1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "precomp.hpp"
44
45 using namespace cv;
46 using namespace cv::cuda;
47
48 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
49
estimateRecommendedParams(int,int,int &,int &,int &)50 void cv::cuda::StereoBeliefPropagation::estimateRecommendedParams(int, int, int&, int&, int&) { throw_no_cuda(); }
51
createStereoBeliefPropagation(int,int,int,int)52 Ptr<cuda::StereoBeliefPropagation> cv::cuda::createStereoBeliefPropagation(int, int, int, int) { throw_no_cuda(); return Ptr<cuda::StereoBeliefPropagation>(); }
53
54 #else /* !defined (HAVE_CUDA) */
55
56 namespace cv { namespace cuda { namespace device
57 {
58 namespace stereobp
59 {
60 void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump);
61 template<typename T, typename D>
62 void comp_data_gpu(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
63 template<typename T>
64 void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
65 template <typename T>
66 void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
67 template <typename T>
68 void calc_all_iterations_gpu(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d,
69 const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
70 template <typename T>
71 void output_gpu(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data,
72 const PtrStepSz<short>& disp, cudaStream_t stream);
73 }
74 }}}
75
76 namespace
77 {
78 class StereoBPImpl : public cuda::StereoBeliefPropagation
79 {
80 public:
81 StereoBPImpl(int ndisp, int iters, int levels, int msg_type);
82
83 void compute(InputArray left, InputArray right, OutputArray disparity);
84 void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream);
85 void compute(InputArray data, OutputArray disparity, Stream& stream);
86
getMinDisparity() const87 int getMinDisparity() const { return 0; }
setMinDisparity(int)88 void setMinDisparity(int /*minDisparity*/) {}
89
getNumDisparities() const90 int getNumDisparities() const { return ndisp_; }
setNumDisparities(int numDisparities)91 void setNumDisparities(int numDisparities) { ndisp_ = numDisparities; }
92
getBlockSize() const93 int getBlockSize() const { return 0; }
setBlockSize(int)94 void setBlockSize(int /*blockSize*/) {}
95
getSpeckleWindowSize() const96 int getSpeckleWindowSize() const { return 0; }
setSpeckleWindowSize(int)97 void setSpeckleWindowSize(int /*speckleWindowSize*/) {}
98
getSpeckleRange() const99 int getSpeckleRange() const { return 0; }
setSpeckleRange(int)100 void setSpeckleRange(int /*speckleRange*/) {}
101
getDisp12MaxDiff() const102 int getDisp12MaxDiff() const { return 0; }
setDisp12MaxDiff(int)103 void setDisp12MaxDiff(int /*disp12MaxDiff*/) {}
104
getNumIters() const105 int getNumIters() const { return iters_; }
setNumIters(int iters)106 void setNumIters(int iters) { iters_ = iters; }
107
getNumLevels() const108 int getNumLevels() const { return levels_; }
setNumLevels(int levels)109 void setNumLevels(int levels) { levels_ = levels; }
110
getMaxDataTerm() const111 double getMaxDataTerm() const { return max_data_term_; }
setMaxDataTerm(double max_data_term)112 void setMaxDataTerm(double max_data_term) { max_data_term_ = (float) max_data_term; }
113
getDataWeight() const114 double getDataWeight() const { return data_weight_; }
setDataWeight(double data_weight)115 void setDataWeight(double data_weight) { data_weight_ = (float) data_weight; }
116
getMaxDiscTerm() const117 double getMaxDiscTerm() const { return max_disc_term_; }
setMaxDiscTerm(double max_disc_term)118 void setMaxDiscTerm(double max_disc_term) { max_disc_term_ = (float) max_disc_term; }
119
getDiscSingleJump() const120 double getDiscSingleJump() const { return disc_single_jump_; }
setDiscSingleJump(double disc_single_jump)121 void setDiscSingleJump(double disc_single_jump) { disc_single_jump_ = (float) disc_single_jump; }
122
getMsgType() const123 int getMsgType() const { return msg_type_; }
setMsgType(int msg_type)124 void setMsgType(int msg_type) { msg_type_ = msg_type; }
125
126 private:
127 void init(Stream& stream);
128 void calcBP(OutputArray disp, Stream& stream);
129
130 int ndisp_;
131 int iters_;
132 int levels_;
133 float max_data_term_;
134 float data_weight_;
