sec), 0.005 ~ 18sec (if 25fps and absolutely static BG)
78     const float BGFG_FGD_ALPHA_2 = 0.005f;
79 
80     // start value for alpha parameter (to fast initiate statistic model)
81     const float BGFG_FGD_ALPHA_3 = 0.1f;
82 
83     const float BGFG_FGD_DELTA = 2.0f;
84 
85     const float BGFG_FGD_T = 0.9f;
86 
87     const float BGFG_FGD_MINAREA= 15.0f;
88 }
89 
FGDParams()90 cv::cuda::FGDParams::FGDParams()
91 {
92     Lc      = BGFG_FGD_LC;
93     N1c     = BGFG_FGD_N1C;
94     N2c     = BGFG_FGD_N2C;
95 
96     Lcc     = BGFG_FGD_LCC;
97     N1cc    = BGFG_FGD_N1CC;
98     N2cc    = BGFG_FGD_N2CC;
99 
100     delta   = BGFG_FGD_DELTA;
101 
102     alpha1  = BGFG_FGD_ALPHA_1;
103     alpha2  = BGFG_FGD_ALPHA_2;
104     alpha3  = BGFG_FGD_ALPHA_3;
105 
106     T       = BGFG_FGD_T;
107     minArea = BGFG_FGD_MINAREA;
108 
109     is_obj_without_holes = true;
110     perform_morphing     = 1;
111 }
112 
113 /////////////////////////////////////////////////////////////////////////
114 // copyChannels
115 
116 namespace
117 {
copyChannels(const GpuMat & src,GpuMat & dst,int dst_cn=-1)118     void copyChannels(const GpuMat& src, GpuMat& dst, int dst_cn = -1)
119     {
120         const int src_cn = src.channels();
121 
122         if (dst_cn < 0)
123             dst_cn = src_cn;
124 
125         cuda::ensureSizeIsEnough(src.size(), CV_MAKE_TYPE(src.depth(), dst_cn), dst);
126 
127         if (src_cn == dst_cn)
128         {
129             src.copyTo(dst);
130         }
131         else
132         {
133             static const int cvt_codes[4][4] =
134             {
135                 {-1, -1, COLOR_GRAY2BGR, COLOR_GRAY2BGRA},
136                 {-1, -1, -1, -1},
137                 {COLOR_BGR2GRAY, -1, -1, COLOR_BGR2BGRA},
138                 {COLOR_BGRA2GRAY, -1, COLOR_BGRA2BGR, -1}
139             };
140 
141             const int cvt_code = cvt_codes[src_cn - 1][dst_cn - 1];
142             CV_DbgAssert( cvt_code >= 0 );
143 
144             cuda::cvtColor(src, dst, cvt_code, dst_cn);
145         }
146     }
147 }
148 
149 /////////////////////////////////////////////////////////////////////////
150 // changeDetection
151 
152 namespace
153 {
calcDiffHistogram(const GpuMat & prevFrame,const GpuMat & curFrame,GpuMat & hist,GpuMat & histBuf)154     void calcDiffHistogram(const GpuMat& prevFrame, const GpuMat& curFrame, GpuMat& hist, GpuMat& histBuf)
155     {
156         typedef void (*func_t)(PtrStepSzb prevFrame, PtrStepSzb curFrame,
157                                unsigned int* hist0, unsigned int* hist1, unsigned int* hist2,
158                                unsigned int* partialBuf0, unsigned int* partialBuf1, unsigned int* partialBuf2,
159                                bool cc20, cudaStream_t stream);
160         static const func_t funcs[4][4] =
161         {
162             {0,0,0,0},
163             {0,0,0,0},
164             {0,0,fgd::calcDiffHistogram_gpu<uchar3, uchar3>,fgd::calcDiffHistogram_gpu<uchar3, uchar4>},
165             {0,0,fgd::calcDiffHistogram_gpu<uchar4, uchar3>,fgd::calcDiffHistogram_gpu<uchar4, uchar4>}
166         };
167 
168         hist.create(3, 256, CV_32SC1);
169         histBuf.create(3, fgd::PARTIAL_HISTOGRAM_COUNT * fgd::HISTOGRAM_BIN_COUNT, CV_32SC1);
170 
171         funcs[prevFrame.channels() - 1][curFrame.channels() - 1](
172                     prevFrame, curFrame,
173                     hist.ptr<unsigned int>(0), hist.ptr<unsigned int>(1), hist.ptr<unsigned int>(2),
174                     histBuf.ptr<unsigned int>(0), histBuf.ptr<unsigned int>(1), histBuf.ptr<unsigned int>(2),
175                     deviceSupports(FEATURE_SET_COMPUTE_20), 0);
176     }
177 
calcRelativeVariance(unsigned int hist[3* 256],double relativeVariance[3][fgd::HISTOGRAM_BIN_COUNT])178     void calcRelativeVariance(unsigned int hist[3 * 256], double relativeVariance[3][fgd::HISTOGRAM_BIN_COUNT])
