• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "precomp.hpp"
44 
getDefaultNewCameraMatrix(InputArray _cameraMatrix,Size imgsize,bool centerPrincipalPoint)45 cv::Mat cv::getDefaultNewCameraMatrix( InputArray _cameraMatrix, Size imgsize,
46                                bool centerPrincipalPoint )
47 {
48     Mat cameraMatrix = _cameraMatrix.getMat();
49     if( !centerPrincipalPoint && cameraMatrix.type() == CV_64F )
50         return cameraMatrix;
51 
52     Mat newCameraMatrix;
53     cameraMatrix.convertTo(newCameraMatrix, CV_64F);
54     if( centerPrincipalPoint )
55     {
56         newCameraMatrix.ptr<double>()[2] = (imgsize.width-1)*0.5;
57         newCameraMatrix.ptr<double>()[5] = (imgsize.height-1)*0.5;
58     }
59     return newCameraMatrix;
60 }
61 
initUndistortRectifyMap(InputArray _cameraMatrix,InputArray _distCoeffs,InputArray _matR,InputArray _newCameraMatrix,Size size,int m1type,OutputArray _map1,OutputArray _map2)62 void cv::initUndistortRectifyMap( InputArray _cameraMatrix, InputArray _distCoeffs,
63                               InputArray _matR, InputArray _newCameraMatrix,
64                               Size size, int m1type, OutputArray _map1, OutputArray _map2 )
65 {
66     Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
67     Mat matR = _matR.getMat(), newCameraMatrix = _newCameraMatrix.getMat();
68 
69     if( m1type <= 0 )
70         m1type = CV_16SC2;
71     CV_Assert( m1type == CV_16SC2 || m1type == CV_32FC1 || m1type == CV_32FC2 );
72     _map1.create( size, m1type );
73     Mat map1 = _map1.getMat(), map2;
74     if( m1type != CV_32FC2 )
75     {
76         _map2.create( size, m1type == CV_16SC2 ? CV_16UC1 : CV_32FC1 );
77         map2 = _map2.getMat();
78     }
79     else
80         _map2.release();
81 
82     Mat_<double> R = Mat_<double>::eye(3, 3);
83     Mat_<double> A = Mat_<double>(cameraMatrix), Ar;
84 
85     if( !newCameraMatrix.empty() )
86         Ar = Mat_<double>(newCameraMatrix);
87     else
88         Ar = getDefaultNewCameraMatrix( A, size, true );
89 
90     if( !matR.empty() )
91         R = Mat_<double>(matR);
92 
93     if( !distCoeffs.empty() )
94         distCoeffs = Mat_<double>(distCoeffs);
95     else
96     {
97         distCoeffs.create(12, 1, CV_64F);
98         distCoeffs = 0.;
99     }
100 
101     CV_Assert( A.size() == Size(3,3) && A.size() == R.size() );
102     CV_Assert( Ar.size() == Size(3,3) || Ar.size() == Size(4, 3));
103     Mat_<double> iR = (Ar.colRange(0,3)*R).inv(DECOMP_LU);
104     const double* ir = &iR(0,0);
105 
106     double u0 = A(0, 2),  v0 = A(1, 2);
107     double fx = A(0, 0),  fy = A(1, 1);
108 
109     CV_Assert( distCoeffs.size() == Size(1, 4) || distCoeffs.size() == Size(4, 1) ||
110                distCoeffs.size() == Size(1, 5) || distCoeffs.size() == Size(5, 1) ||
111                distCoeffs.size() == Size(1, 8) || distCoeffs.size() == Size(8, 1) ||
112                distCoeffs.size() == Size(1, 12) || distCoeffs.size() == Size(12, 1));
113 
114     if( distCoeffs.rows != 1 && !distCoeffs.isContinuous() )
115         distCoeffs = distCoeffs.t();
116 
117     const double* const distPtr = distCoeffs.ptr<double>();
118     double k1 = distPtr[0];
