• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #ifndef __OPENCV_CUDAOPTFLOW_HPP__
44 #define __OPENCV_CUDAOPTFLOW_HPP__
45 
46 #ifndef __cplusplus
47 #  error cudaoptflow.hpp header must be compiled as C++
48 #endif
49 
50 #include "opencv2/core/cuda.hpp"
51 
52 /**
53   @addtogroup cuda
54   @{
55     @defgroup cudaoptflow Optical Flow
56   @}
57  */
58 
59 namespace cv { namespace cuda {
60 
61 //! @addtogroup cudaoptflow
62 //! @{
63 
64 //
65 // Interface
66 //
67 
68 /** @brief Base interface for dense optical flow algorithms.
69  */
70 class CV_EXPORTS DenseOpticalFlow : public Algorithm
71 {
72 public:
73     /** @brief Calculates a dense optical flow.
74 
75     @param I0 first input image.
76     @param I1 second input image of the same size and the same type as I0.
77     @param flow computed flow image that has the same size as I0 and type CV_32FC2.
78     @param stream Stream for the asynchronous version.
79      */
80     virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream = Stream::Null()) = 0;
81 };
82 
83 /** @brief Base interface for sparse optical flow algorithms.
84  */
85 class CV_EXPORTS SparseOpticalFlow : public Algorithm
86 {
87 public:
88     /** @brief Calculates a sparse optical flow.
89 
90     @param prevImg First input image.
91     @param nextImg Second input image of the same size and the same type as prevImg.
92     @param prevPts Vector of 2D points for which the flow needs to be found.
93     @param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image.
94     @param status Output status vector. Each element of the vector is set to 1 if the
95                   flow for the corresponding features has been found. Otherwise, it is set to 0.
96     @param err Optional output vector that contains error response for each point (inverse confidence).
97     @param stream Stream for the asynchronous version.
98      */
99     virtual void calc(InputArray prevImg, InputArray nextImg,
100                       InputArray prevPts, InputOutputArray nextPts,
101                       OutputArray status,
102                       OutputArray err = cv::noArray(),
103                       Stream& stream = Stream::Null()) = 0;
104 };
105 
106 //
107 // BroxOpticalFlow
108 //
109 
110 /** @brief Class computing the optical flow for two images using Brox et al Optical Flow algorithm (@cite Brox2004).
111  */
112 class CV_EXPORTS BroxOpticalFlow : public DenseOpticalFlow
113 {
114 public:
115     virtual double getFlowSmoothness() const = 0;
116     virtual void setFlowSmoothness(double alpha) = 0;
117 
118     virtual double getGradientConstancyImportance() const = 0;
119     virtual void setGradientConstancyImportance(double gamma) = 0;
120 
121     virtual double getPyramidScaleFactor() const = 0;
122     virtual void setPyramidScaleFactor(double scale_factor) = 0;
123 
124     //! number of lagged non-linearity iterations (inner loop)
125     virtual int getInnerIterations() const = 0;
126     virtual void setInnerIterations(int inner_iterations) = 0;
127 
128     //! number of warping iterations (number of pyramid levels)
129     virtual int getOuterIterations() const = 0;
130     virtual void setOuterIterations(int outer_iterations) = 0;
131 
132     //! number of linear system solver iterations
133     virtual int getSolverIterations() const = 0;
134     virtual void setSolverIterations(int solver_iterations) = 0;
135 
136     static Ptr<BroxOpticalFlow> create(
137             double alpha = 0.197,
138             double gamma = 50.0,
139             double scale_factor = 0.8,
140             int inner_iterations = 5,
141             int outer_iterations = 150,
142             int solver_iterations = 10);
143 };
144 
145 //
146 // PyrLKOpticalFlow
147 //
148 
149 /** @brief Class used for calculating a sparse optical flow.
150 
151 The class can calculate an optical flow for a sparse feature set using the
152 iterative Lucas-Kanade method with pyramids.
153 
154 @sa calcOpticalFlowPyrLK
155 
156 @note
157    -   An example of the Lucas Kanade optical flow algorithm can be found at
158         opencv_source_code/samples/gpu/pyrlk_optical_flow.cpp
159  */
160 class CV_EXPORTS SparsePyrLKOpticalFlow : public SparseOpticalFlow
161 {
162 public:
163     virtual Size getWinSize() const = 0;
164     virtual void setWinSize(Size winSize) = 0;
165 
166     virtual int getMaxLevel() const = 0;
167     virtual void setMaxLevel(int maxLevel) = 0;
168 
169     virtual int getNumIters() const = 0;
170     virtual void setNumIters(int iters) = 0;
171 
172     virtual bool getUseInitialFlow() const = 0;
173     virtual void setUseInitialFlow(bool useInitialFlow) = 0;
174 
175     static Ptr<SparsePyrLKOpticalFlow> create(
176             Size winSize = Size(21, 21),
177             int maxLevel = 3,
178             int iters = 30,
179             bool useInitialFlow = false);
180 };
181 
182 /** @brief Class used for calculating a dense optical flow.
183 
184 The class can calculate an optical flow for a dense optical flow using the
185 iterative Lucas-Kanade method with pyramids.