179     {
180         std::memset(relativeVariance, 0, 3 * fgd::HISTOGRAM_BIN_COUNT * sizeof(double));
181 
182         for (int thres = fgd::HISTOGRAM_BIN_COUNT - 2; thres >= 0; --thres)
183         {
184             Vec3d sum(0.0, 0.0, 0.0);
185             Vec3d sqsum(0.0, 0.0, 0.0);
186             Vec3i count(0, 0, 0);
187 
188             for (int j = thres; j < fgd::HISTOGRAM_BIN_COUNT; ++j)
189             {
190                 sum[0]   += static_cast<double>(j) * hist[j];
191                 sqsum[0] += static_cast<double>(j * j) * hist[j];
192                 count[0] += hist[j];
193 
194                 sum[1]   += static_cast<double>(j) * hist[j + 256];
195                 sqsum[1] += static_cast<double>(j * j) * hist[j + 256];
196                 count[1] += hist[j + 256];
197 
198                 sum[2]   += static_cast<double>(j) * hist[j + 512];
199                 sqsum[2] += static_cast<double>(j * j) * hist[j + 512];
200                 count[2] += hist[j + 512];
201             }
202 
203             count[0] = std::max(count[0], 1);
204             count[1] = std::max(count[1], 1);
205             count[2] = std::max(count[2], 1);
206 
207             Vec3d my(
208                 sum[0] / count[0],
209                 sum[1] / count[1],
210                 sum[2] / count[2]
211             );
212 
213             relativeVariance[0][thres] = std::sqrt(sqsum[0] / count[0] - my[0] * my[0]);
214             relativeVariance[1][thres] = std::sqrt(sqsum[1] / count[1] - my[1] * my[1]);
215             relativeVariance[2][thres] = std::sqrt(sqsum[2] / count[2] - my[2] * my[2]);
216         }
217     }
218 
calcDiffThreshMask(const GpuMat & prevFrame,const GpuMat & curFrame,Vec3d bestThres,GpuMat & changeMask)219     void calcDiffThreshMask(const GpuMat& prevFrame, const GpuMat& curFrame, Vec3d bestThres, GpuMat& changeMask)
220     {
221         typedef void (*func_t)(PtrStepSzb prevFrame, PtrStepSzb curFrame, uchar3 bestThres, PtrStepSzb changeMask, cudaStream_t stream);
222         static const func_t funcs[4][4] =
223         {
224             {0,0,0,0},
225             {0,0,0,0},
226             {0,0,fgd::calcDiffThreshMask_gpu<uchar3, uchar3>,fgd::calcDiffThreshMask_gpu<uchar3, uchar4>},
227             {0,0,fgd::calcDiffThreshMask_gpu<uchar4, uchar3>,fgd::calcDiffThreshMask_gpu<uchar4, uchar4>}
228         };
229 
230         changeMask.setTo(Scalar::all(0));
231 
232         funcs[prevFrame.channels() - 1][curFrame.channels() - 1](prevFrame, curFrame,
233                                                                  make_uchar3((uchar)bestThres[0], (uchar)bestThres[1], (uchar)bestThres[2]),
234                                                                  changeMask, 0);
235     }
236 
237     // performs change detection for Foreground detection algorithm
changeDetection(const GpuMat & prevFrame,const GpuMat & curFrame,GpuMat & changeMask,GpuMat & hist,GpuMat & histBuf)238     void changeDetection(const GpuMat& prevFrame, const GpuMat& curFrame, GpuMat& changeMask, GpuMat& hist, GpuMat& histBuf)
239     {
240         calcDiffHistogram(prevFrame, curFrame, hist, histBuf);
241 
242         unsigned int histData[3 * 256];
243         Mat h_hist(3, 256, CV_32SC1, histData);
244         hist.download(h_hist);
245 
246         double relativeVariance[3][fgd::HISTOGRAM_BIN_COUNT];
247         calcRelativeVariance(histData, relativeVariance);
248 
249         // Find maximum:
250         Vec3d bestThres(10.0, 10.0, 10.0);
251         for (int i = 0; i < fgd::HISTOGRAM_BIN_COUNT; ++i)
252         {
253             bestThres[0] = std::max(bestThres[0], relativeVariance[0][i]);
254             bestThres[1] = std::max(bestThres[1], relativeVariance[1][i]);
255             bestThres[2] = std::max(bestThres[2], relativeVariance[2][i]);
