• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <iostream>
2 #include <fstream>
3 
4 #include "opencv2/core.hpp"
5 #include <opencv2/core/utility.hpp>
6 #include "opencv2/highgui.hpp"
7 #include "opencv2/cudaoptflow.hpp"
8 #include "opencv2/cudaarithm.hpp"
9 
10 using namespace std;
11 using namespace cv;
12 using namespace cv::cuda;
13 
isFlowCorrect(Point2f u)14 inline bool isFlowCorrect(Point2f u)
15 {
16     return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
17 }
18 
computeColor(float fx,float fy)19 static Vec3b computeColor(float fx, float fy)
20 {
21     static bool first = true;
22 
23     // relative lengths of color transitions:
24     // these are chosen based on perceptual similarity
25     // (e.g. one can distinguish more shades between red and yellow
26     //  than between yellow and green)
27     const int RY = 15;
28     const int YG = 6;
29     const int GC = 4;
30     const int CB = 11;
31     const int BM = 13;
32     const int MR = 6;
33     const int NCOLS = RY + YG + GC + CB + BM + MR;
34     static Vec3i colorWheel[NCOLS];
35 
36     if (first)
37     {
38         int k = 0;
39 
40         for (int i = 0; i < RY; ++i, ++k)
41             colorWheel[k] = Vec3i(255, 255 * i / RY, 0);
42 
43         for (int i = 0; i < YG; ++i, ++k)
44             colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);
45 
46         for (int i = 0; i < GC; ++i, ++k)
47             colorWheel[k] = Vec3i(0, 255, 255 * i / GC);
48 
49         for (int i = 0; i < CB; ++i, ++k)
50             colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);
51 
52         for (int i = 0; i < BM; ++i, ++k)
53             colorWheel[k] = Vec3i(255 * i / BM, 0, 255);
54 
55         for (int i = 0; i < MR; ++i, ++k)
56             colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);
57 
58         first = false;
59     }
60 
61     const float rad = sqrt(fx * fx + fy * fy);
62     const float a = atan2(-fy, -fx) / (float) CV_PI;
63 
64     const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
65     const int k0 = static_cast<int>(fk);
66     const int k1 = (k0 + 1) % NCOLS;
67     const float f = fk - k0;
68 
69     Vec3b pix;
70 
71     for (int b = 0; b < 3; b++)
72     {
73         const float col0 = colorWheel[k0][b] / 255.0f;
74         const float col1 = colorWheel[k1][b] / 255.0f;
75 
76         float col = (1 - f) * col0 + f * col1;
77 
78         if (rad <= 1)
79             col = 1 - rad * (1 - col); // increase saturation with radius
80         else
81             col *= .75; // out of range
82 
83         pix[2 - b] = static_cast<uchar>(255.0 * col);
84     }
85 
86     return pix;
87 }
88 
drawOpticalFlow(const Mat_<float> & flowx,const Mat_<float> & flowy,Mat & dst,float maxmotion=-1)89 static void drawOpticalFlow(const Mat_<float>& flowx, const Mat_<float>& flowy, Mat& dst, float maxmotion = -1)
90 {
91     dst.create(flowx.size(), CV_8UC3);
92     dst.setTo(Scalar::all(0));
93 
94     // determine motion range:
95     float maxrad = maxmotion;
96 
97     if (maxmotion <= 0)
98     {
99         maxrad = 1;
100         for (int y = 0; y < flowx.rows; ++y)
101         {
102             for (int x = 0; x < flowx.cols; ++x)
103             {
104                 Point2f u(flowx(y, x), flowy(y, x));
105 
106                 if (!isFlowCorrect(u))
107                     continue;
108 
109                 maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
110             }
111         }
112     }
113 
114     for (int y = 0; y < flowx.rows; ++y)
115     {
116         for (int x = 0; x < flowx.cols; ++x)
117         {
118             Point2f u(flowx(y, x), flowy(y, x));