119     double k2 = distPtr[1];
120     double p1 = distPtr[2];
121     double p2 = distPtr[3];
122     double k3 = distCoeffs.cols + distCoeffs.rows - 1 >= 5 ? distPtr[4] : 0.;
123     double k4 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[5] : 0.;
124     double k5 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[6] : 0.;
125     double k6 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[7] : 0.;
126     double s1 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[8] : 0.;
127     double s2 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[9] : 0.;
128     double s3 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[10] : 0.;
129     double s4 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[11] : 0.;
130 
131     for( int i = 0; i < size.height; i++ )
132     {
133         float* m1f = map1.ptr<float>(i);
134         float* m2f = map2.empty() ? 0 : map2.ptr<float>(i);
135         short* m1 = (short*)m1f;
136         ushort* m2 = (ushort*)m2f;
137         double _x = i*ir[1] + ir[2], _y = i*ir[4] + ir[5], _w = i*ir[7] + ir[8];
138 
139         for( int j = 0; j < size.width; j++, _x += ir[0], _y += ir[3], _w += ir[6] )
140         {
141             double w = 1./_w, x = _x*w, y = _y*w;
142             double x2 = x*x, y2 = y*y;
143             double r2 = x2 + y2, _2xy = 2*x*y;
144             double kr = (1 + ((k3*r2 + k2)*r2 + k1)*r2)/(1 + ((k6*r2 + k5)*r2 + k4)*r2);
145             double u = fx*(x*kr + p1*_2xy + p2*(r2 + 2*x2) + s1*r2+s2*r2*r2) + u0;
146             double v = fy*(y*kr + p1*(r2 + 2*y2) + p2*_2xy + s3*r2+s4*r2*r2) + v0;
147             if( m1type == CV_16SC2 )
148             {
149                 int iu = saturate_cast<int>(u*INTER_TAB_SIZE);
150                 int iv = saturate_cast<int>(v*INTER_TAB_SIZE);
151                 m1[j*2] = (short)(iu >> INTER_BITS);
152                 m1[j*2+1] = (short)(iv >> INTER_BITS);
153                 m2[j] = (ushort)((iv & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE + (iu & (INTER_TAB_SIZE-1)));
154             }
155             else if( m1type == CV_32FC1 )
156             {
157                 m1f[j] = (float)u;
158                 m2f[j] = (float)v;
159             }
160             else
161             {
162                 m1f[j*2] = (float)u;
163                 m1f[j*2+1] = (float)v;
164             }
165         }
166     }
167 }
168 
169 
undistort(InputArray _src,OutputArray _dst,InputArray _cameraMatrix,InputArray _distCoeffs,InputArray _newCameraMatrix)170 void cv::undistort( InputArray _src, OutputArray _dst, InputArray _cameraMatrix,
171                     InputArray _distCoeffs, InputArray _newCameraMatrix )
172 {
173     Mat src = _src.getMat(), cameraMatrix = _cameraMatrix.getMat();
174     Mat distCoeffs = _distCoeffs.getMat(), newCameraMatrix = _newCameraMatrix.getMat();
175 
176     _dst.create( src.size(), src.type() );
177     Mat dst = _dst.getMat();
178 
179     CV_Assert( dst.data != src.data );
180 
181     int stripe_size0 = std::min(std::max(1, (1 << 12) / std::max(src.cols, 1)), src.rows);
182     Mat map1(stripe_size0, src.cols, CV_16SC2), map2(stripe_size0, src.cols, CV_16UC1);
183 
184     Mat_<double> A, Ar, I = Mat_<double>::eye(3,3);
