1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/arm64/codegen-arm64.h"
6
7 #if V8_TARGET_ARCH_ARM64
8
9 #include "src/arm64/simulator-arm64.h"
10 #include "src/codegen.h"
11 #include "src/macro-assembler.h"
12
13 namespace v8 {
14 namespace internal {
15
16 #define __ ACCESS_MASM(masm)
17
18 #if defined(USE_SIMULATOR)
19 byte* fast_exp_arm64_machine_code = nullptr;
fast_exp_simulator(double x,Isolate * isolate)20 double fast_exp_simulator(double x, Isolate* isolate) {
21 Simulator * simulator = Simulator::current(isolate);
22 Simulator::CallArgument args[] = {
23 Simulator::CallArgument(x),
24 Simulator::CallArgument::End()
25 };
26 return simulator->CallDouble(fast_exp_arm64_machine_code, args);
27 }
28 #endif
29
30
CreateExpFunction(Isolate * isolate)31 UnaryMathFunctionWithIsolate CreateExpFunction(Isolate* isolate) {
32 // Use the Math.exp implemetation in MathExpGenerator::EmitMathExp() to create
33 // an AAPCS64-compliant exp() function. This will be faster than the C
34 // library's exp() function, but probably less accurate.
35 size_t actual_size;
36 byte* buffer =
37 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
38 if (buffer == nullptr) return nullptr;
39
40 ExternalReference::InitializeMathExpData();
41 MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
42 CodeObjectRequired::kNo);
43 masm.SetStackPointer(csp);
44
45 // The argument will be in d0 on entry.
46 DoubleRegister input = d0;
47 // Use other caller-saved registers for all other values.
48 DoubleRegister result = d1;
49 DoubleRegister double_temp1 = d2;
50 DoubleRegister double_temp2 = d3;
51 Register temp1 = x10;
52 Register temp2 = x11;
53 Register temp3 = x12;
54
55 MathExpGenerator::EmitMathExp(&masm, input, result,
56 double_temp1, double_temp2,
57 temp1, temp2, temp3);
58 // Move the result to the return register.
59 masm.Fmov(d0, result);
60 masm.Ret();
61
62 CodeDesc desc;
63 masm.GetCode(&desc);
64 DCHECK(!RelocInfo::RequiresRelocation(desc));
65
66 Assembler::FlushICache(isolate, buffer, actual_size);
67 base::OS::ProtectCode(buffer, actual_size);
68
69 #if !defined(USE_SIMULATOR)
70 return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
71 #else
72 fast_exp_arm64_machine_code = buffer;
73 return &fast_exp_simulator;
74 #endif
75 }
76
77
CreateSqrtFunction(Isolate * isolate)78 UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
79 return nullptr;
80 }
81
82
83 // -------------------------------------------------------------------------
84 // Platform-specific RuntimeCallHelper functions.
85
BeforeCall(MacroAssembler * masm) const86 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
87 masm->EnterFrame(StackFrame::INTERNAL);
88 DCHECK(!masm->has_frame());
89 masm->set_has_frame(true);
90 }
91
92
AfterCall(MacroAssembler * masm) const93 void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
94 masm->LeaveFrame(StackFrame::INTERNAL);
95 DCHECK(masm->has_frame());
96 masm->set_has_frame(false);
97 }
98
99
100 // -------------------------------------------------------------------------
101 // Code generators
102
GenerateMapChangeElementsTransition(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * allocation_memento_found)103 void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
104 MacroAssembler* masm,
105 Register receiver,
106 Register key,
107 Register value,
108 Register target_map,
109 AllocationSiteMode mode,
110 Label* allocation_memento_found) {
111 ASM_LOCATION(
112 "ElementsTransitionGenerator::GenerateMapChangeElementsTransition");
113 DCHECK(!AreAliased(receiver, key, value, target_map));
114
115 if (mode == TRACK_ALLOCATION_SITE) {
116 DCHECK(allocation_memento_found != NULL);
117 __ JumpIfJSArrayHasAllocationMemento(receiver, x10, x11,
118 allocation_memento_found);
119 }
120
121 // Set transitioned map.
