1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_IA32
6
7 #include "src/codegen.h"
8 #include "src/deoptimizer.h"
9 #include "src/full-codegen/full-codegen.h"
10 #include "src/ia32/frames-ia32.h"
11 #include "src/register-configuration.h"
12 #include "src/safepoint-table.h"
13
14 namespace v8 {
15 namespace internal {
16
17 const int Deoptimizer::table_entry_size_ = 10;
18
19
patch_size()20 int Deoptimizer::patch_size() {
21 return Assembler::kCallInstructionLength;
22 }
23
24
EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code)25 void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
26 Isolate* isolate = code->GetIsolate();
27 HandleScope scope(isolate);
28
29 // Compute the size of relocation information needed for the code
30 // patching in Deoptimizer::PatchCodeForDeoptimization below.
31 int min_reloc_size = 0;
32 int prev_pc_offset = 0;
33 DeoptimizationInputData* deopt_data =
34 DeoptimizationInputData::cast(code->deoptimization_data());
35 for (int i = 0; i < deopt_data->DeoptCount(); i++) {
36 int pc_offset = deopt_data->Pc(i)->value();
37 if (pc_offset == -1) continue;
38 DCHECK_GE(pc_offset, prev_pc_offset);
39 int pc_delta = pc_offset - prev_pc_offset;
40 // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
41 // if encodable with small pc delta encoding and up to 6 bytes
42 // otherwise.
43 if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
44 min_reloc_size += 2;
45 } else {
46 min_reloc_size += 6;
47 }
48 prev_pc_offset = pc_offset;
49 }
50
51 // If the relocation information is not big enough we create a new
52 // relocation info object that is padded with comments to make it
53 // big enough for lazy doptimization.
54 int reloc_length = code->relocation_info()->length();
55 if (min_reloc_size > reloc_length) {
56 int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
57 // Padding needed.
58 int min_padding = min_reloc_size - reloc_length;
59 // Number of comments needed to take up at least that much space.
60 int additional_comments =
61 (min_padding + comment_reloc_size - 1) / comment_reloc_size;
62 // Actual padding size.
63 int padding = additional_comments * comment_reloc_size;
64 // Allocate new relocation info and copy old relocation to the end
65 // of the new relocation info array because relocation info is
66 // written and read backwards.
67 Factory* factory = isolate->factory();
68 Handle<ByteArray> new_reloc =
69 factory->NewByteArray(reloc_length + padding, TENURED);
70 MemCopy(new_reloc->GetDataStartAddress() + padding,
71 code->relocation_info()->GetDataStartAddress(), reloc_length);
72 // Create a relocation writer to write the comments in the padding
73 // space. Use position 0 for everything to ensure short encoding.
74 RelocInfoWriter reloc_info_writer(
75 new_reloc->GetDataStartAddress() + padding, 0);
76 intptr_t comment_string
77 = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
78 RelocInfo rinfo(isolate, 0, RelocInfo::COMMENT, comment_string, NULL);
79 for (int i = 0; i < additional_comments; ++i) {
80 #ifdef DEBUG
81 byte* pos_before = reloc_info_writer.pos();
82 #endif
83 reloc_info_writer.Write(&rinfo);
84 DCHECK(RelocInfo::kMinRelocCommentSize ==
85 pos_before - reloc_info_writer.pos());
86 }
87 // Replace relocation information on the code object.
88 code->set_relocation_info(*new_reloc);
89 }
90 }
91
92
PatchCodeForDeoptimization(Isolate * isolate,Code * code)93 void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
94 Address code_start_address = code->instruction_start();
95
96 if (FLAG_zap_code_space) {
97 // Fail hard and early if we enter this code object again.
98 byte* pointer = code->FindCodeAgeSequence();
99 if (pointer != NULL) {
100 pointer += kNoCodeAgeSequenceLength;
101 } else {
102 pointer = code->instruction_start();
103 }
104 CodePatcher patcher(isolate, pointer, 1);
105 patcher.masm()->int3();
106
107 DeoptimizationInputData* data =
108 DeoptimizationInputData::cast(code->deoptimization_data());
109 int osr_offset = data->OsrPcOffset()->value();
110 if (osr_offset > 0) {
111 CodePatcher osr_patcher(isolate, code->instruction_start() + osr_offset,
112 1);
113 osr_patcher.masm()->int3();
114 }
115 }
116
117 // We will overwrite the code's relocation info in-place. Relocation info
118 // is written backward. The relocation info is the payload of a byte
119 // array. Later on we will slide this to the start of the byte array and
120 // create a filler object in the remaining space.
