• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of Intel Corporation may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 #include "precomp.hpp"
43 #include "gcgraph.hpp"
44 #include <limits>
45 
46 using namespace cv;
47 
48 /*
49 This is implementation of image segmentation algorithm GrabCut described in
50 "GrabCut — Interactive Foreground Extraction using Iterated Graph Cuts".
51 Carsten Rother, Vladimir Kolmogorov, Andrew Blake.
52  */
53 
54 /*
55  GMM - Gaussian Mixture Model
56 */
57 class GMM
58 {
59 public:
60     static const int componentsCount = 5;
61 
62     GMM( Mat& _model );
63     double operator()( const Vec3d color ) const;
64     double operator()( int ci, const Vec3d color ) const;
65     int whichComponent( const Vec3d color ) const;
66 
67     void initLearning();
68     void addSample( int ci, const Vec3d color );
69     void endLearning();
70 
71 private:
72     void calcInverseCovAndDeterm( int ci );
73     Mat model;
74     double* coefs;
75     double* mean;
76     double* cov;
77 
78     double inverseCovs[componentsCount][3][3];
79     double covDeterms[componentsCount];
80 
81     double sums[componentsCount][3];
82     double prods[componentsCount][3][3];
83     int sampleCounts[componentsCount];
84     int totalSampleCount;
85 };
86 
GMM(Mat & _model)87 GMM::GMM( Mat& _model )
88 {
89     const int modelSize = 3/*mean*/ + 9/*covariance*/ + 1/*component weight*/;
90     if( _model.empty() )
91     {
92         _model.create( 1, modelSize*componentsCount, CV_64FC1 );
93         _model.setTo(Scalar(0));
94     }
95     else if( (_model.type() != CV_64FC1) || (_model.rows != 1) || (_model.cols != modelSize*componentsCount) )
96         CV_Error( CV_StsBadArg, "_model must have CV_64FC1 type, rows == 1 and cols == 13*componentsCount" );
97 
98     model = _model;
99 
100     coefs = model.ptr<double>(0);
101     mean = coefs + componentsCount;
102     cov = mean + 3*componentsCount;
103 
104     for( int ci = 0; ci < componentsCount; ci++ )
105         if( coefs[ci] > 0 )
106              calcInverseCovAndDeterm( ci );
107 }
108 
operator ()(const Vec3d color) const109 double GMM::operator()( const Vec3d color ) const
110 {
111     double res = 0;
112     for( int ci = 0; ci < componentsCount; ci++ )
113         res += coefs[ci] * (*this)(ci, color );
114     return res;
115 }
116 
operator ()(int ci,const Vec3d color) const117 double GMM::operator()( int ci, const Vec3d color ) const
118 {
119     double res = 0;
120     if( coefs[ci] > 0 )
121     {
122         CV_Assert( covDeterms[ci] > std::numeric_limits<double>::epsilon() );
123         Vec3d diff = color;
124         double* m = mean + 3*ci;
125         diff[0] -= m[0]; diff[1] -= m[1]; diff[2] -= m[2];
126         double mult = diff[0]*(diff[0]*inverseCovs[ci][0][0] + diff[1]*inverseCovs[ci][1][0] + diff[2]*inverseCovs[ci][2][0])
127                    + diff[1]*(diff[0]*inverseCovs[ci][0][1] + diff[1]*inverseCovs[ci][1][1] + diff[2]*inverseCovs[ci][2][1])