122 __ Str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
123 __ RecordWriteField(receiver,
124 HeapObject::kMapOffset,
125 target_map,
126 x10,
127 kLRHasNotBeenSaved,
128 kDontSaveFPRegs,
129 EMIT_REMEMBERED_SET,
130 OMIT_SMI_CHECK);
131 }
132
133
GenerateSmiToDouble(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * fail)134 void ElementsTransitionGenerator::GenerateSmiToDouble(
135 MacroAssembler* masm,
136 Register receiver,
137 Register key,
138 Register value,
139 Register target_map,
140 AllocationSiteMode mode,
141 Label* fail) {
142 ASM_LOCATION("ElementsTransitionGenerator::GenerateSmiToDouble");
143 Label gc_required, only_change_map;
144 Register elements = x4;
145 Register length = x5;
146 Register array_size = x6;
147 Register array = x7;
148
149 Register scratch = x6;
150
151 // Verify input registers don't conflict with locals.
152 DCHECK(!AreAliased(receiver, key, value, target_map,
153 elements, length, array_size, array));
154
155 if (mode == TRACK_ALLOCATION_SITE) {
156 __ JumpIfJSArrayHasAllocationMemento(receiver, x10, x11, fail);
157 }
158
159 // Check for empty arrays, which only require a map transition and no changes
160 // to the backing store.
161 __ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
162 __ JumpIfRoot(elements, Heap::kEmptyFixedArrayRootIndex, &only_change_map);
163
164 __ Push(lr);
165 __ Ldrsw(length, UntagSmiFieldMemOperand(elements,
166 FixedArray::kLengthOffset));
167
168 // Allocate new FixedDoubleArray.
169 __ Lsl(array_size, length, kDoubleSizeLog2);
170 __ Add(array_size, array_size, FixedDoubleArray::kHeaderSize);
171 __ Allocate(array_size, array, x10, x11, &gc_required, DOUBLE_ALIGNMENT);
172 // Register array is non-tagged heap object.
173
174 // Set the destination FixedDoubleArray's length and map.
175 Register map_root = array_size;
176 __ LoadRoot(map_root, Heap::kFixedDoubleArrayMapRootIndex);
177 __ SmiTag(x11, length);
178 __ Str(x11, MemOperand(array, FixedDoubleArray::kLengthOffset));
179 __ Str(map_root, MemOperand(array, HeapObject::kMapOffset));
180
181 __ Str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
182 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch,
183 kLRHasBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
184 OMIT_SMI_CHECK);
185
186 // Replace receiver's backing store with newly created FixedDoubleArray.
187 __ Add(x10, array, kHeapObjectTag);
188 __ Str(x10, FieldMemOperand(receiver, JSObject::kElementsOffset));
189 __ RecordWriteField(receiver, JSObject::kElementsOffset, x10,
190 scratch, kLRHasBeenSaved, kDontSaveFPRegs,
191 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
192
193 // Prepare for conversion loop.
194 Register src_elements = x10;
195 Register dst_elements = x11;
196 Register dst_end = x12;
197 __ Add(src_elements, elements, FixedArray::kHeaderSize - kHeapObjectTag);
198 __ Add(dst_elements, array, FixedDoubleArray::kHeaderSize);
199 __ Add(dst_end, dst_elements, Operand(length, LSL, kDoubleSizeLog2));
200
201 FPRegister nan_d = d1;
202 __ Fmov(nan_d, rawbits_to_double(kHoleNanInt64));
203
204 Label entry, done;
205 __ B(&entry);
206
207 __ Bind(&only_change_map);
208 __ Str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
209 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch,
210 kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
211 OMIT_SMI_CHECK);
212 __ B(&done);
213
214 // Call into runtime if GC is required.
215 __ Bind(&gc_required);
216 __ Pop(lr);
217 __ B(fail);
218
219 // Iterate over the array, copying and coverting smis to doubles. If an
220 // element is non-smi, write a hole to the destination.
221 {
222 Label loop;
223 __ Bind(&loop);
224 __ Ldr(x13, MemOperand(src_elements, kPointerSize, PostIndex));
225 __ SmiUntagToDouble(d0, x13, kSpeculativeUntag);
226 __ Tst(x13, kSmiTagMask);
227 __ Fcsel(d0, d0, nan_d, eq);
228 __ Str(d0, MemOperand(dst_elements, kDoubleSize, PostIndex));
229
230 __ Bind(&entry);
231 __ Cmp(dst_elements, dst_end);
232 __ B(lt, &loop);
233 }
234
235 __ Pop(lr);
236 __ Bind(&done);
237 }
238
239
GenerateDoubleToObject(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * fail)240 void ElementsTransitionGenerator::GenerateDoubleToObject(
241 MacroAssembler* masm,
242 Register receiver,
243 Register key,
244 Register value,
245 Register target_map,
246 AllocationSiteMode mode,
247 Label* fail) {
248 ASM_LOCATION("ElementsTransitionGenerator::GenerateDoubleToObject");
249 Register elements = x4;
250 Register array_size = x6;
251 Register array = x7;
252 Register length = x5;
253
254 // Verify input registers don't conflict with locals.
