1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. 15 // Third party copyrights are property of their respective owners. 16 // 17 // Redistribution and use in source and binary forms, with or without modification, 18 // are permitted provided that the following conditions are met: 19 // 20 // * Redistribution's of source code must retain the above copyright notice, 21 // this list of conditions and the following disclaimer. 22 // 23 // * Redistribution's in binary form must reproduce the above copyright notice, 24 // this list of conditions and the following disclaimer in the documentation 25 // and/or other materials provided with the distribution. 26 // 27 // * The name of the copyright holders may not be used to endorse or promote products 28 // derived from this software without specific prior written permission. 29 // 30 // This software is provided by the copyright holders and contributors "as is" and 31 // any express or implied warranties, including, but not limited to, the implied 32 // warranties of merchantability and fitness for a particular purpose are disclaimed. 33 // In no event shall the Intel Corporation or contributors be liable for any direct, 34 // indirect, incidental, special, exemplary, or consequential damages 35 // (including, but not limited to, procurement of substitute goods or services; 36 // loss of use, data, or profits; or business interruption) however caused 37 // and on any theory of liability, whether in contract, strict liability, 38 // or tort (including negligence or otherwise) arising in any way out of 39 // the use of this software, even if advised of the possibility of such damage. 40 // 41 //M*/ 42 43 #ifndef __OPENCV_PHOTO_HPP__ 44 #define __OPENCV_PHOTO_HPP__ 45 46 #include "opencv2/core.hpp" 47 #include "opencv2/imgproc.hpp" 48 49 /** 50 @defgroup photo Computational Photography 51 @{ 52 @defgroup photo_denoise Denoising 53 @defgroup photo_hdr HDR imaging 54 55 This section describes high dynamic range imaging algorithms namely tonemapping, exposure alignment, 56 camera calibration with multiple exposures and exposure fusion. 57 58 @defgroup photo_clone Seamless Cloning 59 @defgroup photo_render Non-Photorealistic Rendering 60 @defgroup photo_c C API 61 @} 62 */ 63 64 namespace cv 65 { 66 67 //! @addtogroup photo 68 //! @{ 69 70 //! the inpainting algorithm 71 enum 72 { 73 INPAINT_NS = 0, // Navier-Stokes algorithm 74 INPAINT_TELEA = 1 // A. Telea algorithm 75 }; 76 77 enum 78 { 79 NORMAL_CLONE = 1, 80 MIXED_CLONE = 2, 81 MONOCHROME_TRANSFER = 3 82 }; 83 84 enum 85 { 86 RECURS_FILTER = 1, 87 NORMCONV_FILTER = 2 88 }; 89 90 /** @brief Restores the selected region in an image using the region neighborhood. 91 92 @param src Input 8-bit 1-channel or 3-channel image. 93 @param inpaintMask Inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that 94 needs to be inpainted. 95 @param dst Output image with the same size and type as src . 96 @param inpaintRadius Radius of a circular neighborhood of each point inpainted that is considered 97 by the algorithm. 98 @param flags Inpainting method that could be one of the following: 99 - **INPAINT_NS** Navier-Stokes based method [Navier01] 100 - **INPAINT_TELEA** Method by Alexandru Telea @cite Telea04 . 101 102 The function reconstructs the selected image area from the pixel near the area boundary. The 103 function may be used to remove dust and scratches from a scanned photo, or to remove undesirable 104 objects from still images or video. See <http://en.wikipedia.org/wiki/Inpainting> for more details. 105 106 @note 107 - An example using the inpainting technique can be found at 108 opencv_source_code/samples/cpp/inpaint.cpp 109 - (Python) An example using the inpainting technique can be found at 110 opencv_source_code/samples/python2/inpaint.py 111 */ 112 CV_EXPORTS_W void inpaint( InputArray src, InputArray inpaintMask, 113 OutputArray dst, double inpaintRadius, int flags ); 114 115 //! @addtogroup photo_denoise 116 //! @{ 117 118 /** @brief Perform image denoising using Non-local Means Denoising algorithm 119 <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational 120 optimizations. Noise expected to be a gaussian white noise 121 122 @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image. 123 @param dst Output image with the same size and type as src . 124 @param templateWindowSize Size in pixels of the template patch that is used to compute weights. 