128                    + diff[2]*(diff[0]*inverseCovs[ci][0][2] + diff[1]*inverseCovs[ci][1][2] + diff[2]*inverseCovs[ci][2][2]);
129         res = 1.0f/sqrt(covDeterms[ci]) * exp(-0.5f*mult);
130     }
131     return res;
132 }
133 
whichComponent(const Vec3d color) const134 int GMM::whichComponent( const Vec3d color ) const
135 {
136     int k = 0;
137     double max = 0;
138 
139     for( int ci = 0; ci < componentsCount; ci++ )
140     {
141         double p = (*this)( ci, color );
142         if( p > max )
143         {
144             k = ci;
145             max = p;
146         }
147     }
148     return k;
149 }
150 
initLearning()151 void GMM::initLearning()
152 {
153     for( int ci = 0; ci < componentsCount; ci++)
154     {
155         sums[ci][0] = sums[ci][1] = sums[ci][2] = 0;
156         prods[ci][0][0] = prods[ci][0][1] = prods[ci][0][2] = 0;
157         prods[ci][1][0] = prods[ci][1][1] = prods[ci][1][2] = 0;
158         prods[ci][2][0] = prods[ci][2][1] = prods[ci][2][2] = 0;
159         sampleCounts[ci] = 0;
160     }
161     totalSampleCount = 0;
162 }
163 
addSample(int ci,const Vec3d color)164 void GMM::addSample( int ci, const Vec3d color )
165 {
166     sums[ci][0] += color[0]; sums[ci][1] += color[1]; sums[ci][2] += color[2];
167     prods[ci][0][0] += color[0]*color[0]; prods[ci][0][1] += color[0]*color[1]; prods[ci][0][2] += color[0]*color[2];
168     prods[ci][1][0] += color[1]*color[0]; prods[ci][1][1] += color[1]*color[1]; prods[ci][1][2] += color[1]*color[2];
169     prods[ci][2][0] += color[2]*color[0]; prods[ci][2][1] += color[2]*color[1]; prods[ci][2][2] += color[2]*color[2];
170     sampleCounts[ci]++;
171     totalSampleCount++;
172 }
173 
endLearning()174 void GMM::endLearning()
175 {
176     const double variance = 0.01;
177     for( int ci = 0; ci < componentsCount; ci++ )
178     {
179         int n = sampleCounts[ci];
180         if( n == 0 )
181             coefs[ci] = 0;
182         else
183         {
184             coefs[ci] = (double)n/totalSampleCount;
185 
186             double* m = mean + 3*ci;
187             m[0] = sums[ci][0]/n; m[1] = sums[ci][1]/n; m[2] = sums[ci][2]/n;
188 
189             double* c = cov + 9*ci;
190             c[0] = prods[ci][0][0]/n - m[0]*m[0]; c[1] = prods[ci][0][1]/n - m[0]*m[1]; c[2] = prods[ci][0][2]/n - m[0]*m[2];
191             c[3] = prods[ci][1][0]/n - m[1]*m[0]; c[4] = prods[ci][1][1]/n - m[1]*m[1]; c[5] = prods[ci][1][2]/n - m[1]*m[2];
192             c[6] = prods[ci][2][0]/n - m[2]*m[0]; c[7] = prods[ci][2][1]/n - m[2]*m[1]; c[8] = prods[ci][2][2]/n - m[2]*m[2];
193 
194             double dtrm = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6]) + c[2]*(c[3]*c[7]-c[4]*c[6]);
195             if( dtrm <= std::numeric_limits<double>::epsilon() )
196             {
197                 // Adds the white noise to avoid singular covariance matrix.
