• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2008 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #include "SkInterpolator.h"
11 #include "SkMath.h"
12 #include "SkTSearch.h"
13 
SkInterpolatorBase()14 SkInterpolatorBase::SkInterpolatorBase() {
15     fStorage    = nullptr;
16     fTimes      = nullptr;
17     SkDEBUGCODE(fTimesArray = nullptr;)
18 }
19 
~SkInterpolatorBase()20 SkInterpolatorBase::~SkInterpolatorBase() {
21     if (fStorage) {
22         sk_free(fStorage);
23     }
24 }
25 
reset(int elemCount,int frameCount)26 void SkInterpolatorBase::reset(int elemCount, int frameCount) {
27     fFlags = 0;
28     fElemCount = SkToU8(elemCount);
29     fFrameCount = SkToS16(frameCount);
30     fRepeat = SK_Scalar1;
31     if (fStorage) {
32         sk_free(fStorage);
33         fStorage = nullptr;
34         fTimes = nullptr;
35         SkDEBUGCODE(fTimesArray = nullptr);
36     }
37 }
38 
39 /*  Each value[] run is formated as:
40         <time (in msec)>
41         <blend>
42         <data[fElemCount]>
43 
44     Totaling fElemCount+2 entries per keyframe
45 */
46 
getDuration(SkMSec * startTime,SkMSec * endTime) const47 bool SkInterpolatorBase::getDuration(SkMSec* startTime, SkMSec* endTime) const {
48     if (fFrameCount == 0) {
49         return false;
50     }
51 
52     if (startTime) {
53         *startTime = fTimes[0].fTime;
54     }
55     if (endTime) {
56         *endTime = fTimes[fFrameCount - 1].fTime;
57     }
58     return true;
59 }
60 
ComputeRelativeT(SkMSec time,SkMSec prevTime,SkMSec nextTime,const SkScalar blend[4])61 SkScalar SkInterpolatorBase::ComputeRelativeT(SkMSec time, SkMSec prevTime,
62                                   SkMSec nextTime, const SkScalar blend[4]) {
63     SkASSERT(time > prevTime && time < nextTime);
64 
65     SkScalar t = (SkScalar)(time - prevTime) / (SkScalar)(nextTime - prevTime);
66     return blend ?
67             SkUnitCubicInterp(t, blend[0], blend[1], blend[2], blend[3]) : t;
68 }
69 
timeToT(SkMSec time,SkScalar * T,int * indexPtr,bool * exactPtr) const70 SkInterpolatorBase::Result SkInterpolatorBase::timeToT(SkMSec time, SkScalar* T,
71                                         int* indexPtr, bool* exactPtr) const {
72     SkASSERT(fFrameCount > 0);
73     Result  result = kNormal_Result;
74     if (fRepeat != SK_Scalar1) {
75         SkMSec startTime = 0, endTime = 0;  // initialize to avoid warning
76         this->getDuration(&startTime, &endTime);
77         SkMSec totalTime = endTime - startTime;
78         SkMSec offsetTime = time - startTime;
79         endTime = SkScalarFloorToInt(fRepeat * totalTime);
80         if (offsetTime >= endTime) {
81             SkScalar fraction = SkScalarFraction(fRepeat);
82             offsetTime = fraction == 0 && fRepeat > 0 ? totalTime :
83                 (SkMSec) SkScalarFloorToInt(fraction * totalTime);
84             result = kFreezeEnd_Result;
85         } else {
86             int mirror = fFlags & kMirror;
87             offsetTime = offsetTime % (totalTime << mirror);
88             if (offsetTime > totalTime) { // can only be true if fMirror is true
89                 offsetTime = (totalTime << 1) - offsetTime;
90             }
91         }
92         time = offsetTime + startTime;
93     }
94 
95     int index = SkTSearch<SkMSec>(&fTimes[0].fTime, fFrameCount, time,
96                                   sizeof(SkTimeCode));
97 
98     bool    exact = true;
99 
100     if (index < 0) {
101         index = ~index;
102         if (index == 0) {
103             result = kFreezeStart_Result;
104         } else if (index == fFrameCount) {
105             if (fFlags & kReset) {
106                 index = 0;
107             } else {
108                 index -= 1;
109             }
110             result = kFreezeEnd_Result;
111         } else {
112             exact = false;
113         }
114     }
115     SkASSERT(index < fFrameCount);
116     const SkTimeCode* nextTime = &fTimes[index];
117     SkMSec   nextT = nextTime[0].fTime;
118     if (exact) {
119         *T = 0;
120     } else {
121         SkMSec prevT = nextTime[-1].fTime;
122         *T = ComputeRelativeT(time, prevT, nextT, nextTime[-1].fBlend);
123     }
124     *indexPtr = index;
125     *exactPtr = exact;
126     return result;
127 }
128 
129 
SkInterpolator()130 SkInterpolator::SkInterpolator() {
131     INHERITED::reset(0, 0);
132     fValues = nullptr;
133     SkDEBUGCODE(fScalarsArray = nullptr;)
134 }
135 
SkInterpolator(int elemCount,int frameCount)136 SkInterpolator::SkInterpolator(int elemCount, int frameCount) {
137     SkASSERT(elemCount > 0);
138     this->reset(elemCount, frameCount);
139 }
140 