125 Should be odd. Recommended value 7 pixels 126 @param searchWindowSize Size in pixels of the window that is used to compute weighted average for 127 given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater 128 denoising time. Recommended value 21 pixels 129 @param h Parameter regulating filter strength. Big h value perfectly removes noise but also 130 removes image details, smaller h value preserves details but also preserves some noise 131 132 This function expected to be applied to grayscale images. For colored images look at 133 fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored 134 image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting 135 image to CIELAB colorspace and then separately denoise L and AB components with different h 136 parameter. 137 */ 138 CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float h = 3, 139 int templateWindowSize = 7, int searchWindowSize = 21); 140 141 /** @brief Perform image denoising using Non-local Means Denoising algorithm 142 <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational 143 optimizations. Noise expected to be a gaussian white noise 144 145 @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel, 146 2-channel, 3-channel or 4-channel image. 147 @param dst Output image with the same size and type as src . 148 @param templateWindowSize Size in pixels of the template patch that is used to compute weights. 149 Should be odd. Recommended value 7 pixels 150 @param searchWindowSize Size in pixels of the window that is used to compute weighted average for 151 given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater 152 denoising time. Recommended value 21 pixels 153 @param h Array of parameters regulating filter strength, either one 154 parameter applied to all channels or one per channel in dst. Big h value 155 perfectly removes noise but also removes image details, smaller h 156 value preserves details but also preserves some noise 157 @param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1 158 159 This function expected to be applied to grayscale images. For colored images look at 160 fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored 161 image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting 162 image to CIELAB colorspace and then separately denoise L and AB components with different h 163 parameter. 164 */ 165 CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, 166 const std::vector<float>& h, 167 int templateWindowSize = 7, int searchWindowSize = 21, 168 int normType = NORM_L2); 169 170 /** @brief Modification of fastNlMeansDenoising function for colored images 171 172 @param src Input 8-bit 3-channel image. 173 @param dst Output image with the same size and type as src . 174 @param templateWindowSize Size in pixels of the template patch that is used to compute weights. 175 Should be odd. Recommended value 7 pixels 176 @param searchWindowSize Size in pixels of the window that is used to compute weighted average for 177 given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater 178 denoising time. Recommended value 21 pixels 179 @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly 180 removes noise but also removes image details, smaller h value preserves details but also preserves 181 some noise 182 @param hColor The same as h but for color components. For most images value equals 10 183 will be enough to remove colored noise and do not distort colors 184 185 The function converts image to CIELAB colorspace and then separately denoise L and AB components 186 with given h parameters using fastNlMeansDenoising function. 187 */ 188 CV_EXPORTS_W void fastNlMeansDenoisingColored( InputArray src, OutputArray dst, 189 float h = 3, float hColor = 3, 190 int templateWindowSize = 7, int searchWindowSize = 21); 191 192 /** @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been 193 captured in small period of time. For example video. This version of the function is for grayscale 194 images or for manual manipulation with colorspaces. For more details see 195 <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394> 196 197 @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or 198 4-channel images sequence. All images should have the same type and 199 size. 200 @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence 201 @param temporalWindowSize Number of surrounding images to use for target image denoising. Should 202 be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to 203 imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise 204 srcImgs[imgToDenoiseIndex] image. 205 @param dst Output image with the same size and type as srcImgs images. 206 @param templateWindowSize Size in pixels of the template patch that is used to compute weights. 