• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_IA32
6 
7 #include "src/codegen.h"
8 #include "src/deoptimizer.h"
9 #include "src/full-codegen/full-codegen.h"
10 #include "src/ia32/frames-ia32.h"
11 #include "src/register-configuration.h"
12 #include "src/safepoint-table.h"
13 
14 namespace v8 {
15 namespace internal {
16 
17 const int Deoptimizer::table_entry_size_ = 10;
18 
19 
patch_size()20 int Deoptimizer::patch_size() {
21   return Assembler::kCallInstructionLength;
22 }
23 
24 
EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code)25 void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
26   Isolate* isolate = code->GetIsolate();
27   HandleScope scope(isolate);
28 
29   // Compute the size of relocation information needed for the code
30   // patching in Deoptimizer::PatchCodeForDeoptimization below.
31   int min_reloc_size = 0;
32   int prev_pc_offset = 0;
33   DeoptimizationInputData* deopt_data =
34       DeoptimizationInputData::cast(code->deoptimization_data());
35   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
36     int pc_offset = deopt_data->Pc(i)->value();
37     if (pc_offset == -1) continue;
38     DCHECK_GE(pc_offset, prev_pc_offset);
39     int pc_delta = pc_offset - prev_pc_offset;
40     // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
41     // if encodable with small pc delta encoding and up to 6 bytes
42     // otherwise.
43     if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
44       min_reloc_size += 2;
45     } else {
46       min_reloc_size += 6;
47     }
48     prev_pc_offset = pc_offset;
49   }
50 
51   // If the relocation information is not big enough we create a new
52   // relocation info object that is padded with comments to make it
53   // big enough for lazy doptimization.
54   int reloc_length = code->relocation_info()->length();
55   if (min_reloc_size > reloc_length) {
56     int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
57     // Padding needed.
58     int min_padding = min_reloc_size - reloc_length;
59     // Number of comments needed to take up at least that much space.
60     int additional_comments =
61         (min_padding + comment_reloc_size - 1) / comment_reloc_size;
62     // Actual padding size.
63     int padding = additional_comments * comment_reloc_size;
64     // Allocate new relocation info and copy old relocation to the end
65     // of the new relocation info array because relocation info is
66     // written and read backwards.
67     Factory* factory = isolate->factory();
68     Handle<ByteArray> new_reloc =
69         factory->NewByteArray(reloc_length + padding, TENURED);
70     MemCopy(new_reloc->GetDataStartAddress() + padding,
71             code->relocation_info()->GetDataStartAddress(), reloc_length);
72     // Create a relocation writer to write the comments in the padding
73     // space. Use position 0 for everything to ensure short encoding.
74     RelocInfoWriter reloc_info_writer(
75         new_reloc->GetDataStartAddress() + padding, 0);
76     intptr_t comment_string
77         = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
78     RelocInfo rinfo(isolate, 0, RelocInfo::COMMENT, comment_string, NULL);
79     for (int i = 0; i < additional_comments; ++i) {
80 #ifdef DEBUG
81       byte* pos_before = reloc_info_writer.pos();
82 #endif
83       reloc_info_writer.Write(&rinfo);
84       DCHECK(RelocInfo::kMinRelocCommentSize ==
85              pos_before - reloc_info_writer.pos());
86     }
87     // Replace relocation information on the code object.
88     code->set_relocation_info(*new_reloc);
89   }
90 }
91 
92 
PatchCodeForDeoptimization(Isolate * isolate,Code * code)93 void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
94   Address code_start_address = code->instruction_start();
95 
96   if (FLAG_zap_code_space) {
97     // Fail hard and early if we enter this code object again.
98     byte* pointer = code->FindCodeAgeSequence();
99     if (pointer != NULL) {
100       pointer += kNoCodeAgeSequenceLength;
101     } else {
102       pointer = code->instruction_start();
103     }
104     CodePatcher patcher(isolate, pointer, 1);
105     patcher.masm()->int3();
106 
107     DeoptimizationInputData* data =
108         DeoptimizationInputData::cast(code->deoptimization_data());
109     int osr_offset = data->OsrPcOffset()->value();
110     if (osr_offset > 0) {
111       CodePatcher osr_patcher(isolate, code->instruction_start() + osr_offset,
112                               1);
113       osr_patcher.masm()->int3();
114     }
115   }
116 
117   // We will overwrite the code's relocation info in-place. Relocation info
118   // is written backward. The relocation info is the payload of a byte
119   // array.  Later on we will slide this to the start of the byte array and
120   // create a filler object in the remaining space.