185 
186     cameraMatrix.convertTo(A, CV_64F);
187     if( !distCoeffs.empty() )
188         distCoeffs = Mat_<double>(distCoeffs);
189     else
190     {
191         distCoeffs.create(5, 1, CV_64F);
192         distCoeffs = 0.;
193     }
194 
195     if( !newCameraMatrix.empty() )
196         newCameraMatrix.convertTo(Ar, CV_64F);
197     else
198         A.copyTo(Ar);
199 
200     double v0 = Ar(1, 2);
201     for( int y = 0; y < src.rows; y += stripe_size0 )
202     {
203         int stripe_size = std::min( stripe_size0, src.rows - y );
204         Ar(1, 2) = v0 - y;
205         Mat map1_part = map1.rowRange(0, stripe_size),
206             map2_part = map2.rowRange(0, stripe_size),
207             dst_part = dst.rowRange(y, y + stripe_size);
208 
209         initUndistortRectifyMap( A, distCoeffs, I, Ar, Size(src.cols, stripe_size),
210                                  map1_part.type(), map1_part, map2_part );
211         remap( src, dst_part, map1_part, map2_part, INTER_LINEAR, BORDER_CONSTANT );
212     }
213 }
214 
215 
216 CV_IMPL void
cvUndistort2(const CvArr * srcarr,CvArr * dstarr,const CvMat * Aarr,const CvMat * dist_coeffs,const CvMat * newAarr)217 cvUndistort2( const CvArr* srcarr, CvArr* dstarr, const CvMat* Aarr, const CvMat* dist_coeffs, const CvMat* newAarr )
218 {
219     cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), dst0 = dst;
220     cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs = cv::cvarrToMat(dist_coeffs), newA;
221     if( newAarr )
222         newA = cv::cvarrToMat(newAarr);
223 
224     CV_Assert( src.size() == dst.size() && src.type() == dst.type() );
225     cv::undistort( src, dst, A, distCoeffs, newA );
226 }
227 
228 
cvInitUndistortMap(const CvMat * Aarr,const CvMat * dist_coeffs,CvArr * mapxarr,CvArr * mapyarr)229 CV_IMPL void cvInitUndistortMap( const CvMat* Aarr, const CvMat* dist_coeffs,
230                                  CvArr* mapxarr, CvArr* mapyarr )
231 {
232     cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs = cv::cvarrToMat(dist_coeffs);
233     cv::Mat mapx = cv::cvarrToMat(mapxarr), mapy, mapx0 = mapx, mapy0;
234 
235     if( mapyarr )
236         mapy0 = mapy = cv::cvarrToMat(mapyarr);
237 
238     cv::initUndistortRectifyMap( A, distCoeffs, cv::Mat(), A,
239                                  mapx.size(), mapx.type(), mapx, mapy );
240     CV_Assert( mapx0.data == mapx.data && mapy0.data == mapy.data );
241 }
242 
243 void
cvInitUndistortRectifyMap(const CvMat * Aarr,const CvMat * dist_coeffs,const CvMat * Rarr,const CvMat * ArArr,CvArr * mapxarr,CvArr * mapyarr)244 cvInitUndistortRectifyMap( const CvMat* Aarr, const CvMat* dist_coeffs,
245     const CvMat *Rarr, const CvMat* ArArr, CvArr* mapxarr, CvArr* mapyarr )
246 {
247     cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs, R, Ar;
248     cv::Mat mapx = cv::cvarrToMat(mapxarr), mapy, mapx0 = mapx, mapy0;
249 
250     if( mapyarr )
251         mapy0 = mapy = cv::cvarrToMat(mapyarr);
252 
253     if( dist_coeffs )
254         distCoeffs = cv::cvarrToMat(dist_coeffs);
255     if( Rarr )
256         R = cv::cvarrToMat(Rarr);
257     if( ArArr )
258         Ar = cv::cvarrToMat(ArArr);
259 