207 Should be odd. Recommended value 7 pixels 208 @param searchWindowSize Size in pixels of the window that is used to compute weighted average for 209 given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater 210 denoising time. Recommended value 21 pixels 211 @param h Parameter regulating filter strength. Bigger h value 212 perfectly removes noise but also removes image details, smaller h 213 value preserves details but also preserves some noise 214 */ 215 CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst, 216 int imgToDenoiseIndex, int temporalWindowSize, 217 float h = 3, int templateWindowSize = 7, int searchWindowSize = 21); 218 219 /** @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been 220 captured in small period of time. For example video. This version of the function is for grayscale 221 images or for manual manipulation with colorspaces. For more details see 222 <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394> 223 224 @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel, 225 2-channel, 3-channel or 4-channel images sequence. All images should 226 have the same type and size. 227 @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence 228 @param temporalWindowSize Number of surrounding images to use for target image denoising. Should 229 be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to 230 imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise 231 srcImgs[imgToDenoiseIndex] image. 232 @param dst Output image with the same size and type as srcImgs images. 233 @param templateWindowSize Size in pixels of the template patch that is used to compute weights. 234 Should be odd. Recommended value 7 pixels 235 @param searchWindowSize Size in pixels of the window that is used to compute weighted average for 236 given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater 237 denoising time. Recommended value 21 pixels 238 @param h Array of parameters regulating filter strength, either one 239 parameter applied to all channels or one per channel in dst. Big h value 240 perfectly removes noise but also removes image details, smaller h 241 value preserves details but also preserves some noise 242 @param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1 243 */ 244 CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst, 245 int imgToDenoiseIndex, int temporalWindowSize, 246 const std::vector<float>& h, 247 int templateWindowSize = 7, int searchWindowSize = 21, 248 int normType = NORM_L2); 249 250 /** @brief Modification of fastNlMeansDenoisingMulti function for colored images sequences 251 252 @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and 253 size. 254 @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence 255 @param temporalWindowSize Number of surrounding images to use for target image denoising. Should 256 be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to 257 imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise 258 srcImgs[imgToDenoiseIndex] image. 259 @param dst Output image with the same size and type as srcImgs images. 260 @param templateWindowSize Size in pixels of the template patch that is used to compute weights. 261 Should be odd. Recommended value 7 pixels 262 @param searchWindowSize Size in pixels of the window that is used to compute weighted average for 263 given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater 264 denoising time. Recommended value 21 pixels 265 @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly 266 removes noise but also removes image details, smaller h value preserves details but also preserves 267 some noise. 268 @param hColor The same as h but for color components. 269 270 The function converts images to CIELAB colorspace and then separately denoise L and AB components 271 with given h parameters using fastNlMeansDenoisingMulti function. 272 */ 273 CV_EXPORTS_W void fastNlMeansDenoisingColoredMulti( InputArrayOfArrays srcImgs, OutputArray dst, 274 int imgToDenoiseIndex, int temporalWindowSize, 275 float h = 3, float hColor = 3, 276 int templateWindowSize = 7, int searchWindowSize = 21); 277 278 /** @brief Primal-dual algorithm is an algorithm for solving special types of variational problems (that is, 279 finding a function to minimize some functional). As the image denoising, in particular, may be seen 280 as the variational problem, primal-dual algorithm then can be used to perform denoising and this is 281 exactly what is implemented. 282 283 It should be noted, that this implementation was taken from the July 2013 blog entry 284 @cite MA13 , which also contained (slightly more general) ready-to-use source code on Python. 285 Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end 286 of July 2013 and finally it was slightly adapted by later authors. 