198                 c[0] += variance;
199                 c[4] += variance;
200                 c[8] += variance;
201             }
202 
203             calcInverseCovAndDeterm(ci);
204         }
205     }
206 }
207 
calcInverseCovAndDeterm(int ci)208 void GMM::calcInverseCovAndDeterm( int ci )
209 {
210     if( coefs[ci] > 0 )
211     {
212         double *c = cov + 9*ci;
213         double dtrm =
214               covDeterms[ci] = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6]) + c[2]*(c[3]*c[7]-c[4]*c[6]);
215 
216         CV_Assert( dtrm > std::numeric_limits<double>::epsilon() );
217         inverseCovs[ci][0][0] =  (c[4]*c[8] - c[5]*c[7]) / dtrm;
218         inverseCovs[ci][1][0] = -(c[3]*c[8] - c[5]*c[6]) / dtrm;
219         inverseCovs[ci][2][0] =  (c[3]*c[7] - c[4]*c[6]) / dtrm;
220         inverseCovs[ci][0][1] = -(c[1]*c[8] - c[2]*c[7]) / dtrm;
221         inverseCovs[ci][1][1] =  (c[0]*c[8] - c[2]*c[6]) / dtrm;
222         inverseCovs[ci][2][1] = -(c[0]*c[7] - c[1]*c[6]) / dtrm;
223         inverseCovs[ci][0][2] =  (c[1]*c[5] - c[2]*c[4]) / dtrm;
224         inverseCovs[ci][1][2] = -(c[0]*c[5] - c[2]*c[3]) / dtrm;
225         inverseCovs[ci][2][2] =  (c[0]*c[4] - c[1]*c[3]) / dtrm;
226     }
227 }
228 
229 /*
230   Calculate beta - parameter of GrabCut algorithm.
231   beta = 1/(2*avg(sqr(||color[i] - color[j]||)))
232 */
calcBeta(const Mat & img)233 static double calcBeta( const Mat& img )
234 {
235     double beta = 0;
236     for( int y = 0; y < img.rows; y++ )
237     {
238         for( int x = 0; x < img.cols; x++ )
239         {
240             Vec3d color = img.at<Vec3b>(y,x);
241             if( x>0 ) // left
242             {
243                 Vec3d diff = color - (Vec3d)img.at<Vec3b>(y,x-1);
244                 beta += diff.dot(diff);
245             }
246             if( y>0 && x>0 ) // upleft
247             {
248                 Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x-1);
249                 beta += diff.dot(diff);
250             }
251             if( y>0 ) // up
252             {
253                 Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x);
254                 beta += diff.dot(diff);
255             }
256             if( y>0 && x<img.cols-1) // upright
257             {
258                 Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x+1);
259                 beta += diff.dot(diff);
260             }
261         }
262     }
263     if( beta <= std::numeric_limits<double>::epsilon() )
264         beta = 0;
265     else
266         beta = 1.f / (2 * beta/(4*img.cols*img.rows - 3*img.cols - 3*img.rows + 2) );
267 
268     return beta;
269 }
270 
271 /*
272   Calculate weights of noterminal vertices of graph.
273   beta and gamma - parameters of GrabCut algorithm.
274  */
calcNWeights(const Mat & img,Mat & leftW,Mat & upleftW,Mat & upW,Mat & uprightW,double beta,double gamma)275 static void calcNWeights( const Mat& img, Mat& leftW, Mat& upleftW, Mat& upW, Mat& uprightW, double beta, double gamma )
276 {
277     const double gammaDivSqrt2 = gamma / std::sqrt(2.0f);
278     leftW.create( img.rows, img.cols, CV_64FC1 );
279     upleftW.create( img.rows, img.cols, CV_64FC1 );
280     upW.create( img.rows, img.cols, CV_64FC1 );
281     uprightW.create( img.rows, img.cols, CV_64FC1 );
282     for( int y = 0; y < img.rows; y++ )
283     {
284         for( int x = 0; x < img.cols; x++ )
285         {
286             Vec3d color = img.at<Vec3b>(y,x);
287             if( x-1>=0 ) // left
288             {
289                 Vec3d diff = color - (Vec3d)img.at<Vec3b>(y,x-1);
290                 leftW.at<double>(y,x) = gamma * exp(-beta*diff.dot(diff));
291             }
292             else
293                 leftW.at<double>(y,x) = 0;
294             if( x-1>=0 && y-1>=0 ) // upleft
295             {
296                 Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x-1);
297                 upleftW.at<double>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff));
298             }
299             else
300                 upleftW.at<double>(y,x) = 0;
301             if( y-1>=0 ) // up
302             {
303                 Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x);
304                 upW.at<double>(y,x) = gamma * exp(-beta*diff.dot(diff));
305             }
306             else
307                 upW.at<double>(y,x) = 0;
308             if( x+1<img.cols && y-1>=0 ) // upright
309             {
310                 Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x+1);
311                 uprightW.at<double>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff));
312             }
313             else
314                 uprightW.at<double>(y,x) = 0;