256         }
257 
258         calcDiffThreshMask(prevFrame, curFrame, bestThres, changeMask);
259     }
260 }
261 
262 /////////////////////////////////////////////////////////////////////////
263 // bgfgClassification
264 
265 namespace
266 {
bgfgClassification(const GpuMat & prevFrame,const GpuMat & curFrame,const GpuMat & Ftd,const GpuMat & Fbd,GpuMat & foreground,const FGDParams & params,int out_cn)267     int bgfgClassification(const GpuMat& prevFrame, const GpuMat& curFrame,
268                            const GpuMat& Ftd, const GpuMat& Fbd,
269                            GpuMat& foreground,
270                            const FGDParams& params, int out_cn)
271     {
272         typedef void (*func_t)(PtrStepSzb prevFrame, PtrStepSzb curFrame, PtrStepSzb Ftd, PtrStepSzb Fbd, PtrStepSzb foreground,
273                                int deltaC, int deltaCC, float alpha2, int N1c, int N1cc, cudaStream_t stream);
274         static const func_t funcs[4][4][4] =
275         {
276             {
277                 {0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}
278             },
279             {
280                 {0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}
281             },
282             {
283                 {0,0,0,0}, {0,0,0,0},
284                 {0,0,fgd::bgfgClassification_gpu<uchar3, uchar3, uchar3>,fgd::bgfgClassification_gpu<uchar3, uchar3, uchar4>},
285                 {0,0,fgd::bgfgClassification_gpu<uchar3, uchar4, uchar3>,fgd::bgfgClassification_gpu<uchar3, uchar4, uchar4>}
286             },
287             {
288                 {0,0,0,0}, {0,0,0,0},
289                 {0,0,fgd::bgfgClassification_gpu<uchar4, uchar3, uchar3>,fgd::bgfgClassification_gpu<uchar4, uchar3, uchar4>},
290                 {0,0,fgd::bgfgClassification_gpu<uchar4, uchar4, uchar3>,fgd::bgfgClassification_gpu<uchar4, uchar4, uchar4>}
291             }
292         };
293 
294         const int deltaC  = cvRound(params.delta * 256 / params.Lc);
295         const int deltaCC = cvRound(params.delta * 256 / params.Lcc);
296 
297         funcs[prevFrame.channels() - 1][curFrame.channels() - 1][out_cn - 1](prevFrame, curFrame, Ftd, Fbd, foreground,
298                                                                              deltaC, deltaCC, params.alpha2,
299                                                                              params.N1c, params.N1cc, 0);
300 
301         int count = cuda::countNonZero(foreground);
302 
303         cuda::multiply(foreground, Scalar::all(255), foreground);
304 
305         return count;
306     }
307 }
308 
309 /////////////////////////////////////////////////////////////////////////
310 // smoothForeground
311 
312 #ifdef HAVE_OPENCV_CUDAFILTERS
313 
314 namespace
315 {
morphology(const GpuMat & src,GpuMat & dst,GpuMat & filterBrd,int brd,Ptr<cuda::Filter> & filter,Scalar brdVal)316     void morphology(const GpuMat& src, GpuMat& dst, GpuMat& filterBrd, int brd, Ptr<cuda::Filter>& filter, Scalar brdVal)
317     {
318         cuda::copyMakeBorder(src, filterBrd, brd, brd, brd, brd, BORDER_CONSTANT, brdVal);
319         filter->apply(filterBrd(Rect(brd, brd, src.cols, src.rows)), dst);
320     }
321 
smoothForeground(GpuMat & foreground,GpuMat & filterBrd,GpuMat & buf,Ptr<cuda::Filter> & erodeFilter,Ptr<cuda::Filter> & dilateFilter,const FGDParams & params)322     void smoothForeground(GpuMat& foreground, GpuMat& filterBrd, GpuMat& buf,
323                           Ptr<cuda::Filter>& erodeFilter, Ptr<cuda::Filter>& dilateFilter,
324                           const FGDParams& params)
325     {
326         const int brd = params.perform_morphing;
327 
328         const Scalar erodeBrdVal = Scalar::all(UCHAR_MAX);
329         const Scalar dilateBrdVal = Scalar::all(0);
330 
331         // MORPH_OPEN