255 DCHECK(!AreAliased(receiver, key, value, target_map,
256 elements, array_size, array, length));
257
258 if (mode == TRACK_ALLOCATION_SITE) {
259 __ JumpIfJSArrayHasAllocationMemento(receiver, x10, x11, fail);
260 }
261
262 // Check for empty arrays, which only require a map transition and no changes
263 // to the backing store.
264 Label only_change_map;
265
266 __ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
267 __ JumpIfRoot(elements, Heap::kEmptyFixedArrayRootIndex, &only_change_map);
268
269 __ Push(lr);
270 // TODO(all): These registers may not need to be pushed. Examine
271 // RecordWriteStub and check whether it's needed.
272 __ Push(target_map, receiver, key, value);
273 __ Ldrsw(length, UntagSmiFieldMemOperand(elements,
274 FixedArray::kLengthOffset));
275 // Allocate new FixedArray.
276 Label gc_required;
277 __ Mov(array_size, FixedDoubleArray::kHeaderSize);
278 __ Add(array_size, array_size, Operand(length, LSL, kPointerSizeLog2));
279 __ Allocate(array_size, array, x10, x11, &gc_required, NO_ALLOCATION_FLAGS);
280
281 // Set destination FixedDoubleArray's length and map.
282 Register map_root = array_size;
283 __ LoadRoot(map_root, Heap::kFixedArrayMapRootIndex);
284 __ SmiTag(x11, length);
285 __ Str(x11, MemOperand(array, FixedDoubleArray::kLengthOffset));
286 __ Str(map_root, MemOperand(array, HeapObject::kMapOffset));
287
288 // Prepare for conversion loop.
289 Register src_elements = x10;
290 Register dst_elements = x11;
291 Register dst_end = x12;
292 Register the_hole = x14;
293 __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
294 __ Add(src_elements, elements,
295 FixedDoubleArray::kHeaderSize - kHeapObjectTag);
296 __ Add(dst_elements, array, FixedArray::kHeaderSize);
297 __ Add(dst_end, dst_elements, Operand(length, LSL, kPointerSizeLog2));
298
299 // Allocating heap numbers in the loop below can fail and cause a jump to
300 // gc_required. We can't leave a partly initialized FixedArray behind,
301 // so pessimistically fill it with holes now.
302 Label initialization_loop, initialization_loop_entry;
303 __ B(&initialization_loop_entry);
304 __ bind(&initialization_loop);
305 __ Str(the_hole, MemOperand(dst_elements, kPointerSize, PostIndex));
306 __ bind(&initialization_loop_entry);
307 __ Cmp(dst_elements, dst_end);
308 __ B(lt, &initialization_loop);
309
310 __ Add(dst_elements, array, FixedArray::kHeaderSize);
311 __ Add(array, array, kHeapObjectTag);
312
313 Register heap_num_map = x15;
314 __ LoadRoot(heap_num_map, Heap::kHeapNumberMapRootIndex);
315
316 Label entry;
317 __ B(&entry);
318
319 // Call into runtime if GC is required.
320 __ Bind(&gc_required);
321 __ Pop(value, key, receiver, target_map);
322 __ Pop(lr);
323 __ B(fail);
324
325 {
326 Label loop, convert_hole;
327 __ Bind(&loop);
328 __ Ldr(x13, MemOperand(src_elements, kPointerSize, PostIndex));
329 __ Cmp(x13, kHoleNanInt64);
330 __ B(eq, &convert_hole);
331
332 // Non-hole double, copy value into a heap number.
333 Register heap_num = length;
334 Register scratch = array_size;
335 Register scratch2 = elements;
336 __ AllocateHeapNumber(heap_num, &gc_required, scratch, scratch2,
337 x13, heap_num_map);
338 __ Mov(x13, dst_elements);
339 __ Str(heap_num, MemOperand(dst_elements, kPointerSize, PostIndex));
340 __ RecordWrite(array, x13, heap_num, kLRHasBeenSaved, kDontSaveFPRegs,
341 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
342
343 __ B(&entry);
344
345 // Replace the-hole NaN with the-hole pointer.