315         }
316     }
317 }
318 
319 /*
320   Check size, type and element values of mask matrix.
321  */
checkMask(const Mat & img,const Mat & mask)322 static void checkMask( const Mat& img, const Mat& mask )
323 {
324     if( mask.empty() )
325         CV_Error( CV_StsBadArg, "mask is empty" );
326     if( mask.type() != CV_8UC1 )
327         CV_Error( CV_StsBadArg, "mask must have CV_8UC1 type" );
328     if( mask.cols != img.cols || mask.rows != img.rows )
329         CV_Error( CV_StsBadArg, "mask must have as many rows and cols as img" );
330     for( int y = 0; y < mask.rows; y++ )
331     {
332         for( int x = 0; x < mask.cols; x++ )
333         {
334             uchar val = mask.at<uchar>(y,x);
335             if( val!=GC_BGD && val!=GC_FGD && val!=GC_PR_BGD && val!=GC_PR_FGD )
336                 CV_Error( CV_StsBadArg, "mask element value must be equel"
337                     "GC_BGD or GC_FGD or GC_PR_BGD or GC_PR_FGD" );
338         }
339     }
340 }
341 
342 /*
343   Initialize mask using rectangular.
344 */
initMaskWithRect(Mat & mask,Size imgSize,Rect rect)345 static void initMaskWithRect( Mat& mask, Size imgSize, Rect rect )
346 {
347     mask.create( imgSize, CV_8UC1 );
348     mask.setTo( GC_BGD );
349 
350     rect.x = std::max(0, rect.x);
351     rect.y = std::max(0, rect.y);
352     rect.width = std::min(rect.width, imgSize.width-rect.x);
353     rect.height = std::min(rect.height, imgSize.height-rect.y);
354 
355     (mask(rect)).setTo( Scalar(GC_PR_FGD) );
356 }
357 
358 /*
359   Initialize GMM background and foreground models using kmeans algorithm.
360 */
initGMMs(const Mat & img,const Mat & mask,GMM & bgdGMM,GMM & fgdGMM)361 static void initGMMs( const Mat& img, const Mat& mask, GMM& bgdGMM, GMM& fgdGMM )
362 {
363     const int kMeansItCount = 10;
364     const int kMeansType = KMEANS_PP_CENTERS;
365 
366     Mat bgdLabels, fgdLabels;
367     std::vector<Vec3f> bgdSamples, fgdSamples;
368     Point p;
369     for( p.y = 0; p.y < img.rows; p.y++ )
370     {
371         for( p.x = 0; p.x < img.cols; p.x++ )
372         {
373             if( mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD )
374                 bgdSamples.push_back( (Vec3f)img.at<Vec3b>(p) );
375             else // GC_FGD | GC_PR_FGD
376                 fgdSamples.push_back( (Vec3f)img.at<Vec3b>(p) );
377         }
378     }
379     CV_Assert( !bgdSamples.empty() && !fgdSamples.empty() );
380     Mat _bgdSamples( (int)bgdSamples.size(), 3, CV_32FC1, &bgdSamples[0][0] );
381     kmeans( _bgdSamples, GMM::componentsCount, bgdLabels,
382             TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
383     Mat _fgdSamples( (int)fgdSamples.size(), 3, CV_32FC1, &fgdSamples[0][0] );
384     kmeans( _fgdSamples, GMM::componentsCount, fgdLabels,
385             TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
386 
387     bgdGMM.initLearning();
388     for( int i = 0; i < (int)bgdSamples.size(); i++ )
389         bgdGMM.addSample( bgdLabels.at<int>(i,0), bgdSamples[i] );
390     bgdGMM.endLearning();
391 
392     fgdGMM.initLearning();
393     for( int i = 0; i < (int)fgdSamples.size(); i++ )
394         fgdGMM.addSample( fgdLabels.at<int>(i,0), fgdSamples[i] );
395     fgdGMM.endLearning();