121 ByteArray* reloc_info = code->relocation_info();
122 Address reloc_end_address = reloc_info->address() + reloc_info->Size();
123 RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);
124
125 // Since the call is a relative encoding, write new
126 // reloc info. We do not need any of the existing reloc info because the
127 // existing code will not be used again (we zap it in debug builds).
128 //
129 // Emit call to lazy deoptimization at all lazy deopt points.
130 DeoptimizationInputData* deopt_data =
131 DeoptimizationInputData::cast(code->deoptimization_data());
132 #ifdef DEBUG
133 Address prev_call_address = NULL;
134 #endif
135 // For each LLazyBailout instruction insert a call to the corresponding
136 // deoptimization entry.
137 for (int i = 0; i < deopt_data->DeoptCount(); i++) {
138 if (deopt_data->Pc(i)->value() == -1) continue;
139 // Patch lazy deoptimization entry.
140 Address call_address = code_start_address + deopt_data->Pc(i)->value();
141 CodePatcher patcher(isolate, call_address, patch_size());
142 Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
143 patcher.masm()->call(deopt_entry, RelocInfo::NONE32);
144 // We use RUNTIME_ENTRY for deoptimization bailouts.
145 RelocInfo rinfo(isolate, call_address + 1, // 1 after the call opcode.
146 RelocInfo::RUNTIME_ENTRY,
147 reinterpret_cast<intptr_t>(deopt_entry), NULL);
148 reloc_info_writer.Write(&rinfo);
149 DCHECK_GE(reloc_info_writer.pos(),
150 reloc_info->address() + ByteArray::kHeaderSize);
151 DCHECK(prev_call_address == NULL ||
152 call_address >= prev_call_address + patch_size());
153 DCHECK(call_address + patch_size() <= code->instruction_end());
154 #ifdef DEBUG
155 prev_call_address = call_address;
156 #endif
157 }
158
159 // Move the relocation info to the beginning of the byte array.
160 const int new_reloc_length = reloc_end_address - reloc_info_writer.pos();
161 MemMove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_length);
162
163 // Right trim the relocation info to free up remaining space.
164 const int delta = reloc_info->length() - new_reloc_length;
165 if (delta > 0) {
166 isolate->heap()->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(
167 reloc_info, delta);
168 }
169 }
170
171
FillInputFrame(Address tos,JavaScriptFrame * frame)172 void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) {
173 // Set the register values. The values are not important as there are no
174 // callee saved registers in JavaScript frames, so all registers are
175 // spilled. Registers ebp and esp are set to the correct values though.
176
177 for (int i = 0; i < Register::kNumRegisters; i++) {
178 input_->SetRegister(i, i * 4);
179 }
180 input_->SetRegister(esp.code(), reinterpret_cast<intptr_t>(frame->sp()));
181 input_->SetRegister(ebp.code(), reinterpret_cast<intptr_t>(frame->fp()));
182 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
183 input_->SetDoubleRegister(i, 0.0);
184 }
185
186 // Fill the frame content from the actual data on the frame.
187 for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) {
188 input_->SetFrameSlot(i, Memory::uint32_at(tos + i));
189 }
190 }
191
192
SetPlatformCompiledStubRegisters(FrameDescription * output_frame,CodeStubDescriptor * descriptor)193 void Deoptimizer::SetPlatformCompiledStubRegisters(
194 FrameDescription* output_frame, CodeStubDescriptor* descriptor) {
195 intptr_t handler =
196 reinterpret_cast<intptr_t>(descriptor->deoptimization_handler());
197 int params = descriptor->GetHandlerParameterCount();
198 output_frame->SetRegister(eax.code(), params);
199 output_frame->SetRegister(ebx.code(), handler);
200 }
201
202
CopyDoubleRegisters(FrameDescription * output_frame)203 void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
204 for (int i = 0; i < XMMRegister::kMaxNumRegisters; ++i) {
205 double double_value = input_->GetDoubleRegister(i);
206 output_frame->SetDoubleRegister(i, double_value);
207 }
208 }
209
210
HasAlignmentPadding(JSFunction * function)211 bool Deoptimizer::HasAlignmentPadding(JSFunction* function) {
212 int parameter_count =
213 function->shared()->internal_formal_parameter_count() + 1;
214 unsigned input_frame_size = input_->GetFrameSize();
215 unsigned alignment_state_offset =
216 input_frame_size - parameter_count * kPointerSize -
217 StandardFrameConstants::kFixedFrameSize -
218 kPointerSize;
219 DCHECK(JavaScriptFrameConstants::kDynamicAlignmentStateOffset ==
220 JavaScriptFrameConstants::kLocal0Offset);
221 int32_t alignment_state = input_->GetFrameSlot(alignment_state_offset);
222 return (alignment_state == kAlignmentPaddingPushed);
223 }
224
225
226 #define __ masm()->
227
Generate()228 void Deoptimizer::TableEntryGenerator::Generate() {
229 GeneratePrologue();
230
231 // Save all general purpose registers before messing with them.