121   ByteArray* reloc_info = code->relocation_info();
122   Address reloc_end_address = reloc_info->address() + reloc_info->Size();
123   RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);
124 
125   // Since the call is a relative encoding, write new
126   // reloc info.  We do not need any of the existing reloc info because the
127   // existing code will not be used again (we zap it in debug builds).
128   //
129   // Emit call to lazy deoptimization at all lazy deopt points.
130   DeoptimizationInputData* deopt_data =
131       DeoptimizationInputData::cast(code->deoptimization_data());
132 #ifdef DEBUG
133   Address prev_call_address = NULL;
134 #endif
135   // For each LLazyBailout instruction insert a call to the corresponding
136   // deoptimization entry.
137   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
138     if (deopt_data->Pc(i)->value() == -1) continue;
139     // Patch lazy deoptimization entry.
140     Address call_address = code_start_address + deopt_data->Pc(i)->value();
141     CodePatcher patcher(isolate, call_address, patch_size());
142     Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
143     patcher.masm()->call(deopt_entry, RelocInfo::NONE32);
144     // We use RUNTIME_ENTRY for deoptimization bailouts.
145     RelocInfo rinfo(isolate, call_address + 1,  // 1 after the call opcode.
146                     RelocInfo::RUNTIME_ENTRY,
147                     reinterpret_cast<intptr_t>(deopt_entry), NULL);
148     reloc_info_writer.Write(&rinfo);
149     DCHECK_GE(reloc_info_writer.pos(),
150               reloc_info->address() + ByteArray::kHeaderSize);
151     DCHECK(prev_call_address == NULL ||
152            call_address >= prev_call_address + patch_size());
153     DCHECK(call_address + patch_size() <= code->instruction_end());
154 #ifdef DEBUG
155     prev_call_address = call_address;
156 #endif
157   }
158 
159   // Move the relocation info to the beginning of the byte array.
160   const int new_reloc_length = reloc_end_address - reloc_info_writer.pos();
161   MemMove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_length);
162 
163   // Right trim the relocation info to free up remaining space.
164   const int delta = reloc_info->length() - new_reloc_length;
165   if (delta > 0) {
166     isolate->heap()->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(
167         reloc_info, delta);
168   }
169 }
170 
171 
FillInputFrame(Address tos,JavaScriptFrame * frame)172 void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) {
173   // Set the register values. The values are not important as there are no
174   // callee saved registers in JavaScript frames, so all registers are
175   // spilled. Registers ebp and esp are set to the correct values though.
176 
177   for (int i = 0; i < Register::kNumRegisters; i++) {
178     input_->SetRegister(i, i * 4);
179   }
180   input_->SetRegister(esp.code(), reinterpret_cast<intptr_t>(frame->sp()));
181   input_->SetRegister(ebp.code(), reinterpret_cast<intptr_t>(frame->fp()));
182   for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
183     input_->SetDoubleRegister(i, 0.0);
184   }
185 
186   // Fill the frame content from the actual data on the frame.
187   for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) {
188     input_->SetFrameSlot(i, Memory::uint32_at(tos + i));
189   }
190 }
191 
192 
SetPlatformCompiledStubRegisters(FrameDescription * output_frame,CodeStubDescriptor * descriptor)193 void Deoptimizer::SetPlatformCompiledStubRegisters(
194     FrameDescription* output_frame, CodeStubDescriptor* descriptor) {
195   intptr_t handler =
196       reinterpret_cast<intptr_t>(descriptor->deoptimization_handler());
197   int params = descriptor->GetHandlerParameterCount();
198   output_frame->SetRegister(eax.code(), params);
199   output_frame->SetRegister(ebx.code(), handler);
200 }
201 
202 
CopyDoubleRegisters(FrameDescription * output_frame)203 void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
204   for (int i = 0; i < XMMRegister::kMaxNumRegisters; ++i) {
205     double double_value = input_->GetDoubleRegister(i);
206     output_frame->SetDoubleRegister(i, double_value);
207   }
208 }
209 
210 
HasAlignmentPadding(JSFunction * function)211 bool Deoptimizer::HasAlignmentPadding(JSFunction* function) {
212   int parameter_count =
213       function->shared()->internal_formal_parameter_count() + 1;
214   unsigned input_frame_size = input_->GetFrameSize();
215   unsigned alignment_state_offset =
216       input_frame_size - parameter_count * kPointerSize -
217       StandardFrameConstants::kFixedFrameSize -
218       kPointerSize;
219   DCHECK(JavaScriptFrameConstants::kDynamicAlignmentStateOffset ==
220       JavaScriptFrameConstants::kLocal0Offset);
221   int32_t alignment_state = input_->GetFrameSlot(alignment_state_offset);
222   return (alignment_state == kAlignmentPaddingPushed);
223 }
224 
225 
226 #define __ masm()->
227 
Generate()228 void Deoptimizer::TableEntryGenerator::Generate() {
229   GeneratePrologue();
230 
231   // Save all general purpose registers before messing with them.