287 288 Although the thorough discussion and justification of the algorithm involved may be found in 289 @cite ChambolleEtAl, it might make sense to skim over it here, following @cite MA13 . To begin 290 with, we consider the 1-byte gray-level images as the functions from the rectangular domain of 291 pixels (it may be seen as set 292 \f$\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}\f$ for some 293 \f$m,\;n\in\mathbb{N}\f$) into \f$\{0,1,\dots,255\}\f$. We shall denote the noised images as \f$f_i\f$ and with 294 this view, given some image \f$x\f$ of the same size, we may measure how bad it is by the formula 295 296 \f[\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|\f] 297 298 \f$\|\|\cdot\|\|\f$ here denotes \f$L_2\f$-norm and as you see, the first addend states that we want our 299 image to be smooth (ideally, having zero gradient, thus being constant) and the second states that 300 we want our result to be close to the observations we've got. If we treat \f$x\f$ as a function, this is 301 exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play. 302 303 @param observations This array should contain one or more noised versions of the image that is to 304 be restored. 305 @param result Here the denoised image will be stored. There is no need to do pre-allocation of 306 storage space, as it will be automatically allocated, if necessary. 307 @param lambda Corresponds to \f$\lambda\f$ in the formulas above. As it is enlarged, the smooth 308 (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly 309 speaking, as it becomes smaller, the result will be more blur but more sever outliers will be 310 removed. 311 @param niters Number of iterations that the algorithm will run. Of course, as more iterations as 312 better, but it is hard to quantitatively refine this statement, so just use the default and 313 increase it if the results are poor. 314 */ 315 CV_EXPORTS_W void denoise_TVL1(const std::vector<Mat>& observations,Mat& result, double lambda=1.0, int niters=30); 316 317 //! @} photo_denoise 318 319 //! @addtogroup photo_hdr 320 //! @{ 321 322 enum { LDR_SIZE = 256 }; 323 324 /** @brief Base class for tonemapping algorithms - tools that are used to map HDR image to 8-bit range. 325 */ 326 class CV_EXPORTS_W Tonemap : public Algorithm 327 { 328 public: 329 /** @brief Tonemaps image 330 331 @param src source image - 32-bit 3-channel Mat 332 @param dst destination image - 32-bit 3-channel Mat with values in [0, 1] range 333 */ 334 CV_WRAP virtual void process(InputArray src, OutputArray dst) = 0; 335 336 CV_WRAP virtual float getGamma() const = 0; 337 CV_WRAP virtual void setGamma(float gamma) = 0; 338 }; 339 340 /** @brief Creates simple linear mapper with gamma correction 341 342 @param gamma positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma 343 equal to 2.2f is suitable for most displays. 344 Generally gamma \> 1 brightens the image and gamma \< 1 darkens it. 345 */ 346 CV_EXPORTS_W Ptr<Tonemap> createTonemap(float gamma = 1.0f); 347 348 /** @brief Adaptive logarithmic mapping is a fast global tonemapping algorithm that scales the image in 349 logarithmic domain. 350 351 Since it's a global operator the same function is applied to all the pixels, it is controlled by the 352 bias parameter. 353 354 Optional saturation enhancement is possible as described in @cite FL02 . 355 356 For more information see @cite DM03 . 357 */ 358 class CV_EXPORTS_W TonemapDrago : public Tonemap 359 { 360 public: 361 362 CV_WRAP virtual float getSaturation() const = 0; 363 CV_WRAP virtual void setSaturation(float saturation) = 0; 364 365 CV_WRAP virtual float getBias() const = 0; 366 CV_WRAP virtual void setBias(float bias) = 0; 367 }; 368 369 /** @brief Creates TonemapDrago object 370 371 @param gamma gamma value for gamma correction. See createTonemap 372 @param saturation positive saturation enhancement value. 1.0 preserves saturation, values greater 373 than 1 increase saturation and values less than 1 decrease it. 374 @param bias value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best 375 results, default value is 0.85. 376 */ 377 CV_EXPORTS_W Ptr<TonemapDrago> createTonemapDrago(float gamma = 1.0f, float saturation = 1.0f, float bias = 0.85f); 378 379 /** @brief This algorithm decomposes image into two layers: base layer and detail layer using bilateral filter 380 and compresses contrast of the base layer thus preserving all the details. 381 382 This implementation uses regular bilateral filter from opencv. 383 384 Saturation enhancement is possible as in ocvTonemapDrago. 385 386 For more information see @cite DD02 . 387 */ 388 class CV_EXPORTS_W TonemapDurand : public Tonemap 389 { 390 public: 391 392 CV_WRAP virtual float getSaturation() const = 0; 393 CV_WRAP virtual void setSaturation(float saturation) = 0; 394 395 CV_WRAP virtual float getContrast() const = 0; 396 CV_WRAP virtual void setContrast(float contrast) = 0; 397 398 CV_WRAP virtual float getSigmaSpace() const = 0; 399 CV_WRAP virtual void setSigmaSpace(float sigma_space) = 0; 400 401 CV_WRAP virtual float getSigmaColor() const = 0; 402 CV_WRAP virtual void setSigmaColor(float sigma_color) = 0; 403 }; 404 405 /** @brief Creates TonemapDurand object 406 407 @param gamma gamma value for gamma correction. See createTonemap 408 @param contrast resulting contrast on logarithmic scale, i. e. log(max / min), where max and min 409 are maximum and minimum luminance values of the resulting image. 