232 const int kNumberOfRegisters = Register::kNumRegisters;
233
234 const int kDoubleRegsSize = kDoubleSize * XMMRegister::kMaxNumRegisters;
235 __ sub(esp, Immediate(kDoubleRegsSize));
236 const RegisterConfiguration* config =
237 RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT);
238 for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
239 int code = config->GetAllocatableDoubleCode(i);
240 XMMRegister xmm_reg = XMMRegister::from_code(code);
241 int offset = code * kDoubleSize;
242 __ movsd(Operand(esp, offset), xmm_reg);
243 }
244
245 __ pushad();
246
247 ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
248 __ mov(Operand::StaticVariable(c_entry_fp_address), ebp);
249
250 const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize +
251 kDoubleRegsSize;
252
253 // Get the bailout id from the stack.
254 __ mov(ebx, Operand(esp, kSavedRegistersAreaSize));
255
256 // Get the address of the location in the code object
257 // and compute the fp-to-sp delta in register edx.
258 __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
259 __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));
260
261 __ sub(edx, ebp);
262 __ neg(edx);
263
264 // Allocate a new deoptimizer object.
265 __ PrepareCallCFunction(6, eax);
266 __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
267 __ mov(Operand(esp, 0 * kPointerSize), eax); // Function.
268 __ mov(Operand(esp, 1 * kPointerSize), Immediate(type())); // Bailout type.
269 __ mov(Operand(esp, 2 * kPointerSize), ebx); // Bailout id.
270 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Code address or 0.
271 __ mov(Operand(esp, 4 * kPointerSize), edx); // Fp-to-sp delta.
272 __ mov(Operand(esp, 5 * kPointerSize),
273 Immediate(ExternalReference::isolate_address(isolate())));
274 {
275 AllowExternalCallThatCantCauseGC scope(masm());
276 __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
277 }
278
279 // Preserve deoptimizer object in register eax and get the input
280 // frame descriptor pointer.
281 __ mov(ebx, Operand(eax, Deoptimizer::input_offset()));
282
283 // Fill in the input registers.
284 for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
285 int offset = (i * kPointerSize) + FrameDescription::registers_offset();
286 __ pop(Operand(ebx, offset));
287 }
288
289 int double_regs_offset = FrameDescription::double_registers_offset();
290 // Fill in the double input registers.
291 for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
292 int code = config->GetAllocatableDoubleCode(i);
293 int dst_offset = code * kDoubleSize + double_regs_offset;
294 int src_offset = code * kDoubleSize;
295 __ movsd(xmm0, Operand(esp, src_offset));
296 __ movsd(Operand(ebx, dst_offset), xmm0);
297 }
298
299 // Clear FPU all exceptions.
300 // TODO(ulan): Find out why the TOP register is not zero here in some cases,
301 // and check that the generated code never deoptimizes with unbalanced stack.
302 __ fnclex();
303
304 // Remove the bailout id, return address and the double registers.
305 __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize));
306
307 // Compute a pointer to the unwinding limit in register ecx; that is
308 // the first stack slot not part of the input frame.
309 __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
310 __ add(ecx, esp);
311
312 // Unwind the stack down to - but not including - the unwinding
313 // limit and copy the contents of the activation frame to the input
314 // frame description.