232   const int kNumberOfRegisters = Register::kNumRegisters;
233 
234   const int kDoubleRegsSize = kDoubleSize * XMMRegister::kMaxNumRegisters;
235   __ sub(esp, Immediate(kDoubleRegsSize));
236   const RegisterConfiguration* config =
237       RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT);
238   for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
239     int code = config->GetAllocatableDoubleCode(i);
240     XMMRegister xmm_reg = XMMRegister::from_code(code);
241     int offset = code * kDoubleSize;
242     __ movsd(Operand(esp, offset), xmm_reg);
243   }
244 
245   __ pushad();
246 
247   ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
248   __ mov(Operand::StaticVariable(c_entry_fp_address), ebp);
249 
250   const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize +
251                                       kDoubleRegsSize;
252 
253   // Get the bailout id from the stack.
254   __ mov(ebx, Operand(esp, kSavedRegistersAreaSize));
255 
256   // Get the address of the location in the code object
257   // and compute the fp-to-sp delta in register edx.
258   __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
259   __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));
260 
261   __ sub(edx, ebp);
262   __ neg(edx);
263 
264   // Allocate a new deoptimizer object.
265   __ PrepareCallCFunction(6, eax);
266   __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
267   __ mov(Operand(esp, 0 * kPointerSize), eax);  // Function.
268   __ mov(Operand(esp, 1 * kPointerSize), Immediate(type()));  // Bailout type.
269   __ mov(Operand(esp, 2 * kPointerSize), ebx);  // Bailout id.
270   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Code address or 0.
271   __ mov(Operand(esp, 4 * kPointerSize), edx);  // Fp-to-sp delta.
272   __ mov(Operand(esp, 5 * kPointerSize),
273          Immediate(ExternalReference::isolate_address(isolate())));
274   {
275     AllowExternalCallThatCantCauseGC scope(masm());
276     __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
277   }
278 
279   // Preserve deoptimizer object in register eax and get the input
280   // frame descriptor pointer.
281   __ mov(ebx, Operand(eax, Deoptimizer::input_offset()));
282 
283   // Fill in the input registers.
284   for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
285     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
286     __ pop(Operand(ebx, offset));
287   }
288 
289   int double_regs_offset = FrameDescription::double_registers_offset();
290   // Fill in the double input registers.
291   for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
292     int code = config->GetAllocatableDoubleCode(i);
293     int dst_offset = code * kDoubleSize + double_regs_offset;
294     int src_offset = code * kDoubleSize;
295     __ movsd(xmm0, Operand(esp, src_offset));
296     __ movsd(Operand(ebx, dst_offset), xmm0);
297   }
298 
299   // Clear FPU all exceptions.
300   // TODO(ulan): Find out why the TOP register is not zero here in some cases,
301   // and check that the generated code never deoptimizes with unbalanced stack.
302   __ fnclex();
303 
304   // Remove the bailout id, return address and the double registers.
305   __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize));
306 
307   // Compute a pointer to the unwinding limit in register ecx; that is
308   // the first stack slot not part of the input frame.
309   __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
310   __ add(ecx, esp);
311 
312   // Unwind the stack down to - but not including - the unwinding
313   // limit and copy the contents of the activation frame to the input
314   // frame description.