332         morphology(foreground, buf, filterBrd, brd, erodeFilter, erodeBrdVal);
333         morphology(buf, foreground, filterBrd, brd, dilateFilter, dilateBrdVal);
334 
335         // MORPH_CLOSE
336         morphology(foreground, buf, filterBrd, brd, dilateFilter, dilateBrdVal);
337         morphology(buf, foreground, filterBrd, brd, erodeFilter, erodeBrdVal);
338     }
339 }
340 
341 #endif
342 
343 /////////////////////////////////////////////////////////////////////////
344 // findForegroundRegions
345 
346 namespace
347 {
seqToContours(CvSeq * _ccontours,CvMemStorage * storage,OutputArrayOfArrays _contours)348     void seqToContours(CvSeq* _ccontours, CvMemStorage* storage, OutputArrayOfArrays _contours)
349     {
350         Seq<CvSeq*> all_contours(cvTreeToNodeSeq(_ccontours, sizeof(CvSeq), storage));
351 
352         size_t total = all_contours.size();
353 
354         _contours.create((int) total, 1, 0, -1, true);
355 
356         SeqIterator<CvSeq*> it = all_contours.begin();
357         for (size_t i = 0; i < total; ++i, ++it)
358         {
359             CvSeq* c = *it;
360             ((CvContour*)c)->color = (int)i;
361             _contours.create((int)c->total, 1, CV_32SC2, (int)i, true);
362             Mat ci = _contours.getMat((int)i);
363             CV_Assert( ci.isContinuous() );
364             cvCvtSeqToArray(c, ci.data);
365         }
366     }
367 
findForegroundRegions(GpuMat & d_foreground,Mat & h_foreground,std::vector<std::vector<Point>> & foreground_regions,CvMemStorage * storage,const FGDParams & params)368     int findForegroundRegions(GpuMat& d_foreground, Mat& h_foreground, std::vector< std::vector<Point> >& foreground_regions,
369                               CvMemStorage* storage, const FGDParams& params)
370     {
371         int region_count = 0;
372 
373         // Discard under-size foreground regions:
374 
375         d_foreground.download(h_foreground);
376         IplImage ipl_foreground = h_foreground;
377         CvSeq* first_seq = 0;
378 
379         cvFindContours(&ipl_foreground, storage, &first_seq, sizeof(CvContour), CV_RETR_LIST);
380 
381         for (CvSeq* seq = first_seq; seq; seq = seq->h_next)
382         {
383             CvContour* cnt = reinterpret_cast<CvContour*>(seq);
384 
385             if (cnt->rect.width * cnt->rect.height < params.minArea || (params.is_obj_without_holes && CV_IS_SEQ_HOLE(seq)))
386             {
387                 // Delete under-size contour:
388                 CvSeq* prev_seq = seq->h_prev;
389                 if (prev_seq)
390                 {
391                     prev_seq->h_next = seq->h_next;
392 
393                     if (seq->h_next)
394                         seq->h_next->h_prev = prev_seq;
395                 }
396                 else
397                 {
398                     first_seq = seq->h_next;
399 
400                     if (seq->h_next)
401                         seq->h_next->h_prev = NULL;
402                 }
403             }
404             else
405             {
406                 region_count++;
407             }
408         }
409 
410         seqToContours(first_seq, storage, foreground_regions);
411         h_foreground.setTo(0);
412 
413         drawContours(h_foreground, foreground_regions, -1, Scalar::all(255), -1);
414 
415         d_foreground.upload(h_foreground);
416 
417         return region_count;
418     }
419 }
420 
421 /////////////////////////////////////////////////////////////////////////
422 // updateBackgroundModel
423 
424 namespace
425 {
updateBackgroundModel(const GpuMat & prevFrame,const GpuMat & curFrame,const GpuMat & Ftd,const GpuMat & Fbd,const GpuMat & foreground,GpuMat & background,const FGDParams & params)426     void updateBackgroundModel(const GpuMat& prevFrame, const GpuMat& curFrame, const GpuMat& Ftd, const GpuMat& Fbd,