135 float max_disc_term_;
136 float disc_single_jump_;
137 int msg_type_;
138
139 float scale_;
140 int rows_, cols_;
141 std::vector<int> cols_all_, rows_all_;
142 GpuMat u_, d_, l_, r_, u2_, d2_, l2_, r2_;
143 std::vector<GpuMat> datas_;
144 GpuMat outBuf_;
145 };
146
147 const float DEFAULT_MAX_DATA_TERM = 10.0f;
148 const float DEFAULT_DATA_WEIGHT = 0.07f;
149 const float DEFAULT_MAX_DISC_TERM = 1.7f;
150 const float DEFAULT_DISC_SINGLE_JUMP = 1.0f;
151
StereoBPImpl(int ndisp,int iters,int levels,int msg_type)152 StereoBPImpl::StereoBPImpl(int ndisp, int iters, int levels, int msg_type) :
153 ndisp_(ndisp), iters_(iters), levels_(levels),
154 max_data_term_(DEFAULT_MAX_DATA_TERM), data_weight_(DEFAULT_DATA_WEIGHT),
155 max_disc_term_(DEFAULT_MAX_DISC_TERM), disc_single_jump_(DEFAULT_DISC_SINGLE_JUMP),
156 msg_type_(msg_type)
157 {
158 }
159
compute(InputArray left,InputArray right,OutputArray disparity)160 void StereoBPImpl::compute(InputArray left, InputArray right, OutputArray disparity)
161 {
162 compute(left, right, disparity, Stream::Null());
163 }
164
compute(InputArray _left,InputArray _right,OutputArray disparity,Stream & stream)165 void StereoBPImpl::compute(InputArray _left, InputArray _right, OutputArray disparity, Stream& stream)
166 {
167 using namespace cv::cuda::device::stereobp;
168
169 typedef void (*comp_data_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
170 static const comp_data_t comp_data_callers[2][5] =
171 {
172 {0, comp_data_gpu<unsigned char, short>, 0, comp_data_gpu<uchar3, short>, comp_data_gpu<uchar4, short>},
173 {0, comp_data_gpu<unsigned char, float>, 0, comp_data_gpu<uchar3, float>, comp_data_gpu<uchar4, float>}
174 };
175
176 scale_ = msg_type_ == CV_32F ? 1.0f : 10.0f;
177
178 CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ );
179 CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S );
180 CV_Assert( msg_type_ == CV_32F || (1 << (levels_ - 1)) * scale_ * max_data_term_ < std::numeric_limits<short>::max() );
181
182 GpuMat left = _left.getGpuMat();
183 GpuMat right = _right.getGpuMat();
184
185 CV_Assert( left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4 );
186 CV_Assert( left.size() == right.size() && left.type() == right.type() );
187
188 rows_ = left.rows;
189 cols_ = left.cols;
190
191 const int divisor = (int) pow(2.f, levels_ - 1.0f);
192 const int lowest_cols = cols_ / divisor;
193 const int lowest_rows = rows_ / divisor;
194 const int min_image_dim_size = 2;
195 CV_Assert( std::min(lowest_cols, lowest_rows) > min_image_dim_size );
196
197 init(stream);
198
199 datas_[0].create(rows_ * ndisp_, cols_, msg_type_);
200
201 comp_data_callers[msg_type_ == CV_32F][left.channels()](left, right, datas_[0], StreamAccessor::getStream(stream));
202
203 calcBP(disparity, stream);
204 }
205
compute(InputArray _data,OutputArray disparity,Stream & stream)206 void StereoBPImpl::compute(InputArray _data, OutputArray disparity, Stream& stream)
207 {
208 scale_ = msg_type_ == CV_32F ? 1.0f : 10.0f;
209
210 CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ );
211 CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S );
212 CV_Assert( msg_type_ == CV_32F || (1 << (levels_ - 1)) * scale_ * max_data_term_ < std::numeric_limits<short>::max() );
213
214 GpuMat data = _data.getGpuMat();
215
216 CV_Assert( (data.type() == msg_type_) && (data.rows % ndisp_ == 0) );
217
218 rows_ = data.rows / ndisp_;
219 cols_ = data.cols;
220
221 const int divisor = (int) pow(2.f, levels_ - 1.0f);
222 const int lowest_cols = cols_ / divisor;
223 const int lowest_rows = rows_ / divisor;
224 const int min_image_dim_size = 2;
225 CV_Assert( std::min(lowest_cols, lowest_rows) > min_image_dim_size );
226
227 init(stream);
228
229 data.copyTo(datas_[0], stream);
230
231 calcBP(disparity, stream);
232 }
233
init(Stream & stream)234 void StereoBPImpl::init(Stream& stream)
235 {
236 using namespace cv::cuda::device::stereobp;
237
238 u_.create(rows_ * ndisp_, cols_, msg_type_);
239 d_.create(rows_ * ndisp_, cols_, msg_type_);
240 l_.create(rows_ * ndisp_, cols_, msg_type_);
241 r_.create(rows_ * ndisp_, cols_, msg_type_);
242
243 if (levels_ & 1)
244 {
245 //can clear less area
246 u_.setTo(0, stream);