260     cv::initUndistortRectifyMap( A, distCoeffs, R, Ar, mapx.size(), mapx.type(), mapx, mapy );
261     CV_Assert( mapx0.data == mapx.data && mapy0.data == mapy.data );
262 }
263 
264 
cvUndistortPoints(const CvMat * _src,CvMat * _dst,const CvMat * _cameraMatrix,const CvMat * _distCoeffs,const CvMat * matR,const CvMat * matP)265 void cvUndistortPoints( const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix,
266                    const CvMat* _distCoeffs,
267                    const CvMat* matR, const CvMat* matP )
268 {
269     double A[3][3], RR[3][3], k[12]={0,0,0,0,0,0,0,0,0,0,0}, fx, fy, ifx, ify, cx, cy;
270     CvMat matA=cvMat(3, 3, CV_64F, A), _Dk;
271     CvMat _RR=cvMat(3, 3, CV_64F, RR);
272     const CvPoint2D32f* srcf;
273     const CvPoint2D64f* srcd;
274     CvPoint2D32f* dstf;
275     CvPoint2D64f* dstd;
276     int stype, dtype;
277     int sstep, dstep;
278     int i, j, n, iters = 1;
279 
280     CV_Assert( CV_IS_MAT(_src) && CV_IS_MAT(_dst) &&
281         (_src->rows == 1 || _src->cols == 1) &&
282         (_dst->rows == 1 || _dst->cols == 1) &&
283         _src->cols + _src->rows - 1 == _dst->rows + _dst->cols - 1 &&
284         (CV_MAT_TYPE(_src->type) == CV_32FC2 || CV_MAT_TYPE(_src->type) == CV_64FC2) &&
285         (CV_MAT_TYPE(_dst->type) == CV_32FC2 || CV_MAT_TYPE(_dst->type) == CV_64FC2));
286 
287     CV_Assert( CV_IS_MAT(_cameraMatrix) &&
288         _cameraMatrix->rows == 3 && _cameraMatrix->cols == 3 );
289 
290     cvConvert( _cameraMatrix, &matA );
291 
292     if( _distCoeffs )
293     {
294         CV_Assert( CV_IS_MAT(_distCoeffs) &&
295             (_distCoeffs->rows == 1 || _distCoeffs->cols == 1) &&
296             (_distCoeffs->rows*_distCoeffs->cols == 4 ||
297              _distCoeffs->rows*_distCoeffs->cols == 5 ||
298              _distCoeffs->rows*_distCoeffs->cols == 8 ||
299              _distCoeffs->rows*_distCoeffs->cols == 12));
300 
301         _Dk = cvMat( _distCoeffs->rows, _distCoeffs->cols,
302             CV_MAKETYPE(CV_64F,CV_MAT_CN(_distCoeffs->type)), k);
303 
304         cvConvert( _distCoeffs, &_Dk );
305         iters = 5;
306     }
307 
308     if( matR )
309     {
310         CV_Assert( CV_IS_MAT(matR) && matR->rows == 3 && matR->cols == 3 );
311         cvConvert( matR, &_RR );
312     }
313     else
314         cvSetIdentity(&_RR);
315 
316     if( matP )
317     {
318         double PP[3][3];
319         CvMat _P3x3, _PP=cvMat(3, 3, CV_64F, PP);
320         CV_Assert( CV_IS_MAT(matP) && matP->rows == 3 && (matP->cols == 3 || matP->cols == 4));
321         cvConvert( cvGetCols(matP, &_P3x3, 0, 3), &_PP );
322         cvMatMul( &_PP, &_RR, &_RR );
323     }
324 
325     srcf = (const CvPoint2D32f*)_src->data.ptr;
326     srcd = (const CvPoint2D64f*)_src->data.ptr;
327     dstf = (CvPoint2D32f*)_dst->data.ptr;
328     dstd = (CvPoint2D64f*)_dst->data.ptr;
329     stype = CV_MAT_TYPE(_src->type);
330     dtype = CV_MAT_TYPE(_dst->type);
331     sstep = _src->rows == 1 ? 1 : _src->step/CV_ELEM_SIZE(stype);
332     dstep = _dst->rows == 1 ? 1 : _dst->step/CV_ELEM_SIZE(dtype);
333 
334     n = _src->rows + _src->cols - 1;
335 
336     fx = A[0][0];
337     fy = A[1][1];
338     ifx = 1./fx;