427                                const GpuMat& foreground, GpuMat& background,
428                                const FGDParams& params)
429     {
430         typedef void (*func_t)(PtrStepSzb prevFrame, PtrStepSzb curFrame, PtrStepSzb Ftd, PtrStepSzb Fbd,
431                                PtrStepSzb foreground, PtrStepSzb background,
432                                int deltaC, int deltaCC, float alpha1, float alpha2, float alpha3, int N1c, int N1cc, int N2c, int N2cc, float T, cudaStream_t stream);
433         static const func_t funcs[4][4][4] =
434         {
435             {
436                 {0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}
437             },
438             {
439                 {0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}
440             },
441             {
442                 {0,0,0,0}, {0,0,0,0},
443                 {0,0,fgd::updateBackgroundModel_gpu<uchar3, uchar3, uchar3>,fgd::updateBackgroundModel_gpu<uchar3, uchar3, uchar4>},
444                 {0,0,fgd::updateBackgroundModel_gpu<uchar3, uchar4, uchar3>,fgd::updateBackgroundModel_gpu<uchar3, uchar4, uchar4>}
445             },
446             {
447                 {0,0,0,0}, {0,0,0,0},
448                 {0,0,fgd::updateBackgroundModel_gpu<uchar4, uchar3, uchar3>,fgd::updateBackgroundModel_gpu<uchar4, uchar3, uchar4>},
449                 {0,0,fgd::updateBackgroundModel_gpu<uchar4, uchar4, uchar3>,fgd::updateBackgroundModel_gpu<uchar4, uchar4, uchar4>}
450             }
451         };
452 
453         const int deltaC  = cvRound(params.delta * 256 / params.Lc);
454         const int deltaCC = cvRound(params.delta * 256 / params.Lcc);
455 
456         funcs[prevFrame.channels() - 1][curFrame.channels() - 1][background.channels() - 1](
457                     prevFrame, curFrame, Ftd, Fbd, foreground, background,
458                     deltaC, deltaCC, params.alpha1, params.alpha2, params.alpha3,
459                     params.N1c, params.N1cc, params.N2c, params.N2cc, params.T,
460                     0);
461     }
462 }
463 
464 
465 namespace
466 {
467     class BGPixelStat
468     {
469     public:
470         void create(Size size, const FGDParams& params);
471 
472         void setTrained();
473 
474         operator fgd::BGPixelStat();
475 
476     private:
477         GpuMat Pbc_;
478         GpuMat Pbcc_;
479         GpuMat is_trained_st_model_;
480         GpuMat is_trained_dyn_model_;
481 
482         GpuMat ctable_Pv_;
483         GpuMat ctable_Pvb_;
484         GpuMat ctable_v_;
485 
486         GpuMat cctable_Pv_;
487         GpuMat cctable_Pvb_;
488         GpuMat cctable_v1_;
489         GpuMat cctable_v2_;
490     };
491 
create(Size size,const FGDParams & params)492     void BGPixelStat::create(Size size, const FGDParams& params)
493     {
494         cuda::ensureSizeIsEnough(size, CV_32FC1, Pbc_);
495         Pbc_.setTo(Scalar::all(0));
496 
497         cuda::ensureSizeIsEnough(size, CV_32FC1, Pbcc_);
498         Pbcc_.setTo(Scalar::all(0));
499 
500         cuda::ensureSizeIsEnough(size, CV_8UC1, is_trained_st_model_);
501         is_trained_st_model_.setTo(Scalar::all(0));
502 
503         cuda::ensureSizeIsEnough(size, CV_8UC1, is_trained_dyn_model_);
504         is_trained_dyn_model_.setTo(Scalar::all(0));
505 
506         cuda::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_32FC1, ctable_Pv_);
507         ctable_Pv_.setTo(Scalar::all(0));
508 
509         cuda::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_32FC1, ctable_Pvb_);
510         ctable_Pvb_.setTo(Scalar::all(0));
511 
512         cuda::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_8UC4, ctable_v_);
513         ctable_v_.setTo(Scalar::all(0));
514 
515         cuda::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_32FC1, cctable_Pv_);
516         cctable_Pv_.setTo(Scalar::all(0));