396 }
397 
398 /*
399   Assign GMMs components for each pixel.
400 */
assignGMMsComponents(const Mat & img,const Mat & mask,const GMM & bgdGMM,const GMM & fgdGMM,Mat & compIdxs)401 static void assignGMMsComponents( const Mat& img, const Mat& mask, const GMM& bgdGMM, const GMM& fgdGMM, Mat& compIdxs )
402 {
403     Point p;
404     for( p.y = 0; p.y < img.rows; p.y++ )
405     {
406         for( p.x = 0; p.x < img.cols; p.x++ )
407         {
408             Vec3d color = img.at<Vec3b>(p);
409             compIdxs.at<int>(p) = mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD ?
410                 bgdGMM.whichComponent(color) : fgdGMM.whichComponent(color);
411         }
412     }
413 }
414 
415 /*
416   Learn GMMs parameters.
417 */
learnGMMs(const Mat & img,const Mat & mask,const Mat & compIdxs,GMM & bgdGMM,GMM & fgdGMM)418 static void learnGMMs( const Mat& img, const Mat& mask, const Mat& compIdxs, GMM& bgdGMM, GMM& fgdGMM )
419 {
420     bgdGMM.initLearning();
421     fgdGMM.initLearning();
422     Point p;
423     for( int ci = 0; ci < GMM::componentsCount; ci++ )
424     {
425         for( p.y = 0; p.y < img.rows; p.y++ )
426         {
427             for( p.x = 0; p.x < img.cols; p.x++ )
428             {
429                 if( compIdxs.at<int>(p) == ci )
430                 {
431                     if( mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD )
432                         bgdGMM.addSample( ci, img.at<Vec3b>(p) );
433                     else
434                         fgdGMM.addSample( ci, img.at<Vec3b>(p) );
435                 }
436             }
437         }
438     }
439     bgdGMM.endLearning();
440     fgdGMM.endLearning();
441 }
442 
443 /*
444   Construct GCGraph
445 */
constructGCGraph(const Mat & img,const Mat & mask,const GMM & bgdGMM,const GMM & fgdGMM,double lambda,const Mat & leftW,const Mat & upleftW,const Mat & upW,const Mat & uprightW,GCGraph<double> & graph)446 static void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const GMM& fgdGMM, double lambda,
447                        const Mat& leftW, const Mat& upleftW, const Mat& upW, const Mat& uprightW,
448                        GCGraph<double>& graph )
449 {
450     int vtxCount = img.cols*img.rows,
451         edgeCount = 2*(4*img.cols*img.rows - 3*(img.cols + img.rows) + 2);
452     graph.create(vtxCount, edgeCount);
453     Point p;
454     for( p.y = 0; p.y < img.rows; p.y++ )
455     {
456         for( p.x = 0; p.x < img.cols; p.x++)
457         {
458             // add node
459             int vtxIdx = graph.addVtx();
460             Vec3b color = img.at<Vec3b>(p);
461 
462             // set t-weights
463             double fromSource, toSink;
464             if( mask.at<uchar>(p) == GC_PR_BGD || mask.at<uchar>(p) == GC_PR_FGD )
465             {
466                 fromSource = -log( bgdGMM(color) );
467                 toSink = -log( fgdGMM(color) );
468             }
469             else if( mask.at<uchar>(p) == GC_BGD )
470             {
471                 fromSource = 0;
472                 toSink = lambda;
473             }
474             else // GC_FGD
475             {
476                 fromSource = lambda;
477                 toSink = 0;
478             }
479             graph.addTermWeights( vtxIdx, fromSource, toSink );
480 
481             // set n-weights
482             if( p.x>0 )
483             {
