1 #include <iostream>
2 #include <vector>
3
4 #include "opencv2/core.hpp"
5 #include <opencv2/core/utility.hpp>
6 #include "opencv2/imgproc.hpp"
7 #include "opencv2/highgui.hpp"
8 #include "opencv2/video.hpp"
9 #include "opencv2/cudaoptflow.hpp"
10 #include "opencv2/cudaimgproc.hpp"
11
12 using namespace std;
13 using namespace cv;
14 using namespace cv::cuda;
15
download(const GpuMat & d_mat,vector<Point2f> & vec)16 static void download(const GpuMat& d_mat, vector<Point2f>& vec)
17 {
18 vec.resize(d_mat.cols);
19 Mat mat(1, d_mat.cols, CV_32FC2, (void*)&vec[0]);
20 d_mat.download(mat);
21 }
22
download(const GpuMat & d_mat,vector<uchar> & vec)23 static void download(const GpuMat& d_mat, vector<uchar>& vec)
24 {
25 vec.resize(d_mat.cols);
26 Mat mat(1, d_mat.cols, CV_8UC1, (void*)&vec[0]);
27 d_mat.download(mat);
28 }
29
drawArrows(Mat & frame,const vector<Point2f> & prevPts,const vector<Point2f> & nextPts,const vector<uchar> & status,Scalar line_color=Scalar (0,0,255))30 static void drawArrows(Mat& frame, const vector<Point2f>& prevPts, const vector<Point2f>& nextPts, const vector<uchar>& status, Scalar line_color = Scalar(0, 0, 255))
31 {
32 for (size_t i = 0; i < prevPts.size(); ++i)
33 {
34 if (status[i])
35 {
36 int line_thickness = 1;
37
38 Point p = prevPts[i];
39 Point q = nextPts[i];
40
41 double angle = atan2((double) p.y - q.y, (double) p.x - q.x);
42
43 double hypotenuse = sqrt( (double)(p.y - q.y)*(p.y - q.y) + (double)(p.x - q.x)*(p.x - q.x) );
44
45 if (hypotenuse < 1.0)
46 continue;
47
48 // Here we lengthen the arrow by a factor of three.
49 q.x = (int) (p.x - 3 * hypotenuse * cos(angle));
50 q.y = (int) (p.y - 3 * hypotenuse * sin(angle));
51
52 // Now we draw the main line of the arrow.
53 line(frame, p, q, line_color, line_thickness);
54
55 // Now draw the tips of the arrow. I do some scaling so that the
56 // tips look proportional to the main line of the arrow.
57
58 p.x = (int) (q.x + 9 * cos(angle + CV_PI / 4));
59 p.y = (int) (q.y + 9 * sin(angle + CV_PI / 4));
60 line(frame, p, q, line_color, line_thickness);
61
62 p.x = (int) (q.x + 9 * cos(angle - CV_PI / 4));
63 p.y = (int) (q.y + 9 * sin(angle - CV_PI / 4));
64 line(frame, p, q, line_color, line_thickness);
65 }
66 }
67 }
68
clamp(T x,T a,T b)69 template <typename T> inline T clamp (T x, T a, T b)
70 {
71 return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a));
72 }
73
mapValue(T x,T a,T b,T c,T d)74 template <typename T> inline T mapValue(T x, T a, T b, T c, T d)
75 {
76 x = clamp(x, a, b);
77 return c + (d - c) * (x - a) / (b - a);
78 }
79
main(int argc,const char * argv[])80 int main(int argc, const char* argv[])
81 {
82 const char* keys =
83 "{ h help | | print help message }"
84 "{ l left | ../data/pic1.png | specify left image }"
85 "{ r right | ../data/pic2.png | specify right image }"
86 "{ gray | | use grayscale sources [PyrLK Sparse] }"
87 "{ win_size | 21 | specify windows size [PyrLK] }"
88 "{ max_level | 3 | specify max level [PyrLK] }"
89 "{ iters | 30 | specify iterations count [PyrLK] }"
90 "{ points | 4000 | specify points count [GoodFeatureToTrack] }"
91 "{ min_dist | 0 | specify minimal distance between points [GoodFeatureToTrack] }";
92
93 CommandLineParser cmd(argc, argv, keys);
94
95 if (cmd.has("help") || !cmd.check())
96 {
97 cmd.printMessage();
98 cmd.printErrors();
99 return 0;
100 }
101
102 string fname0 = cmd.get<string>("left");
103 string fname1 = cmd.get<string>("right");
104
105 if (fname0.empty() || fname1.empty())
106 {
107 cerr << "Missing input file names" << endl;
108 return -1;
109 }
110
111 bool useGray = cmd.has("gray");
112 int winSize = cmd.get<int>("win_size");
113 int maxLevel = cmd.get<int>("max_level");
114 int iters = cmd.get<int>("iters");
115 int points = cmd.get<int>("points");
116 double minDist = cmd.get<double>("min_dist");
117
118 Mat frame0 = imread(fname0);
119 Mat frame1 = imread(fname1);
120
121 if (frame0.empty() || frame1.empty())
122 {
123 cout << "Can't load input images" << endl;
124 return -1;
125 }
126
127 namedWindow("PyrLK [Sparse]", WINDOW_NORMAL);
128 namedWindow("PyrLK [Dense] Flow Field", WINDOW_NORMAL);
129
130 cout << "Image size : " << frame0.cols << " x " << frame0.rows << endl;
131 cout << "Points count : " << points << endl;
132
133 cout << endl;
134
135 Mat frame0Gray;
136 cv::cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY);
137 Mat frame1Gray;
138 cv::cvtColor(frame1, frame1Gray, COLOR_BGR2GRAY);
139
140 // goodFeaturesToTrack
141
142 GpuMat d_frame0Gray(frame0Gray);
143 GpuMat d_prevPts;
144
145 Ptr<cuda::CornersDetector> detector = cuda::createGoodFeaturesToTrackDetector(d_frame0Gray.type(), points, 0.01, minDist);
146
147 detector->detect(d_frame0Gray, d_prevPts);
148
149 // Sparse
150
151 Ptr<cuda::SparsePyrLKOpticalFlow> d_pyrLK = cuda::SparsePyrLKOpticalFlow::create(
152 Size(winSize, winSize), maxLevel, iters);
153
154 GpuMat d_frame0(frame0);
155 GpuMat d_frame1(frame1);
156 GpuMat d_frame1Gray(frame1Gray);
157 GpuMat d_nextPts;
158 GpuMat d_status;
159
160 d_pyrLK->calc(useGray ? d_frame0Gray : d_frame0, useGray ? d_frame1Gray : d_frame1, d_prevPts, d_nextPts, d_status);
161
162 // Draw arrows
163
164 vector<Point2f> prevPts(d_prevPts.cols);
165 download(d_prevPts, prevPts);
166
167 vector<Point2f> nextPts(d_nextPts.cols);
168 download(d_nextPts, nextPts);
169
170 vector<uchar> status(d_status.cols);
171 download(d_status, status);
172
173 drawArrows(frame0, prevPts, nextPts, status, Scalar(255, 0, 0));
174
175 imshow("PyrLK [Sparse]", frame0);
176
177 waitKey();
178
179 return 0;
180 }
181