339     ify = 1./fy;
340     cx = A[0][2];
341     cy = A[1][2];
342 
343     for( i = 0; i < n; i++ )
344     {
345         double x, y, x0, y0;
346         if( stype == CV_32FC2 )
347         {
348             x = srcf[i*sstep].x;
349             y = srcf[i*sstep].y;
350         }
351         else
352         {
353             x = srcd[i*sstep].x;
354             y = srcd[i*sstep].y;
355         }
356 
357         x0 = x = (x - cx)*ifx;
358         y0 = y = (y - cy)*ify;
359 
360         // compensate distortion iteratively
361         for( j = 0; j < iters; j++ )
362         {
363             double r2 = x*x + y*y;
364             double icdist = (1 + ((k[7]*r2 + k[6])*r2 + k[5])*r2)/(1 + ((k[4]*r2 + k[1])*r2 + k[0])*r2);
365             double deltaX = 2*k[2]*x*y + k[3]*(r2 + 2*x*x)+ k[8]*r2+k[9]*r2*r2;
366             double deltaY = k[2]*(r2 + 2*y*y) + 2*k[3]*x*y+ k[10]*r2+k[11]*r2*r2;
367             x = (x0 - deltaX)*icdist;
368             y = (y0 - deltaY)*icdist;
369         }
370 
371         double xx = RR[0][0]*x + RR[0][1]*y + RR[0][2];
372         double yy = RR[1][0]*x + RR[1][1]*y + RR[1][2];
373         double ww = 1./(RR[2][0]*x + RR[2][1]*y + RR[2][2]);
374         x = xx*ww;
375         y = yy*ww;
376 
377         if( dtype == CV_32FC2 )
378         {
379             dstf[i*dstep].x = (float)x;
380             dstf[i*dstep].y = (float)y;
381         }
382         else
383         {
384             dstd[i*dstep].x = x;
385             dstd[i*dstep].y = y;
386         }
387     }
388 }
389 
390 
undistortPoints(InputArray _src,OutputArray _dst,InputArray _cameraMatrix,InputArray _distCoeffs,InputArray _Rmat,InputArray _Pmat)391 void cv::undistortPoints( InputArray _src, OutputArray _dst,
392                           InputArray _cameraMatrix,
393                           InputArray _distCoeffs,
394                           InputArray _Rmat,
395                           InputArray _Pmat )
396 {
397     Mat src = _src.getMat(), cameraMatrix = _cameraMatrix.getMat();
398     Mat distCoeffs = _distCoeffs.getMat(), R = _Rmat.getMat(), P = _Pmat.getMat();
399 
400     CV_Assert( src.isContinuous() && (src.depth() == CV_32F || src.depth() == CV_64F) &&
401               ((src.rows == 1 && src.channels() == 2) || src.cols*src.channels() == 2));
402 
403     _dst.create(src.size(), src.type(), -1, true);
404     Mat dst = _dst.getMat();
405 
406     CvMat _csrc = src, _cdst = dst, _ccameraMatrix = cameraMatrix;
407     CvMat matR, matP, _cdistCoeffs, *pR=0, *pP=0, *pD=0;
408     if( !R.empty() )
409         pR = &(matR = R);
410     if( !P.empty() )
411         pP = &(matP = P);
412     if( !distCoeffs.empty() )
413         pD = &(_cdistCoeffs = distCoeffs);
414     cvUndistortPoints(&_csrc, &_cdst, &_ccameraMatrix, pD, pR, pP);
415 }
416 
417 namespace cv
418 {
419 
mapPointSpherical(const Point2f & p,float alpha,Vec4d * J,int projType)420 static Point2f mapPointSpherical(const Point2f& p, float alpha, Vec4d* J, int projType)
421 {
422     double x = p.x, y = p.y;
423     double beta = 1 + 2*alpha;
424     double v = x*x + y*y + 1, iv = 1/v;
425     double u = std::sqrt(beta*v + alpha*alpha);
426 
427     double k = (u - alpha)*iv;