346 __ Bind(&convert_hole);
347 __ Str(the_hole, MemOperand(dst_elements, kPointerSize, PostIndex));
348
349 __ Bind(&entry);
350 __ Cmp(dst_elements, dst_end);
351 __ B(lt, &loop);
352 }
353
354 __ Pop(value, key, receiver, target_map);
355 // Replace receiver's backing store with newly created and filled FixedArray.
356 __ Str(array, FieldMemOperand(receiver, JSObject::kElementsOffset));
357 __ RecordWriteField(receiver, JSObject::kElementsOffset, array, x13,
358 kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
359 OMIT_SMI_CHECK);
360 __ Pop(lr);
361
362 __ Bind(&only_change_map);
363 __ Str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
364 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, x13,
365 kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
366 OMIT_SMI_CHECK);
367 }
368
369
CodeAgingHelper(Isolate * isolate)370 CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
371 USE(isolate);
372 DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
373 // The sequence of instructions that is patched out for aging code is the
374 // following boilerplate stack-building prologue that is found both in
375 // FUNCTION and OPTIMIZED_FUNCTION code:
376 PatchingAssembler patcher(isolate, young_sequence_.start(),
377 young_sequence_.length() / kInstructionSize);
378 // The young sequence is the frame setup code for FUNCTION code types. It is
379 // generated by FullCodeGenerator::Generate.
380 MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher);
381
382 #ifdef DEBUG
383 const int length = kCodeAgeStubEntryOffset / kInstructionSize;
384 DCHECK(old_sequence_.length() >= kCodeAgeStubEntryOffset);
385 PatchingAssembler patcher_old(isolate, old_sequence_.start(), length);
386 MacroAssembler::EmitCodeAgeSequence(&patcher_old, NULL);
387 #endif
388 }
389
390
391 #ifdef DEBUG
IsOld(byte * candidate) const392 bool CodeAgingHelper::IsOld(byte* candidate) const {
393 return memcmp(candidate, old_sequence_.start(), kCodeAgeStubEntryOffset) == 0;
394 }
395 #endif
396
397
IsYoungSequence(Isolate * isolate,byte * sequence)398 bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
399 return MacroAssembler::IsYoungSequence(isolate, sequence);
400 }
401
402
GetCodeAgeAndParity(Isolate * isolate,byte * sequence,Age * age,MarkingParity * parity)403 void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
404 MarkingParity* parity) {
405 if (IsYoungSequence(isolate, sequence)) {
406 *age = kNoAgeCodeAge;
407 *parity = NO_MARKING_PARITY;
408 } else {
409 byte* target = sequence + kCodeAgeStubEntryOffset;
410 Code* stub = GetCodeFromTargetAddress(Memory::Address_at(target));
411 GetCodeAgeAndParity(stub, age, parity);
412 }
413 }
414
415
PatchPlatformCodeAge(Isolate * isolate,byte * sequence,Code::Age age,MarkingParity parity)416 void Code::PatchPlatformCodeAge(Isolate* isolate,
417 byte* sequence,
418 Code::Age age,
419 MarkingParity parity) {
420 PatchingAssembler patcher(isolate, sequence,
421 kNoCodeAgeSequenceLength / kInstructionSize);
422 if (age == kNoAgeCodeAge) {
423 MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher);
424 } else {
425 Code * stub = GetCodeAgeStub(isolate, age, parity);
426 MacroAssembler::EmitCodeAgeSequence(&patcher, stub);
427 }
428 }
429
430
Generate(MacroAssembler * masm,Register string,Register index,Register result,Label * call_runtime)431 void StringCharLoadGenerator::Generate(MacroAssembler* masm,
432 Register string,
433 Register index,
434 Register result,
435 Label* call_runtime) {
436 DCHECK(string.Is64Bits() && index.Is32Bits() && result.Is64Bits());
437 // Fetch the instance type of the receiver into result register.
438 __ Ldr(result, FieldMemOperand(string, HeapObject::kMapOffset));
439 __ Ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
440
441 // We need special handling for indirect strings.
442 Label check_sequential;
443 __ TestAndBranchIfAllClear(result, kIsIndirectStringMask, &check_sequential);
444
445 // Dispatch on the indirect string shape: slice or cons.
446 Label cons_string;
447 __ TestAndBranchIfAllClear(result, kSlicedNotConsMask, &cons_string);
448
449 // Handle slices.