410 @param saturation saturation enhancement value. See createTonemapDrago 411 @param sigma_space bilateral filter sigma in color space 412 @param sigma_color bilateral filter sigma in coordinate space 413 */ 414 CV_EXPORTS_W Ptr<TonemapDurand> 415 createTonemapDurand(float gamma = 1.0f, float contrast = 4.0f, float saturation = 1.0f, float sigma_space = 2.0f, float sigma_color = 2.0f); 416 417 /** @brief This is a global tonemapping operator that models human visual system. 418 419 Mapping function is controlled by adaptation parameter, that is computed using light adaptation and 420 color adaptation. 421 422 For more information see @cite RD05 . 423 */ 424 class CV_EXPORTS_W TonemapReinhard : public Tonemap 425 { 426 public: 427 CV_WRAP virtual float getIntensity() const = 0; 428 CV_WRAP virtual void setIntensity(float intensity) = 0; 429 430 CV_WRAP virtual float getLightAdaptation() const = 0; 431 CV_WRAP virtual void setLightAdaptation(float light_adapt) = 0; 432 433 CV_WRAP virtual float getColorAdaptation() const = 0; 434 CV_WRAP virtual void setColorAdaptation(float color_adapt) = 0; 435 }; 436 437 /** @brief Creates TonemapReinhard object 438 439 @param gamma gamma value for gamma correction. See createTonemap 440 @param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results. 441 @param light_adapt light adaptation in [0, 1] range. If 1 adaptation is based only on pixel 442 value, if 0 it's global, otherwise it's a weighted mean of this two cases. 443 @param color_adapt chromatic adaptation in [0, 1] range. If 1 channels are treated independently, 444 if 0 adaptation level is the same for each channel. 445 */ 446 CV_EXPORTS_W Ptr<TonemapReinhard> 447 createTonemapReinhard(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f); 448 449 /** @brief This algorithm transforms image to contrast using gradients on all levels of gaussian pyramid, 450 transforms contrast values to HVS response and scales the response. After this the image is 451 reconstructed from new contrast values. 452 453 For more information see @cite MM06 . 454 */ 455 class CV_EXPORTS_W TonemapMantiuk : public Tonemap 456 { 457 public: 458 CV_WRAP virtual float getScale() const = 0; 459 CV_WRAP virtual void setScale(float scale) = 0; 460 461 CV_WRAP virtual float getSaturation() const = 0; 462 CV_WRAP virtual void setSaturation(float saturation) = 0; 463 }; 464 465 /** @brief Creates TonemapMantiuk object 466 467 @param gamma gamma value for gamma correction. See createTonemap 468 @param scale contrast scale factor. HVS response is multiplied by this parameter, thus compressing 469 dynamic range. Values from 0.6 to 0.9 produce best results. 470 @param saturation saturation enhancement value. See createTonemapDrago 471 */ 472 CV_EXPORTS_W Ptr<TonemapMantiuk> 473 createTonemapMantiuk(float gamma = 1.0f, float scale = 0.7f, float saturation = 1.0f); 474 475 /** @brief The base class for algorithms that align images of the same scene with different exposures 476 */ 477 class CV_EXPORTS_W AlignExposures : public Algorithm 478 { 479 public: 480 /** @brief Aligns images 481 482 @param src vector of input images 483 @param dst vector of aligned images 484 @param times vector of exposure time values for each image 485 @param response 256x1 matrix with inverse camera response function for each pixel value, it should 486 have the same number of channels as images. 487 */ 488 CV_WRAP virtual void process(InputArrayOfArrays src, std::vector<Mat>& dst, 489 InputArray times, InputArray response) = 0; 490 }; 491 492 /** @brief This algorithm converts images to median threshold bitmaps (1 for pixels brighter than median 493 luminance and 0 otherwise) and than aligns the resulting bitmaps using bit operations. 494 495 It is invariant to exposure, so exposure values and camera response are not necessary. 496 497 In this implementation new image regions are filled with zeros. 498 499 For more information see @cite GW03 . 500 */ 501 class CV_EXPORTS_W AlignMTB : public AlignExposures 502 { 503 public: 504 CV_WRAP virtual void process(InputArrayOfArrays src, std::vector<Mat>& dst, 505 InputArray times, InputArray response) = 0; 506 507 /** @brief Short version of process, that doesn't take extra arguments. 508 509 @param src vector of input images 510 @param dst vector of aligned images 511 */ 512 CV_WRAP virtual void process(InputArrayOfArrays src, std::vector<Mat>& dst) = 0; 513 514 /** @brief Calculates shift between two images, i. e. how to shift the second image to correspond it with the 515 first. 