315 __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
316 Label pop_loop_header;
317 __ jmp(&pop_loop_header);
318 Label pop_loop;
319 __ bind(&pop_loop);
320 __ pop(Operand(edx, 0));
321 __ add(edx, Immediate(sizeof(uint32_t)));
322 __ bind(&pop_loop_header);
323 __ cmp(ecx, esp);
324 __ j(not_equal, &pop_loop);
325
326 // Compute the output frame in the deoptimizer.
327 __ push(eax);
328 __ PrepareCallCFunction(1, ebx);
329 __ mov(Operand(esp, 0 * kPointerSize), eax);
330 {
331 AllowExternalCallThatCantCauseGC scope(masm());
332 __ CallCFunction(
333 ExternalReference::compute_output_frames_function(isolate()), 1);
334 }
335 __ pop(eax);
336
337 // If frame was dynamically aligned, pop padding.
338 Label no_padding;
339 __ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()),
340 Immediate(0));
341 __ j(equal, &no_padding);
342 __ pop(ecx);
343 if (FLAG_debug_code) {
344 __ cmp(ecx, Immediate(kAlignmentZapValue));
345 __ Assert(equal, kAlignmentMarkerExpected);
346 }
347 __ bind(&no_padding);
348
349 // Replace the current frame with the output frames.
350 Label outer_push_loop, inner_push_loop,
351 outer_loop_header, inner_loop_header;
352 // Outer loop state: eax = current FrameDescription**, edx = one past the
353 // last FrameDescription**.
354 __ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
355 __ mov(eax, Operand(eax, Deoptimizer::output_offset()));
356 __ lea(edx, Operand(eax, edx, times_4, 0));
357 __ jmp(&outer_loop_header);
358 __ bind(&outer_push_loop);
359 // Inner loop state: ebx = current FrameDescription*, ecx = loop index.
360 __ mov(ebx, Operand(eax, 0));
361 __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
362 __ jmp(&inner_loop_header);
363 __ bind(&inner_push_loop);
364 __ sub(ecx, Immediate(sizeof(uint32_t)));
365 __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
366 __ bind(&inner_loop_header);
367 __ test(ecx, ecx);
368 __ j(not_zero, &inner_push_loop);
369 __ add(eax, Immediate(kPointerSize));
370 __ bind(&outer_loop_header);
371 __ cmp(eax, edx);
372 __ j(below, &outer_push_loop);
373
374 // In case of a failed STUB, we have to restore the XMM registers.
375 for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
376 int code = config->GetAllocatableDoubleCode(i);
377 XMMRegister xmm_reg = XMMRegister::from_code(code);
378 int src_offset = code * kDoubleSize + double_regs_offset;
379 __ movsd(xmm_reg, Operand(ebx, src_offset));
380 }
381
382 // Push state, pc, and continuation from the last output frame.
383 __ push(Operand(ebx, FrameDescription::state_offset()));
384 __ push(Operand(ebx, FrameDescription::pc_offset()));
385 __ push(Operand(ebx, FrameDescription::continuation_offset()));
386
387
388 // Push the registers from the last output frame.
389 for (int i = 0; i < kNumberOfRegisters; i++) {
390 int offset = (i * kPointerSize) + FrameDescription::registers_offset();
391 __ push(Operand(ebx, offset));
392 }
393
394 // Restore the registers from the stack.
395 __ popad();
396
397 // Return to the continuation point.
398 __ ret(0);
399 }
400
401
GeneratePrologue()402 void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
403 // Create a sequence of deoptimization entries.
404 Label done;
405 for (int i = 0; i < count(); i++) {
406 int start = masm()->pc_offset();
407 USE(start);
408 __ push_imm32(i);
409 __ jmp(&done);
410 DCHECK(masm()->pc_offset() - start == table_entry_size_);
411 }
412 __ bind(&done);
413 }
414
415
SetCallerPc(unsigned offset,intptr_t value)416 void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
417 SetFrameSlot(offset, value);
418 }
419
420
SetCallerFp(unsigned offset,intptr_t value)421 void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
422 SetFrameSlot(offset, value);
423 }
424
425
SetCallerConstantPool(unsigned offset,intptr_t value)426 void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
427 // No embedded constant pool support.
428 UNREACHABLE();
429 }
430
431
432 #undef __
433
434
435 } // namespace internal
436 } // namespace v8
437
438 #endif // V8_TARGET_ARCH_IA32
439