517 
518         cuda::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_32FC1, cctable_Pvb_);
519         cctable_Pvb_.setTo(Scalar::all(0));
520 
521         cuda::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_8UC4, cctable_v1_);
522         cctable_v1_.setTo(Scalar::all(0));
523 
524         cuda::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_8UC4, cctable_v2_);
525         cctable_v2_.setTo(Scalar::all(0));
526     }
527 
setTrained()528     void BGPixelStat::setTrained()
529     {
530         is_trained_st_model_.setTo(Scalar::all(1));
531         is_trained_dyn_model_.setTo(Scalar::all(1));
532     }
533 
operator fgd::BGPixelStat()534     BGPixelStat::operator fgd::BGPixelStat()
535     {
536         fgd::BGPixelStat stat;
537 
538         stat.rows_ = Pbc_.rows;
539 
540         stat.Pbc_data_ = Pbc_.data;
541         stat.Pbc_step_ = Pbc_.step;
542 
543         stat.Pbcc_data_ = Pbcc_.data;
544         stat.Pbcc_step_ = Pbcc_.step;
545 
546         stat.is_trained_st_model_data_ = is_trained_st_model_.data;
547         stat.is_trained_st_model_step_ = is_trained_st_model_.step;
548 
549         stat.is_trained_dyn_model_data_ = is_trained_dyn_model_.data;
550         stat.is_trained_dyn_model_step_ = is_trained_dyn_model_.step;
551 
552         stat.ctable_Pv_data_ = ctable_Pv_.data;
553         stat.ctable_Pv_step_ = ctable_Pv_.step;
554 
555         stat.ctable_Pvb_data_ = ctable_Pvb_.data;
556         stat.ctable_Pvb_step_ = ctable_Pvb_.step;
557 
558         stat.ctable_v_data_ = ctable_v_.data;
559         stat.ctable_v_step_ = ctable_v_.step;
560 
561         stat.cctable_Pv_data_ = cctable_Pv_.data;
562         stat.cctable_Pv_step_ = cctable_Pv_.step;
563 
564         stat.cctable_Pvb_data_ = cctable_Pvb_.data;
565         stat.cctable_Pvb_step_ = cctable_Pvb_.step;
566 
567         stat.cctable_v1_data_ = cctable_v1_.data;
568         stat.cctable_v1_step_ = cctable_v1_.step;
569 
570         stat.cctable_v2_data_ = cctable_v2_.data;
571         stat.cctable_v2_step_ = cctable_v2_.step;
572 
573         return stat;
574     }
575 
576     class FGDImpl : public cuda::BackgroundSubtractorFGD
577     {
578     public:
579         explicit FGDImpl(const FGDParams& params);
580         ~FGDImpl();
581 
582         void apply(InputArray image, OutputArray fgmask, double learningRate=-1);
583 
584         void getBackgroundImage(OutputArray backgroundImage) const;
585 
586         void getForegroundRegions(OutputArrayOfArrays foreground_regions);
587 
588     private:
589         void initialize(const GpuMat& firstFrame);
590 
591         FGDParams params_;
592         Size frameSize_;
593 
594         GpuMat background_;
595         GpuMat foreground_;
596         std::vector< std::vector<Point> > foreground_regions_;
597 
598         Mat h_foreground_;
599 
600         GpuMat prevFrame_;
601         GpuMat Ftd_;
602         GpuMat Fbd_;
603         BGPixelStat stat_;
604 
605         GpuMat hist_;
606         GpuMat histBuf_;
607 
608         GpuMat buf_;
609         GpuMat filterBrd_;
610 
611 #ifdef HAVE_OPENCV_CUDAFILTERS
612         Ptr<cuda::Filter> dilateFilter_;
613         Ptr<cuda::Filter> erodeFilter_;
614 #endif
615 
616         CvMemStorage* storage_;
617     };
618 
FGDImpl(const FGDParams & params)619     FGDImpl::FGDImpl(const FGDParams& params) : params_(params), frameSize_(0, 0)
620     {
621         storage_ = cvCreateMemStorage();
622         CV_Assert( storage_ != 0 );
623     }
624 
~FGDImpl()625     FGDImpl::~FGDImpl()
626     {
627         cvReleaseMemStorage(&storage_);
628     }
629 
apply(InputArray _frame,OutputArray fgmask,double)630     void FGDImpl::apply(InputArray _frame, OutputArray fgmask, double)
631     {
632         GpuMat curFrame = _frame.getGpuMat();
633 
634         if (curFrame.size() != frameSize_)