reset(int elemCount,int frameCount)141 void SkInterpolator::reset(int elemCount, int frameCount) {
142     INHERITED::reset(elemCount, frameCount);
143     fStorage = sk_malloc_throw((sizeof(SkScalar) * elemCount +
144                                 sizeof(SkTimeCode)) * frameCount);
145     fTimes = (SkTimeCode*) fStorage;
146     fValues = (SkScalar*) ((char*) fStorage + sizeof(SkTimeCode) * frameCount);
147 #ifdef SK_DEBUG
148     fTimesArray = (SkTimeCode(*)[10]) fTimes;
149     fScalarsArray = (SkScalar(*)[10]) fValues;
150 #endif
151 }
152 
153 #define SK_Fixed1Third      (SK_Fixed1/3)
154 #define SK_Fixed2Third      (SK_Fixed1*2/3)
155 
156 static const SkScalar gIdentityBlend[4] = {
157     0.33333333f, 0.33333333f, 0.66666667f, 0.66666667f
158 };
159 
setKeyFrame(int index,SkMSec time,const SkScalar values[],const SkScalar blend[4])160 bool SkInterpolator::setKeyFrame(int index, SkMSec time,
161                             const SkScalar values[], const SkScalar blend[4]) {
162     SkASSERT(values != nullptr);
163 
164     if (blend == nullptr) {
165         blend = gIdentityBlend;
166     }
167 
168     bool success = ~index == SkTSearch<SkMSec>(&fTimes->fTime, index, time,
169                                                sizeof(SkTimeCode));
170     SkASSERT(success);
171     if (success) {
172         SkTimeCode* timeCode = &fTimes[index];
173         timeCode->fTime = time;
174         memcpy(timeCode->fBlend, blend, sizeof(timeCode->fBlend));
175         SkScalar* dst = &fValues[fElemCount * index];
176         memcpy(dst, values, fElemCount * sizeof(SkScalar));
177     }
178     return success;
179 }
180 
timeToValues(SkMSec time,SkScalar values[]) const181 SkInterpolator::Result SkInterpolator::timeToValues(SkMSec time,
182                                                     SkScalar values[]) const {
183     SkScalar T;
184     int index;
185     bool exact;
186     Result result = timeToT(time, &T, &index, &exact);
187     if (values) {
188         const SkScalar* nextSrc = &fValues[index * fElemCount];
189 
190         if (exact) {
191             memcpy(values, nextSrc, fElemCount * sizeof(SkScalar));
192         } else {
193             SkASSERT(index > 0);
194 
195             const SkScalar* prevSrc = nextSrc - fElemCount;
196 
197             for (int i = fElemCount - 1; i >= 0; --i) {
198                 values[i] = SkScalarInterp(prevSrc[i], nextSrc[i], T);
199             }
200         }
201     }
202     return result;
203 }
204 
205 ///////////////////////////////////////////////////////////////////////////////
206 
207 typedef int Dot14;
208 #define Dot14_ONE       (1 << 14)
209 #define Dot14_HALF      (1 << 13)
210 
211 #define Dot14ToFloat(x) ((x) / 16384.f)
212 
Dot14Mul(Dot14 a,Dot14 b)213 static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) {
214     return (a * b + Dot14_HALF) >> 14;
215 }
216 
eval_cubic(Dot14 t,Dot14 A,Dot14 B,Dot14 C)217 static inline Dot14 eval_cubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) {
218     return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t);
219 }
220 
pin_and_convert(SkScalar x)221 static inline Dot14 pin_and_convert(SkScalar x) {
222     if (x <= 0) {
223         return 0;
224     }
225     if (x >= SK_Scalar1) {
226         return Dot14_ONE;
227     }
228     return SkScalarToFixed(x) >> 2;
229 }
230 
SkUnitCubicInterp(SkScalar value,SkScalar bx,SkScalar by,SkScalar cx,SkScalar cy)231 SkScalar SkUnitCubicInterp(SkScalar value, SkScalar bx, SkScalar by,
232                            SkScalar cx, SkScalar cy) {
233     // pin to the unit-square, and convert to 2.14
234     Dot14 x = pin_and_convert(value);
235 
236     if (x == 0) return 0;
237     if (x == Dot14_ONE) return SK_Scalar1;
238 
239     Dot14 b = pin_and_convert(bx);
240     Dot14 c = pin_and_convert(cx);
241 
242     // Now compute our coefficients from the control points
243     //  t   -> 3b
244     //  t^2 -> 3c - 6b
245     //  t^3 -> 3b - 3c + 1
246     Dot14 A = 3*b;
247     Dot14 B = 3*(c - 2*b);
248     Dot14 C = 3*(b - c) + Dot14_ONE;
249 
250     // Now search for a t value given x
251     Dot14   t = Dot14_HALF;
252     Dot14   dt = Dot14_HALF;
253     for (int i = 0; i < 13; i++) {
254         dt >>= 1;
255         Dot14 guess = eval_cubic(t, A, B, C);
256         if (x < guess) {
257             t -= dt;
258         } else {
259             t += dt;
260         }
261     }
262 
263     // Now we have t, so compute the coeff for Y and evaluate
264     b = pin_and_convert(by);
265     c = pin_and_convert(cy);
266     A = 3*b;
267     B = 3*(c - 2*b);
268     C = 3*(b - c) + Dot14_ONE;
269     return SkFixedToScalar(eval_cubic(t, A, B, C) << 2);
270 }
271