247 d_.setTo(0, stream);
248 l_.setTo(0, stream);
249 r_.setTo(0, stream);
250 }
251
252 if (levels_ > 1)
253 {
254 int less_rows = (rows_ + 1) / 2;
255 int less_cols = (cols_ + 1) / 2;
256
257 u2_.create(less_rows * ndisp_, less_cols, msg_type_);
258 d2_.create(less_rows * ndisp_, less_cols, msg_type_);
259 l2_.create(less_rows * ndisp_, less_cols, msg_type_);
260 r2_.create(less_rows * ndisp_, less_cols, msg_type_);
261
262 if ((levels_ & 1) == 0)
263 {
264 u2_.setTo(0, stream);
265 d2_.setTo(0, stream);
266 l2_.setTo(0, stream);
267 r2_.setTo(0, stream);
268 }
269 }
270
271 load_constants(ndisp_, max_data_term_, scale_ * data_weight_, scale_ * max_disc_term_, scale_ * disc_single_jump_);
272
273 datas_.resize(levels_);
274
275 cols_all_.resize(levels_);
276 rows_all_.resize(levels_);
277
278 cols_all_[0] = cols_;
279 rows_all_[0] = rows_;
280 }
281
calcBP(OutputArray disp,Stream & _stream)282 void StereoBPImpl::calcBP(OutputArray disp, Stream& _stream)
283 {
284 using namespace cv::cuda::device::stereobp;
285
286 typedef void (*data_step_down_t)(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
287 static const data_step_down_t data_step_down_callers[2] =
288 {
289 data_step_down_gpu<short>, data_step_down_gpu<float>
290 };
291
292 typedef void (*level_up_messages_t)(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
293 static const level_up_messages_t level_up_messages_callers[2] =
294 {
295 level_up_messages_gpu<short>, level_up_messages_gpu<float>
296 };
297
298 typedef void (*calc_all_iterations_t)(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
299 static const calc_all_iterations_t calc_all_iterations_callers[2] =
300 {
301 calc_all_iterations_gpu<short>, calc_all_iterations_gpu<float>
302 };
303
304 typedef void (*output_t)(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream);
305 static const output_t output_callers[2] =
306 {
307 output_gpu<short>, output_gpu<float>
308 };
309
310 const int funcIdx = msg_type_ == CV_32F;
311
312 cudaStream_t stream = StreamAccessor::getStream(_stream);
313
314 for (int i = 1; i < levels_; ++i)
315 {
316 cols_all_[i] = (cols_all_[i-1] + 1) / 2;
317 rows_all_[i] = (rows_all_[i-1] + 1) / 2;
318
319 datas_[i].create(rows_all_[i] * ndisp_, cols_all_[i], msg_type_);
320
321 data_step_down_callers[funcIdx](cols_all_[i], rows_all_[i], rows_all_[i-1], datas_[i-1], datas_[i], stream);
322 }
323
324 PtrStepSzb mus[] = {u_, u2_};
325 PtrStepSzb mds[] = {d_, d2_};
326 PtrStepSzb mrs[] = {r_, r2_};
327 PtrStepSzb mls[] = {l_, l2_};
328
329 int mem_idx = (levels_ & 1) ? 0 : 1;
330
331 for (int i = levels_ - 1; i >= 0; --i)
332 {
333 // for lower level we have already computed messages by setting to zero
334 if (i != levels_ - 1)
335 level_up_messages_callers[funcIdx](mem_idx, cols_all_[i], rows_all_[i], rows_all_[i+1], mus, mds, mls, mrs, stream);
336
337 calc_all_iterations_callers[funcIdx](cols_all_[i], rows_all_[i], iters_, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas_[i], stream);
338
339 mem_idx = (mem_idx + 1) & 1;
340 }
341
342 const int dtype = disp.fixedType() ? disp.type() : CV_16SC1;
343
344 disp.create(rows_, cols_, dtype);
345 GpuMat out = disp.getGpuMat();
346
347 if (dtype != CV_16SC1)
348 {
349 outBuf_.create(rows_, cols_, CV_16SC1);
350 out = outBuf_;
351 }
352
353 out.setTo(0, _stream);
354
355 output_callers[funcIdx](u_, d_, l_, r_, datas_.front(), out, stream);
356
357 if (dtype != CV_16SC1)
358 out.convertTo(disp, dtype, _stream);
359 }
360 }
361
createStereoBeliefPropagation(int ndisp,int iters,int levels,int msg_type)362 Ptr<cuda::StereoBeliefPropagation> cv::cuda::createStereoBeliefPropagation(int ndisp, int iters, int levels, int msg_type)
363 {
364 return makePtr<StereoBPImpl>(ndisp, iters, levels, msg_type);
365 }
366
estimateRecommendedParams(int width,int height,int & ndisp,int & iters,int & levels)367 void cv::cuda::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels)
368 {
369 ndisp = width / 4;
370 if ((ndisp & 1) != 0)
371 ndisp++;
372
373 int mm = std::max(width, height);
374 iters = mm / 100 + 2;
375
376 levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5;
377 if (levels == 0) levels++;
378 }
379
380 #endif /* !defined (HAVE_CUDA) */
381