516 517 @param img0 first image 518 @param img1 second image 519 */ 520 CV_WRAP virtual Point calculateShift(InputArray img0, InputArray img1) = 0; 521 /** @brief Helper function, that shift Mat filling new regions with zeros. 522 523 @param src input image 524 @param dst result image 525 @param shift shift value 526 */ 527 CV_WRAP virtual void shiftMat(InputArray src, OutputArray dst, const Point shift) = 0; 528 /** @brief Computes median threshold and exclude bitmaps of given image. 529 530 @param img input image 531 @param tb median threshold bitmap 532 @param eb exclude bitmap 533 */ 534 CV_WRAP virtual void computeBitmaps(InputArray img, OutputArray tb, OutputArray eb) = 0; 535 536 CV_WRAP virtual int getMaxBits() const = 0; 537 CV_WRAP virtual void setMaxBits(int max_bits) = 0; 538 539 CV_WRAP virtual int getExcludeRange() const = 0; 540 CV_WRAP virtual void setExcludeRange(int exclude_range) = 0; 541 542 CV_WRAP virtual bool getCut() const = 0; 543 CV_WRAP virtual void setCut(bool value) = 0; 544 }; 545 546 /** @brief Creates AlignMTB object 547 548 @param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are 549 usually good enough (31 and 63 pixels shift respectively). 550 @param exclude_range range for exclusion bitmap that is constructed to suppress noise around the 551 median value. 552 @param cut if true cuts images, otherwise fills the new regions with zeros. 553 */ 554 CV_EXPORTS_W Ptr<AlignMTB> createAlignMTB(int max_bits = 6, int exclude_range = 4, bool cut = true); 555 556 /** @brief The base class for camera response calibration algorithms. 557 */ 558 class CV_EXPORTS_W CalibrateCRF : public Algorithm 559 { 560 public: 561 /** @brief Recovers inverse camera response. 562 563 @param src vector of input images 564 @param dst 256x1 matrix with inverse camera response function 565 @param times vector of exposure time values for each image 566 */ 567 CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0; 568 }; 569 570 /** @brief Inverse camera response function is extracted for each brightness value by minimizing an objective 571 function as linear system. Objective function is constructed using pixel values on the same position 572 in all images, extra term is added to make the result smoother. 573 574 For more information see @cite DM97 . 575 */ 576 class CV_EXPORTS_W CalibrateDebevec : public CalibrateCRF 577 { 578 public: 579 CV_WRAP virtual float getLambda() const = 0; 580 CV_WRAP virtual void setLambda(float lambda) = 0; 581 582 CV_WRAP virtual int getSamples() const = 0; 583 CV_WRAP virtual void setSamples(int samples) = 0; 584 585 CV_WRAP virtual bool getRandom() const = 0; 586 CV_WRAP virtual void setRandom(bool random) = 0; 587 }; 588 589 /** @brief Creates CalibrateDebevec object 590 591 @param samples number of pixel locations to use 592 @param lambda smoothness term weight. Greater values produce smoother results, but can alter the 593 response. 594 @param random if true sample pixel locations are chosen at random, otherwise the form a 595 rectangular grid. 596 */ 597 CV_EXPORTS_W Ptr<CalibrateDebevec> createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false); 598 599 /** @brief Inverse camera response function is extracted for each brightness value by minimizing an objective 600 function as linear system. This algorithm uses all image pixels. 601 602 For more information see @cite RB99 . 603 */ 604 class CV_EXPORTS_W CalibrateRobertson : public CalibrateCRF 605 { 606 public: 607 CV_WRAP virtual int getMaxIter() const = 0; 608 CV_WRAP virtual void setMaxIter(int max_iter) = 0; 609 610 CV_WRAP virtual float getThreshold() const = 0; 611 CV_WRAP virtual void setThreshold(float threshold) = 0; 612 613 CV_WRAP virtual Mat getRadiance() const = 0; 614 }; 615 616 /** @brief Creates CalibrateRobertson object 617 618 @param max_iter maximal number of Gauss-Seidel solver iterations. 619 @param threshold target difference between results of two successive steps of the minimization. 620 */ 621 CV_EXPORTS_W Ptr<CalibrateRobertson> createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f); 622 623 /** @brief The base class algorithms that can merge exposure sequence to a single image. 624 */ 625 class CV_EXPORTS_W MergeExposures : public Algorithm 626 { 627 public: 628 /** @brief Merges images. 629 630 @param src vector of input images 631 @param dst result image 632 @param times vector of exposure time values for each image 633 @param response 256x1 matrix with inverse camera response function for each pixel value, it should 634 have the same number of channels as images. 