450 Label indirect_string_loaded;
451 __ Ldr(result.W(),
452 UntagSmiFieldMemOperand(string, SlicedString::kOffsetOffset));
453 __ Ldr(string, FieldMemOperand(string, SlicedString::kParentOffset));
454 __ Add(index, index, result.W());
455 __ B(&indirect_string_loaded);
456
457 // Handle cons strings.
458 // Check whether the right hand side is the empty string (i.e. if
459 // this is really a flat string in a cons string). If that is not
460 // the case we would rather go to the runtime system now to flatten
461 // the string.
462 __ Bind(&cons_string);
463 __ Ldr(result, FieldMemOperand(string, ConsString::kSecondOffset));
464 __ JumpIfNotRoot(result, Heap::kempty_stringRootIndex, call_runtime);
465 // Get the first of the two strings and load its instance type.
466 __ Ldr(string, FieldMemOperand(string, ConsString::kFirstOffset));
467
468 __ Bind(&indirect_string_loaded);
469 __ Ldr(result, FieldMemOperand(string, HeapObject::kMapOffset));
470 __ Ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
471
472 // Distinguish sequential and external strings. Only these two string
473 // representations can reach here (slices and flat cons strings have been
474 // reduced to the underlying sequential or external string).
475 Label external_string, check_encoding;
476 __ Bind(&check_sequential);
477 STATIC_ASSERT(kSeqStringTag == 0);
478 __ TestAndBranchIfAnySet(result, kStringRepresentationMask, &external_string);
479
480 // Prepare sequential strings
481 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
482 __ Add(string, string, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
483 __ B(&check_encoding);
484
485 // Handle external strings.
486 __ Bind(&external_string);
487 if (FLAG_debug_code) {
488 // Assert that we do not have a cons or slice (indirect strings) here.
489 // Sequential strings have already been ruled out.
490 __ Tst(result, kIsIndirectStringMask);
491 __ Assert(eq, kExternalStringExpectedButNotFound);
492 }
493 // Rule out short external strings.
494 STATIC_ASSERT(kShortExternalStringTag != 0);
495 // TestAndBranchIfAnySet can emit Tbnz. Do not use it because call_runtime
496 // can be bound far away in deferred code.
497 __ Tst(result, kShortExternalStringMask);
498 __ B(ne, call_runtime);
499 __ Ldr(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));
500
501 Label one_byte, done;
502 __ Bind(&check_encoding);
503 STATIC_ASSERT(kTwoByteStringTag == 0);
504 __ TestAndBranchIfAnySet(result, kStringEncodingMask, &one_byte);
505 // Two-byte string.
506 __ Ldrh(result, MemOperand(string, index, SXTW, 1));
507 __ B(&done);
508 __ Bind(&one_byte);
509 // One-byte string.
510 __ Ldrb(result, MemOperand(string, index, SXTW));
511 __ Bind(&done);
512 }
513
514
ExpConstant(Register base,int index)515 static MemOperand ExpConstant(Register base, int index) {
516 return MemOperand(base, index * kDoubleSize);
517 }
518
519
EmitMathExp(MacroAssembler * masm,DoubleRegister input,DoubleRegister result,DoubleRegister double_temp1,DoubleRegister double_temp2,Register temp1,Register temp2,Register temp3)520 void MathExpGenerator::EmitMathExp(MacroAssembler* masm,
521 DoubleRegister input,
522 DoubleRegister result,
523 DoubleRegister double_temp1,
524 DoubleRegister double_temp2,
525 Register temp1,
526 Register temp2,
527 Register temp3) {
528 // TODO(jbramley): There are several instances where fnmsub could be used
529 // instead of fmul and fsub. Doing this changes the result, but since this is
530 // an estimation anyway, does it matter?
531
532 DCHECK(!AreAliased(input, result,
533 double_temp1, double_temp2,
534 temp1, temp2, temp3));
535 DCHECK(ExternalReference::math_exp_constants(0).address() != NULL);
536 DCHECK(!masm->serializer_enabled()); // External references not serializable.
537
538 Label done;
539 DoubleRegister double_temp3 = result;
540 Register constants = temp3;
541
542 // The algorithm used relies on some magic constants which are initialized in
543 // ExternalReference::InitializeMathExpData().
544
545 // Load the address of the start of the array.
546 __ Mov(constants, ExternalReference::math_exp_constants(0));
547
548 // We have to do a four-way split here:
549 // - If input <= about -708.4, the output always rounds to zero.
550 // - If input >= about 709.8, the output always rounds to +infinity.
551 // - If the input is NaN, the output is NaN.