428     double kv = (v*beta/u - (u - alpha)*2)*iv*iv;
429     double kx = kv*x, ky = kv*y;
430 
431     if( projType == PROJ_SPHERICAL_ORTHO )
432     {
433         if(J)
434             *J = Vec4d(kx*x + k, kx*y, ky*x, ky*y + k);
435         return Point2f((float)(x*k), (float)(y*k));
436     }
437     if( projType == PROJ_SPHERICAL_EQRECT )
438     {
439         // equirectangular
440         double iR = 1/(alpha + 1);
441         double x1 = std::max(std::min(x*k*iR, 1.), -1.);
442         double y1 = std::max(std::min(y*k*iR, 1.), -1.);
443 
444         if(J)
445         {
446             double fx1 = iR/std::sqrt(1 - x1*x1);
447             double fy1 = iR/std::sqrt(1 - y1*y1);
448             *J = Vec4d(fx1*(kx*x + k), fx1*ky*x, fy1*kx*y, fy1*(ky*y + k));
449         }
450         return Point2f((float)asin(x1), (float)asin(y1));
451     }
452     CV_Error(CV_StsBadArg, "Unknown projection type");
453     return Point2f();
454 }
455 
456 
invMapPointSpherical(Point2f _p,float alpha,int projType)457 static Point2f invMapPointSpherical(Point2f _p, float alpha, int projType)
458 {
459     static int avgiter = 0, avgn = 0;
460 
461     double eps = 1e-12;
462     Vec2d p(_p.x, _p.y), q(_p.x, _p.y), err;
463     Vec4d J;
464     int i, maxiter = 5;
465 
466     for( i = 0; i < maxiter; i++ )
467     {
468         Point2f p1 = mapPointSpherical(Point2f((float)q[0], (float)q[1]), alpha, &J, projType);
469         err = Vec2d(p1.x, p1.y) - p;
470         if( err[0]*err[0] + err[1]*err[1] < eps )
471             break;
472 
473         Vec4d JtJ(J[0]*J[0] + J[2]*J[2], J[0]*J[1] + J[2]*J[3],
474                   J[0]*J[1] + J[2]*J[3], J[1]*J[1] + J[3]*J[3]);
475         double d = JtJ[0]*JtJ[3] - JtJ[1]*JtJ[2];
476         d = d ? 1./d : 0;
477         Vec4d iJtJ(JtJ[3]*d, -JtJ[1]*d, -JtJ[2]*d, JtJ[0]*d);
478         Vec2d JtErr(J[0]*err[0] + J[2]*err[1], J[1]*err[0] + J[3]*err[1]);
479 
480         q -= Vec2d(iJtJ[0]*JtErr[0] + iJtJ[1]*JtErr[1], iJtJ[2]*JtErr[0] + iJtJ[3]*JtErr[1]);
481         //Matx22d J(kx*x + k, kx*y, ky*x, ky*y + k);
482         //q -= Vec2d((J.t()*J).inv()*(J.t()*err));
483     }
484 
485     if( i < maxiter )
486     {
487         avgiter += i;
488         avgn++;
489         if( avgn == 1500 )
490             printf("avg iters = %g\n", (double)avgiter/avgn);
491     }
492 
493     return i < maxiter ? Point2f((float)q[0], (float)q[1]) : Point2f(-FLT_MAX, -FLT_MAX);
494 }
495 
496 }
497 
initWideAngleProjMap(InputArray _cameraMatrix0,InputArray _distCoeffs0,Size imageSize,int destImageWidth,int m1type,OutputArray _map1,OutputArray _map2,int projType,double _alpha)498 float cv::initWideAngleProjMap( InputArray _cameraMatrix0, InputArray _distCoeffs0,
499                             Size imageSize, int destImageWidth, int m1type,
500                             OutputArray _map1, OutputArray _map2, int projType, double _alpha )
501 {
502     Mat cameraMatrix0 = _cameraMatrix0.getMat(), distCoeffs0 = _distCoeffs0.getMat();
503     double k[12] = {0,0,0,0,0,0,0,0,0,0,0}, M[9]={0,0,0,0,0,0,0,0,0};
504     Mat distCoeffs(distCoeffs0.rows, distCoeffs0.cols, CV_MAKETYPE(CV_64F,distCoeffs0.channels()), k);
505     Mat cameraMatrix(3,3,CV_64F,M);