484                 double w = leftW.at<double>(p);
485                 graph.addEdges( vtxIdx, vtxIdx-1, w, w );
486             }
487             if( p.x>0 && p.y>0 )
488             {
489                 double w = upleftW.at<double>(p);
490                 graph.addEdges( vtxIdx, vtxIdx-img.cols-1, w, w );
491             }
492             if( p.y>0 )
493             {
494                 double w = upW.at<double>(p);
495                 graph.addEdges( vtxIdx, vtxIdx-img.cols, w, w );
496             }
497             if( p.x<img.cols-1 && p.y>0 )
498             {
499                 double w = uprightW.at<double>(p);
500                 graph.addEdges( vtxIdx, vtxIdx-img.cols+1, w, w );
501             }
502         }
503     }
504 }
505 
506 /*
507   Estimate segmentation using MaxFlow algorithm
508 */
estimateSegmentation(GCGraph<double> & graph,Mat & mask)509 static void estimateSegmentation( GCGraph<double>& graph, Mat& mask )
510 {
511     graph.maxFlow();
512     Point p;
513     for( p.y = 0; p.y < mask.rows; p.y++ )
514     {
515         for( p.x = 0; p.x < mask.cols; p.x++ )
516         {
517             if( mask.at<uchar>(p) == GC_PR_BGD || mask.at<uchar>(p) == GC_PR_FGD )
518             {
519                 if( graph.inSourceSegment( p.y*mask.cols+p.x /*vertex index*/ ) )
520                     mask.at<uchar>(p) = GC_PR_FGD;
521                 else
522                     mask.at<uchar>(p) = GC_PR_BGD;
523             }
524         }
525     }
526 }
527 
grabCut(InputArray _img,InputOutputArray _mask,Rect rect,InputOutputArray _bgdModel,InputOutputArray _fgdModel,int iterCount,int mode)528 void cv::grabCut( InputArray _img, InputOutputArray _mask, Rect rect,
529                   InputOutputArray _bgdModel, InputOutputArray _fgdModel,
530                   int iterCount, int mode )
531 {
532     Mat img = _img.getMat();
533     Mat& mask = _mask.getMatRef();
534     Mat& bgdModel = _bgdModel.getMatRef();
535     Mat& fgdModel = _fgdModel.getMatRef();
536 
537     if( img.empty() )
538         CV_Error( CV_StsBadArg, "image is empty" );
539     if( img.type() != CV_8UC3 )
540         CV_Error( CV_StsBadArg, "image mush have CV_8UC3 type" );
541 
542     GMM bgdGMM( bgdModel ), fgdGMM( fgdModel );
543     Mat compIdxs( img.size(), CV_32SC1 );
544 
545     if( mode == GC_INIT_WITH_RECT || mode == GC_INIT_WITH_MASK )
546     {
547         if( mode == GC_INIT_WITH_RECT )
548             initMaskWithRect( mask, img.size(), rect );
549         else // flag == GC_INIT_WITH_MASK
550             checkMask( img, mask );
551         initGMMs( img, mask, bgdGMM, fgdGMM );
552     }
553 
554     if( iterCount <= 0)
555         return;
556 
557     if( mode == GC_EVAL )
558         checkMask( img, mask );
559 
560     const double gamma = 50;
561     const double lambda = 9*gamma;
562     const double beta = calcBeta( img );
563 
564     Mat leftW, upleftW, upW, uprightW;
565     calcNWeights( img, leftW, upleftW, upW, uprightW, beta, gamma );
566 
567     for( int i = 0; i < iterCount; i++ )
568     {
569         GCGraph<double> graph;
570         assignGMMsComponents( img, mask, bgdGMM, fgdGMM, compIdxs );
571         learnGMMs( img, mask, compIdxs, bgdGMM, fgdGMM );
572         constructGCGraph(img, mask, bgdGMM, fgdGMM, lambda, leftW, upleftW, upW, uprightW, graph );
573         estimateSegmentation( graph, mask );
574     }
575 }
576