635 */ 636 CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, 637 InputArray times, InputArray response) = 0; 638 }; 639 640 /** @brief The resulting HDR image is calculated as weighted average of the exposures considering exposure 641 values and camera response. 642 643 For more information see @cite DM97 . 644 */ 645 class CV_EXPORTS_W MergeDebevec : public MergeExposures 646 { 647 public: 648 CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, 649 InputArray times, InputArray response) = 0; 650 CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0; 651 }; 652 653 /** @brief Creates MergeDebevec object 654 */ 655 CV_EXPORTS_W Ptr<MergeDebevec> createMergeDebevec(); 656 657 /** @brief Pixels are weighted using contrast, saturation and well-exposedness measures, than images are 658 combined using laplacian pyramids. 659 660 The resulting image weight is constructed as weighted average of contrast, saturation and 661 well-exposedness measures. 662 663 The resulting image doesn't require tonemapping and can be converted to 8-bit image by multiplying 664 by 255, but it's recommended to apply gamma correction and/or linear tonemapping. 665 666 For more information see @cite MK07 . 667 */ 668 class CV_EXPORTS_W MergeMertens : public MergeExposures 669 { 670 public: 671 CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, 672 InputArray times, InputArray response) = 0; 673 /** @brief Short version of process, that doesn't take extra arguments. 674 675 @param src vector of input images 676 @param dst result image 677 */ 678 CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst) = 0; 679 680 CV_WRAP virtual float getContrastWeight() const = 0; 681 CV_WRAP virtual void setContrastWeight(float contrast_weiht) = 0; 682 683 CV_WRAP virtual float getSaturationWeight() const = 0; 684 CV_WRAP virtual void setSaturationWeight(float saturation_weight) = 0; 685 686 CV_WRAP virtual float getExposureWeight() const = 0; 687 CV_WRAP virtual void setExposureWeight(float exposure_weight) = 0; 688 }; 689 690 /** @brief Creates MergeMertens object 691 692 @param contrast_weight contrast measure weight. See MergeMertens. 693 @param saturation_weight saturation measure weight 694 @param exposure_weight well-exposedness measure weight 695 */ 696 CV_EXPORTS_W Ptr<MergeMertens> 697 createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f); 698 699 /** @brief The resulting HDR image is calculated as weighted average of the exposures considering exposure 700 values and camera response. 701 702 For more information see @cite RB99 . 703 */ 704 class CV_EXPORTS_W MergeRobertson : public MergeExposures 705 { 706 public: 707 CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, 708 InputArray times, InputArray response) = 0; 709 CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0; 710 }; 711 712 /** @brief Creates MergeRobertson object 713 */ 714 CV_EXPORTS_W Ptr<MergeRobertson> createMergeRobertson(); 715 716 //! @} photo_hdr 717 718 /** @brief Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized 719 black-and-white photograph rendering, and in many single channel image processing applications 720 @cite CL12 . 721 722 @param src Input 8-bit 3-channel image. 723 @param grayscale Output 8-bit 1-channel image. 724 @param color_boost Output 8-bit 3-channel image. 725 726 This function is to be applied on color images. 727 */ 728 CV_EXPORTS_W void decolor( InputArray src, OutputArray grayscale, OutputArray color_boost); 729 730 //! @addtogroup photo_clone 731 //! @{ 732 733 /** @brief Image editing tasks concern either global changes (color/intensity corrections, filters, 734 deformations) or local changes concerned to a selection. Here we are interested in achieving local 735 changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless 736 manner. The extent of the changes ranges from slight distortions to complete replacement by novel 737 content @cite PM03 . 738 739 @param src Input 8-bit 3-channel image. 740 @param dst Input 8-bit 3-channel image. 741 @param mask Input 8-bit 1 or 3-channel image. 742 @param p Point in dst image where object is placed. 743 @param blend Output image with the same size and type as dst. 744 @param flags Cloning method that could be one of the following: 745 - **NORMAL_CLONE** The power of the method is fully expressed when inserting objects with 746 complex outlines into a new background 747 - **MIXED_CLONE** The classic method, color-based selection and alpha masking might be time 748 consuming and often leaves an undesirable halo. Seamless cloning, even averaged with the 749 original image, is not effective. Mixed seamless cloning based on a loose selection proves 750 effective. 751 - **FEATURE_EXCHANGE** Feature exchange allows the user to easily replace certain features of 752 one object by alternative features. 