119 
120             if (isFlowCorrect(u))
121                 dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
122         }
123     }
124 }
125 
showFlow(const char * name,const GpuMat & d_flow)126 static void showFlow(const char* name, const GpuMat& d_flow)
127 {
128     GpuMat planes[2];
129     cuda::split(d_flow, planes);
130 
131     Mat flowx(planes[0]);
132     Mat flowy(planes[1]);
133 
134     Mat out;
135     drawOpticalFlow(flowx, flowy, out, 10);
136 
137     imshow(name, out);
138 }
139 
main(int argc,const char * argv[])140 int main(int argc, const char* argv[])
141 {
142     string filename1, filename2;
143     if (argc < 3)
144     {
145         cerr << "Usage : " << argv[0] << " <frame0> <frame1>" << endl;
146         filename1 = "../data/basketball1.png";
147         filename2 = "../data/basketball2.png";
148     }
149     else
150     {
151         filename1 = argv[1];
152         filename2 = argv[2];
153     }
154 
155     Mat frame0 = imread(filename1, IMREAD_GRAYSCALE);
156     Mat frame1 = imread(filename2, IMREAD_GRAYSCALE);
157 
158     if (frame0.empty())
159     {
160         cerr << "Can't open image ["  << filename1 << "]" << endl;
161         return -1;
162     }
163     if (frame1.empty())
164     {
165         cerr << "Can't open image ["  << filename2 << "]" << endl;
166         return -1;
167     }
168 
169     if (frame1.size() != frame0.size())
170     {
171         cerr << "Images should be of equal sizes" << endl;
172         return -1;
173     }
174 
175     GpuMat d_frame0(frame0);
176     GpuMat d_frame1(frame1);
177 
178     GpuMat d_flow(frame0.size(), CV_32FC2);
179 
180     Ptr<cuda::BroxOpticalFlow> brox = cuda::BroxOpticalFlow::create(0.197f, 50.0f, 0.8f, 10, 77, 10);
181     Ptr<cuda::DensePyrLKOpticalFlow> lk = cuda::DensePyrLKOpticalFlow::create(Size(7, 7));
182     Ptr<cuda::FarnebackOpticalFlow> farn = cuda::FarnebackOpticalFlow::create();
183     Ptr<cuda::OpticalFlowDual_TVL1> tvl1 = cuda::OpticalFlowDual_TVL1::create();
184 
185     {
186         GpuMat d_frame0f;
187         GpuMat d_frame1f;
188 
189         d_frame0.convertTo(d_frame0f, CV_32F, 1.0 / 255.0);
190         d_frame1.convertTo(d_frame1f, CV_32F, 1.0 / 255.0);
191 
192         const int64 start = getTickCount();
193 
194         brox->calc(d_frame0f, d_frame1f, d_flow);
195 
196         const double timeSec = (getTickCount() - start) / getTickFrequency();
197         cout << "Brox : " << timeSec << " sec" << endl;
198 
199         showFlow("Brox", d_flow);
200     }
201 
202     {
203         const int64 start = getTickCount();
204 
205         lk->calc(d_frame0, d_frame1, d_flow);
206 
207         const double timeSec = (getTickCount() - start) / getTickFrequency();
208         cout << "LK : " << timeSec << " sec" << endl;
209 
210         showFlow("LK", d_flow);
211     }
212 
213     {
214         const int64 start = getTickCount();
215 
216         farn->calc(d_frame0, d_frame1, d_flow);
217 
218         const double timeSec = (getTickCount() - start) / getTickFrequency();
219         cout << "Farn : " << timeSec << " sec" << endl;
220 
221         showFlow("Farn", d_flow);
222     }
223 
224     {
225         const int64 start = getTickCount();
226 
227         tvl1->calc(d_frame0, d_frame1, d_flow);
228 
229         const double timeSec = (getTickCount() - start) / getTickFrequency();
230         cout << "TVL1 : " << timeSec << " sec" << endl;
231 
232         showFlow("TVL1", d_flow);
233     }
234 
235     imshow("Frame 0", frame0);
236     imshow("Frame 1", frame1);
237     waitKey();
238 
239     return 0;
240 }
241