552 // - Otherwise, the result needs to be calculated.
553 Label result_is_finite_non_zero;
554 // Assert that we can load offset 0 (the small input threshold) and offset 1
555 // (the large input threshold) with a single ldp.
556 DCHECK(kDRegSize == (ExpConstant(constants, 1).offset() -
557 ExpConstant(constants, 0).offset()));
558 __ Ldp(double_temp1, double_temp2, ExpConstant(constants, 0));
559
560 __ Fcmp(input, double_temp1);
561 __ Fccmp(input, double_temp2, NoFlag, hi);
562 // At this point, the condition flags can be in one of five states:
563 // NZCV
564 // 1000 -708.4 < input < 709.8 result = exp(input)
565 // 0110 input == 709.8 result = +infinity
566 // 0010 input > 709.8 result = +infinity
567 // 0011 input is NaN result = input
568 // 0000 input <= -708.4 result = +0.0
569
570 // Continue the common case first. 'mi' tests N == 1.
571 __ B(&result_is_finite_non_zero, mi);
572
573 // TODO(jbramley): Consider adding a +infinity register for ARM64.
574 __ Ldr(double_temp2, ExpConstant(constants, 2)); // Synthesize +infinity.
575
576 // Select between +0.0 and +infinity. 'lo' tests C == 0.
577 __ Fcsel(result, fp_zero, double_temp2, lo);
578 // Select between {+0.0 or +infinity} and input. 'vc' tests V == 0.
579 __ Fcsel(result, result, input, vc);
580 __ B(&done);
581
582 // The rest is magic, as described in InitializeMathExpData().
583 __ Bind(&result_is_finite_non_zero);
584
585 // Assert that we can load offset 3 and offset 4 with a single ldp.
586 DCHECK(kDRegSize == (ExpConstant(constants, 4).offset() -
587 ExpConstant(constants, 3).offset()));
588 __ Ldp(double_temp1, double_temp3, ExpConstant(constants, 3));
589 __ Fmadd(double_temp1, double_temp1, input, double_temp3);
590 __ Fmov(temp2.W(), double_temp1.S());
591 __ Fsub(double_temp1, double_temp1, double_temp3);
592
593 // Assert that we can load offset 5 and offset 6 with a single ldp.
594 DCHECK(kDRegSize == (ExpConstant(constants, 6).offset() -
595 ExpConstant(constants, 5).offset()));
596 __ Ldp(double_temp2, double_temp3, ExpConstant(constants, 5));
597 // TODO(jbramley): Consider using Fnmsub here.
598 __ Fmul(double_temp1, double_temp1, double_temp2);
599 __ Fsub(double_temp1, double_temp1, input);
600
601 __ Fmul(double_temp2, double_temp1, double_temp1);
602 __ Fsub(double_temp3, double_temp3, double_temp1);
603 __ Fmul(double_temp3, double_temp3, double_temp2);
604
605 __ Mov(temp1.W(), Operand(temp2.W(), LSR, 11));
606
607 __ Ldr(double_temp2, ExpConstant(constants, 7));
608 // TODO(jbramley): Consider using Fnmsub here.
609 __ Fmul(double_temp3, double_temp3, double_temp2);
610 __ Fsub(double_temp3, double_temp3, double_temp1);
611
612 // The 8th constant is 1.0, so use an immediate move rather than a load.
613 // We can't generate a runtime assertion here as we would need to call Abort
614 // in the runtime and we don't have an Isolate when we generate this code.
615 __ Fmov(double_temp2, 1.0);
616 __ Fadd(double_temp3, double_temp3, double_temp2);
617
618 __ And(temp2, temp2, 0x7ff);
619 __ Add(temp1, temp1, 0x3ff);
620
621 // Do the final table lookup.
622 __ Mov(temp3, ExternalReference::math_exp_log_table());
623
624 __ Add(temp3, temp3, Operand(temp2, LSL, kDRegSizeLog2));
625 __ Ldp(temp2.W(), temp3.W(), MemOperand(temp3));
626 __ Orr(temp1.W(), temp3.W(), Operand(temp1.W(), LSL, 20));
627 __ Bfi(temp2, temp1, 32, 32);
628 __ Fmov(double_temp1, temp2);
629
630 __ Fmul(result, double_temp3, double_temp1);
631
632 __ Bind(&done);
633 }
634
635 #undef __
636
637 } // namespace internal
638 } // namespace v8
639
640 #endif // V8_TARGET_ARCH_ARM64
641