753 */ 754 CV_EXPORTS_W void seamlessClone( InputArray src, InputArray dst, InputArray mask, Point p, 755 OutputArray blend, int flags); 756 757 /** @brief Given an original color image, two differently colored versions of this image can be mixed 758 seamlessly. 759 760 @param src Input 8-bit 3-channel image. 761 @param mask Input 8-bit 1 or 3-channel image. 762 @param dst Output image with the same size and type as src . 763 @param red_mul R-channel multiply factor. 764 @param green_mul G-channel multiply factor. 765 @param blue_mul B-channel multiply factor. 766 767 Multiplication factor is between .5 to 2.5. 768 */ 769 CV_EXPORTS_W void colorChange(InputArray src, InputArray mask, OutputArray dst, float red_mul = 1.0f, 770 float green_mul = 1.0f, float blue_mul = 1.0f); 771 772 /** @brief Applying an appropriate non-linear transformation to the gradient field inside the selection and 773 then integrating back with a Poisson solver, modifies locally the apparent illumination of an image. 774 775 @param src Input 8-bit 3-channel image. 776 @param mask Input 8-bit 1 or 3-channel image. 777 @param dst Output image with the same size and type as src. 778 @param alpha Value ranges between 0-2. 779 @param beta Value ranges between 0-2. 780 781 This is useful to highlight under-exposed foreground objects or to reduce specular reflections. 782 */ 783 CV_EXPORTS_W void illuminationChange(InputArray src, InputArray mask, OutputArray dst, 784 float alpha = 0.2f, float beta = 0.4f); 785 786 /** @brief By retaining only the gradients at edge locations, before integrating with the Poisson solver, one 787 washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge 788 Detector is used. 789 790 @param src Input 8-bit 3-channel image. 791 @param mask Input 8-bit 1 or 3-channel image. 792 @param dst Output image with the same size and type as src. 793 @param low_threshold Range from 0 to 100. 794 @param high_threshold Value \> 100. 795 @param kernel_size The size of the Sobel kernel to be used. 796 797 **NOTE:** 798 799 The algorithm assumes that the color of the source image is close to that of the destination. This 800 assumption means that when the colors don't match, the source image color gets tinted toward the 801 color of the destination image. 802 */ 803 CV_EXPORTS_W void textureFlattening(InputArray src, InputArray mask, OutputArray dst, 804 float low_threshold = 30, float high_threshold = 45, 805 int kernel_size = 3); 806 807 //! @} photo_clone 808 809 //! @addtogroup photo_render 810 //! @{ 811 812 /** @brief Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing 813 filters are used in many different applications @cite EM11 . 814 815 @param src Input 8-bit 3-channel image. 816 @param dst Output 8-bit 3-channel image. 817 @param flags Edge preserving filters: 818 - **RECURS_FILTER** = 1 819 - **NORMCONV_FILTER** = 2 820 @param sigma_s Range between 0 to 200. 821 @param sigma_r Range between 0 to 1. 822 */ 823 CV_EXPORTS_W void edgePreservingFilter(InputArray src, OutputArray dst, int flags = 1, 824 float sigma_s = 60, float sigma_r = 0.4f); 825 826 /** @brief This filter enhances the details of a particular image. 827 828 @param src Input 8-bit 3-channel image. 829 @param dst Output image with the same size and type as src. 830 @param sigma_s Range between 0 to 200. 831 @param sigma_r Range between 0 to 1. 832 */ 833 CV_EXPORTS_W void detailEnhance(InputArray src, OutputArray dst, float sigma_s = 10, 834 float sigma_r = 0.15f); 835 836 /** @brief Pencil-like non-photorealistic line drawing 837 838 @param src Input 8-bit 3-channel image. 839 @param dst1 Output 8-bit 1-channel image. 840 @param dst2 Output image with the same size and type as src. 841 @param sigma_s Range between 0 to 200. 842 @param sigma_r Range between 0 to 1. 843 @param shade_factor Range between 0 to 0.1. 844 */ 845 CV_EXPORTS_W void pencilSketch(InputArray src, OutputArray dst1, OutputArray dst2, 846 float sigma_s = 60, float sigma_r = 0.07f, float shade_factor = 0.02f); 847 848 /** @brief Stylization aims to produce digital imagery with a wide variety of effects not focused on 849 photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low 850 contrast while preserving, or enhancing, high-contrast features. 851 852 @param src Input 8-bit 3-channel image. 853 @param dst Output image with the same size and type as src. 854 @param sigma_s Range between 0 to 200. 855 @param sigma_r Range between 0 to 1. 856 */ 857 CV_EXPORTS_W void stylization(InputArray src, OutputArray dst, float sigma_s = 60, 858 float sigma_r = 0.45f); 859 860 //! @} photo_render 861 862 //! @} photo 863 864 } // cv 865 866 #ifndef DISABLE_OPENCV_24_COMPATIBILITY 867 #include "opencv2/photo/photo_c.h" 868 #endif 869 870 #endif 871