506     Point2f scenter((float)cameraMatrix.at<double>(0,2), (float)cameraMatrix.at<double>(1,2));
507     Point2f dcenter((destImageWidth-1)*0.5f, 0.f);
508     float xmin = FLT_MAX, xmax = -FLT_MAX, ymin = FLT_MAX, ymax = -FLT_MAX;
509     int N = 9;
510     std::vector<Point2f> uvec(1), vvec(1);
511     Mat I = Mat::eye(3,3,CV_64F);
512     float alpha = (float)_alpha;
513 
514     int ndcoeffs = distCoeffs0.cols*distCoeffs0.rows*distCoeffs0.channels();
515     CV_Assert((distCoeffs0.cols == 1 || distCoeffs0.rows == 1) &&
516               (ndcoeffs == 4 || ndcoeffs == 5 || ndcoeffs == 8));
517     CV_Assert(cameraMatrix0.size() == Size(3,3));
518     distCoeffs0.convertTo(distCoeffs,CV_64F);
519     cameraMatrix0.convertTo(cameraMatrix,CV_64F);
520 
521     alpha = std::min(alpha, 0.999f);
522 
523     for( int i = 0; i < N; i++ )
524         for( int j = 0; j < N; j++ )
525         {
526             Point2f p((float)j*imageSize.width/(N-1), (float)i*imageSize.height/(N-1));
527             uvec[0] = p;
528             undistortPoints(uvec, vvec, cameraMatrix, distCoeffs, I, I);
529             Point2f q = mapPointSpherical(vvec[0], alpha, 0, projType);
530             if( xmin > q.x ) xmin = q.x;
531             if( xmax < q.x ) xmax = q.x;
532             if( ymin > q.y ) ymin = q.y;
533             if( ymax < q.y ) ymax = q.y;
534         }
535 
536     float scale = (float)std::min(dcenter.x/fabs(xmax), dcenter.x/fabs(xmin));
537     Size dsize(destImageWidth, cvCeil(std::max(scale*fabs(ymin)*2, scale*fabs(ymax)*2)));
538     dcenter.y = (dsize.height - 1)*0.5f;
539 
540     Mat mapxy(dsize, CV_32FC2);
541     double k1 = k[0], k2 = k[1], k3 = k[2], p1 = k[3], p2 = k[4], k4 = k[5], k5 = k[6], k6 = k[7], s1 = k[8], s2 = k[9], s3 = k[10], s4 = k[11];
542     double fx = cameraMatrix.at<double>(0,0), fy = cameraMatrix.at<double>(1,1), cx = scenter.x, cy = scenter.y;
543 
544     for( int y = 0; y < dsize.height; y++ )
545     {
546         Point2f* mxy = mapxy.ptr<Point2f>(y);
547         for( int x = 0; x < dsize.width; x++ )
548         {
549             Point2f p = (Point2f((float)x, (float)y) - dcenter)*(1.f/scale);
550             Point2f q = invMapPointSpherical(p, alpha, projType);
551             if( q.x <= -FLT_MAX && q.y <= -FLT_MAX )
552             {
553                 mxy[x] = Point2f(-1.f, -1.f);
554                 continue;
555             }
556             double x2 = q.x*q.x, y2 = q.y*q.y;
557             double r2 = x2 + y2, _2xy = 2*q.x*q.y;
558             double kr = 1 + ((k3*r2 + k2)*r2 + k1)*r2/(1 + ((k6*r2 + k5)*r2 + k4)*r2);
559             double u = fx*(q.x*kr + p1*_2xy + p2*(r2 + 2*x2) + s1*r2+ s2*r2*r2) + cx;
560             double v = fy*(q.y*kr + p1*(r2 + 2*y2) + p2*_2xy + s3*r2+ s4*r2*r2) + cy;
561 
562             mxy[x] = Point2f((float)u, (float)v);
563         }
564     }
565 
566     if(m1type == CV_32FC2)
567     {
568         _map1.create(mapxy.size(), mapxy.type());
569         Mat map1 = _map1.getMat();
570         mapxy.copyTo(map1);
571         _map2.release();
572     }
573     else
574         convertMaps(mapxy, Mat(), _map1, _map2, m1type, false);
575 
576     return scale;
577 }
578 
579 /*  End of file  */
580