315   __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
316   Label pop_loop_header;
317   __ jmp(&pop_loop_header);
318   Label pop_loop;
319   __ bind(&pop_loop);
320   __ pop(Operand(edx, 0));
321   __ add(edx, Immediate(sizeof(uint32_t)));
322   __ bind(&pop_loop_header);
323   __ cmp(ecx, esp);
324   __ j(not_equal, &pop_loop);
325 
326   // Compute the output frame in the deoptimizer.
327   __ push(eax);
328   __ PrepareCallCFunction(1, ebx);
329   __ mov(Operand(esp, 0 * kPointerSize), eax);
330   {
331     AllowExternalCallThatCantCauseGC scope(masm());
332     __ CallCFunction(
333         ExternalReference::compute_output_frames_function(isolate()), 1);
334   }
335   __ pop(eax);
336 
337   // If frame was dynamically aligned, pop padding.
338   Label no_padding;
339   __ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()),
340          Immediate(0));
341   __ j(equal, &no_padding);
342   __ pop(ecx);
343   if (FLAG_debug_code) {
344     __ cmp(ecx, Immediate(kAlignmentZapValue));
345     __ Assert(equal, kAlignmentMarkerExpected);
346   }
347   __ bind(&no_padding);
348 
349   // Replace the current frame with the output frames.
350   Label outer_push_loop, inner_push_loop,
351       outer_loop_header, inner_loop_header;
352   // Outer loop state: eax = current FrameDescription**, edx = one past the
353   // last FrameDescription**.
354   __ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
355   __ mov(eax, Operand(eax, Deoptimizer::output_offset()));
356   __ lea(edx, Operand(eax, edx, times_4, 0));
357   __ jmp(&outer_loop_header);
358   __ bind(&outer_push_loop);
359   // Inner loop state: ebx = current FrameDescription*, ecx = loop index.
360   __ mov(ebx, Operand(eax, 0));
361   __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
362   __ jmp(&inner_loop_header);
363   __ bind(&inner_push_loop);
364   __ sub(ecx, Immediate(sizeof(uint32_t)));
365   __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
366   __ bind(&inner_loop_header);
367   __ test(ecx, ecx);
368   __ j(not_zero, &inner_push_loop);
369   __ add(eax, Immediate(kPointerSize));
370   __ bind(&outer_loop_header);
371   __ cmp(eax, edx);
372   __ j(below, &outer_push_loop);
373 
374   // In case of a failed STUB, we have to restore the XMM registers.
375   for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
376     int code = config->GetAllocatableDoubleCode(i);
377     XMMRegister xmm_reg = XMMRegister::from_code(code);
378     int src_offset = code * kDoubleSize + double_regs_offset;
379     __ movsd(xmm_reg, Operand(ebx, src_offset));
380   }
381 
382   // Push state, pc, and continuation from the last output frame.
383   __ push(Operand(ebx, FrameDescription::state_offset()));
384   __ push(Operand(ebx, FrameDescription::pc_offset()));
385   __ push(Operand(ebx, FrameDescription::continuation_offset()));
386 
387 
388   // Push the registers from the last output frame.
389   for (int i = 0; i < kNumberOfRegisters; i++) {
390     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
391     __ push(Operand(ebx, offset));
392   }
393 
394   // Restore the registers from the stack.
395   __ popad();
396 
397   // Return to the continuation point.
398   __ ret(0);
399 }
400 
401 
GeneratePrologue()402 void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
403   // Create a sequence of deoptimization entries.
404   Label done;
405   for (int i = 0; i < count(); i++) {
406     int start = masm()->pc_offset();
407     USE(start);
408     __ push_imm32(i);
409     __ jmp(&done);
410     DCHECK(masm()->pc_offset() - start == table_entry_size_);
411   }
412   __ bind(&done);
413 }
414 
415 
SetCallerPc(unsigned offset,intptr_t value)416 void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
417   SetFrameSlot(offset, value);
418 }
419 
420 
SetCallerFp(unsigned offset,intptr_t value)421 void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
422   SetFrameSlot(offset, value);
423 }
424 
425 
SetCallerConstantPool(unsigned offset,intptr_t value)426 void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
427   // No embedded constant pool support.
428   UNREACHABLE();
429 }
430 
431 
432 #undef __
433 
434 
435 }  // namespace internal
436 }  // namespace v8
437 
438 #endif  // V8_TARGET_ARCH_IA32
439