635         {
636             initialize(curFrame);
637             return;
638         }
639 
640         CV_Assert( curFrame.type() == CV_8UC3 || curFrame.type() == CV_8UC4 );
641         CV_Assert( curFrame.size() == prevFrame_.size() );
642 
643         cvClearMemStorage(storage_);
644         foreground_regions_.clear();
645         foreground_.setTo(Scalar::all(0));
646 
647         changeDetection(prevFrame_, curFrame, Ftd_, hist_, histBuf_);
648         changeDetection(background_, curFrame, Fbd_, hist_, histBuf_);
649 
650         int FG_pixels_count = bgfgClassification(prevFrame_, curFrame, Ftd_, Fbd_, foreground_, params_, 4);
651 
652 #ifdef HAVE_OPENCV_CUDAFILTERS
653         if (params_.perform_morphing > 0)
654             smoothForeground(foreground_, filterBrd_, buf_, erodeFilter_, dilateFilter_, params_);
655 #endif
656 
657         if (params_.minArea > 0 || params_.is_obj_without_holes)
658             findForegroundRegions(foreground_, h_foreground_, foreground_regions_, storage_, params_);
659 
660         // Check ALL BG update condition:
661         const double BGFG_FGD_BG_UPDATE_TRESH = 0.5;
662         if (static_cast<double>(FG_pixels_count) / Ftd_.size().area() > BGFG_FGD_BG_UPDATE_TRESH)
663             stat_.setTrained();
664 
665         updateBackgroundModel(prevFrame_, curFrame, Ftd_, Fbd_, foreground_, background_, params_);
666 
667         copyChannels(curFrame, prevFrame_, 4);
668 
669         foreground_.copyTo(fgmask);
670     }
671 
getBackgroundImage(OutputArray backgroundImage) const672     void FGDImpl::getBackgroundImage(OutputArray backgroundImage) const
673     {
674         cuda::cvtColor(background_, backgroundImage, COLOR_BGRA2BGR);
675     }
676 
getForegroundRegions(OutputArrayOfArrays dst)677     void FGDImpl::getForegroundRegions(OutputArrayOfArrays dst)
678     {
679         size_t total = foreground_regions_.size();
680 
681         dst.create((int) total, 1, 0, -1, true);
682 
683         for (size_t i = 0; i < total; ++i)
684         {
685             std::vector<Point>& c = foreground_regions_[i];
686 
687             dst.create((int) c.size(), 1, CV_32SC2, (int) i, true);
688             Mat ci = dst.getMat((int) i);
689 
690             Mat(ci.size(), ci.type(), &c[0]).copyTo(ci);
691         }
692     }
693 
initialize(const GpuMat & firstFrame)694     void FGDImpl::initialize(const GpuMat& firstFrame)
695     {
696         CV_Assert( firstFrame.type() == CV_8UC3 || firstFrame.type() == CV_8UC4 );
697 
698         frameSize_ = firstFrame.size();
699 
700         cuda::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, foreground_);
701 
702         copyChannels(firstFrame, background_, 4);
703         copyChannels(firstFrame, prevFrame_, 4);
704 
705         cuda::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, Ftd_);
706         cuda::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, Fbd_);
707 
708         stat_.create(firstFrame.size(), params_);
709         fgd::setBGPixelStat(stat_);
710 
711 #ifdef HAVE_OPENCV_CUDAFILTERS
712         if (params_.perform_morphing > 0)
713         {
714             Mat kernel = getStructuringElement(MORPH_RECT, Size(1 + params_.perform_morphing * 2, 1 + params_.perform_morphing * 2));
715             Point anchor(params_.perform_morphing, params_.perform_morphing);
716 
717             dilateFilter_ = cuda::createMorphologyFilter(MORPH_DILATE, CV_8UC1, kernel, anchor);
718             erodeFilter_ = cuda::createMorphologyFilter(MORPH_ERODE, CV_8UC1, kernel, anchor);
719         }
720 #endif
721     }
722 }
723 
createBackgroundSubtractorFGD(const FGDParams & params)724 Ptr<cuda::BackgroundSubtractorFGD> cv::cuda::createBackgroundSubtractorFGD(const FGDParams& params)
725 {
726     return makePtr<FGDImpl>(params);
727 }
728 
729 #endif // HAVE_CUDA
730