186  */
187 class CV_EXPORTS DensePyrLKOpticalFlow : public DenseOpticalFlow
188 {
189 public:
190     virtual Size getWinSize() const = 0;
191     virtual void setWinSize(Size winSize) = 0;
192 
193     virtual int getMaxLevel() const = 0;
194     virtual void setMaxLevel(int maxLevel) = 0;
195 
196     virtual int getNumIters() const = 0;
197     virtual void setNumIters(int iters) = 0;
198 
199     virtual bool getUseInitialFlow() const = 0;
200     virtual void setUseInitialFlow(bool useInitialFlow) = 0;
201 
202     static Ptr<DensePyrLKOpticalFlow> create(
203             Size winSize = Size(13, 13),
204             int maxLevel = 3,
205             int iters = 30,
206             bool useInitialFlow = false);
207 };
208 
209 //
210 // FarnebackOpticalFlow
211 //
212 
213 /** @brief Class computing a dense optical flow using the Gunnar Farneback’s algorithm.
214  */
215 class CV_EXPORTS FarnebackOpticalFlow : public DenseOpticalFlow
216 {
217 public:
218     virtual int getNumLevels() const = 0;
219     virtual void setNumLevels(int numLevels) = 0;
220 
221     virtual double getPyrScale() const = 0;
222     virtual void setPyrScale(double pyrScale) = 0;
223 
224     virtual bool getFastPyramids() const = 0;
225     virtual void setFastPyramids(bool fastPyramids) = 0;
226 
227     virtual int getWinSize() const = 0;
228     virtual void setWinSize(int winSize) = 0;
229 
230     virtual int getNumIters() const = 0;
231     virtual void setNumIters(int numIters) = 0;
232 
233     virtual int getPolyN() const = 0;
234     virtual void setPolyN(int polyN) = 0;
235 
236     virtual double getPolySigma() const = 0;
237     virtual void setPolySigma(double polySigma) = 0;
238 
239     virtual int getFlags() const = 0;
240     virtual void setFlags(int flags) = 0;
241 
242     static Ptr<FarnebackOpticalFlow> create(
243             int numLevels = 5,
244             double pyrScale = 0.5,
245             bool fastPyramids = false,
246             int winSize = 13,
247             int numIters = 10,
248             int polyN = 5,
249             double polySigma = 1.1,
250             int flags = 0);
251 };
252 
253 //
254 // OpticalFlowDual_TVL1
255 //
256 
257 /** @brief Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method.
258  *
259  * @sa C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
260  * @sa Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
261  */
262 class CV_EXPORTS OpticalFlowDual_TVL1 : public DenseOpticalFlow
263 {
264 public:
265     /**
266      * Time step of the numerical scheme.
267      */
268     virtual double getTau() const = 0;
269     virtual void setTau(double tau) = 0;
270 
271     /**
272      * Weight parameter for the data term, attachment parameter.
273      * This is the most relevant parameter, which determines the smoothness of the output.
274      * The smaller this parameter is, the smoother the solutions we obtain.
275      * It depends on the range of motions of the images, so its value should be adapted to each image sequence.
276      */
277     virtual double getLambda() const = 0;
278     virtual void setLambda(double lambda) = 0;
279 
280     /**
281      * Weight parameter for (u - v)^2, tightness parameter.
282      * It serves as a link between the attachment and the regularization terms.
283      * In theory, it should have a small value in order to maintain both parts in correspondence.
284      * The method is stable for a large range of values of this parameter.
285      */
286     virtual double getGamma() const = 0;
287     virtual void setGamma(double gamma) = 0;
288 
289     /**
290      * parameter used for motion estimation. It adds a variable allowing for illumination variations
291      * Set this parameter to 1. if you have varying illumination.
292      * See: Chambolle et al, A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging
293      * Journal of Mathematical imaging and vision, may 2011 Vol 40 issue 1, pp 120-145
294      */
295     virtual double getTheta() const = 0;
296     virtual void setTheta(double theta) = 0;
297 
298     /**
299      * Number of scales used to create the pyramid of images.
300      */
301     virtual int getNumScales() const = 0;
302     virtual void setNumScales(int nscales) = 0;
303 
304     /**
305      * Number of warpings per scale.
306      * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
307      * This is a parameter that assures the stability of the method.
308      * It also affects the running time, so it is a compromise between speed and accuracy.
309      */
310     virtual int getNumWarps() const = 0;
311     virtual void setNumWarps(int warps) = 0;
312 
313     /**
314      * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
315      * A small value will yield more accurate solutions at the expense of a slower convergence.
316      */
317     virtual double getEpsilon() const = 0;
318     virtual void setEpsilon(double epsilon) = 0;
319 
320     /**
321      * Stopping criterion iterations number used in the numerical scheme.
322      */
323     virtual int getNumIterations() const = 0;
324     virtual void setNumIterations(int iterations) = 0;
325 
326     virtual double getScaleStep() const = 0;
327     virtual void setScaleStep(double scaleStep) = 0;
328 
329     virtual bool getUseInitialFlow() const = 0;
330     virtual void setUseInitialFlow(bool useInitialFlow) = 0;
331 
332     static Ptr<OpticalFlowDual_TVL1> create(
333             double tau = 0.25,
334             double lambda = 0.15,
335             double theta = 0.3,
336             int nscales = 5,
337             int warps = 5,
338             double epsilon = 0.01,
339             int iterations = 300,
340             double scaleStep = 0.8,
341             double gamma = 0.0,
342             bool useInitialFlow = false);
343 };
344 
345 //! @}
346 
347 }} // namespace cv { namespace cuda {
348 
349 #endif /* __OPENCV_CUDAOPTFLOW_HPP__ */
350