• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_MIPS64
6 
7 #include "src/bootstrapper.h"
8 #include "src/code-stubs.h"
9 #include "src/codegen.h"
10 #include "src/ic/handler-compiler.h"
11 #include "src/ic/ic.h"
12 #include "src/ic/stub-cache.h"
13 #include "src/isolate.h"
14 #include "src/mips64/code-stubs-mips64.h"
15 #include "src/regexp/jsregexp.h"
16 #include "src/regexp/regexp-macro-assembler.h"
17 #include "src/runtime/runtime.h"
18 
19 namespace v8 {
20 namespace internal {
21 
22 
InitializeArrayConstructorDescriptor(Isolate * isolate,CodeStubDescriptor * descriptor,int constant_stack_parameter_count)23 static void InitializeArrayConstructorDescriptor(
24     Isolate* isolate, CodeStubDescriptor* descriptor,
25     int constant_stack_parameter_count) {
26   Address deopt_handler = Runtime::FunctionForId(
27       Runtime::kArrayConstructor)->entry;
28 
29   if (constant_stack_parameter_count == 0) {
30     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
31                            JS_FUNCTION_STUB_MODE);
32   } else {
33     descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
34                            JS_FUNCTION_STUB_MODE);
35   }
36 }
37 
38 
InitializeInternalArrayConstructorDescriptor(Isolate * isolate,CodeStubDescriptor * descriptor,int constant_stack_parameter_count)39 static void InitializeInternalArrayConstructorDescriptor(
40     Isolate* isolate, CodeStubDescriptor* descriptor,
41     int constant_stack_parameter_count) {
42   Address deopt_handler = Runtime::FunctionForId(
43       Runtime::kInternalArrayConstructor)->entry;
44 
45   if (constant_stack_parameter_count == 0) {
46     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
47                            JS_FUNCTION_STUB_MODE);
48   } else {
49     descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
50                            JS_FUNCTION_STUB_MODE);
51   }
52 }
53 
54 
InitializeDescriptor(CodeStubDescriptor * descriptor)55 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
56     CodeStubDescriptor* descriptor) {
57   InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
58 }
59 
60 
InitializeDescriptor(CodeStubDescriptor * descriptor)61 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
62     CodeStubDescriptor* descriptor) {
63   InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
64 }
65 
66 
InitializeDescriptor(CodeStubDescriptor * descriptor)67 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
68     CodeStubDescriptor* descriptor) {
69   InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
70 }
71 
72 
InitializeDescriptor(CodeStubDescriptor * descriptor)73 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
74     CodeStubDescriptor* descriptor) {
75   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
76 }
77 
78 
InitializeDescriptor(CodeStubDescriptor * descriptor)79 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
80     CodeStubDescriptor* descriptor) {
81   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
82 }
83 
84 
InitializeDescriptor(CodeStubDescriptor * descriptor)85 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
86     CodeStubDescriptor* descriptor) {
87   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
88 }
89 
90 
91 #define __ ACCESS_MASM(masm)
92 
93 
94 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
95                                           Condition cc, Strength strength);
96 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
97                                     Register lhs,
98                                     Register rhs,
99                                     Label* rhs_not_nan,
100                                     Label* slow,
101                                     bool strict);
102 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
103                                            Register lhs,
104                                            Register rhs);
105 
106 
GenerateLightweightMiss(MacroAssembler * masm,ExternalReference miss)107 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
108                                                ExternalReference miss) {
109   // Update the static counter each time a new code stub is generated.
110   isolate()->counters()->code_stubs()->Increment();
111 
112   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
113   int param_count = descriptor.GetRegisterParameterCount();
114   {
115     // Call the runtime system in a fresh internal frame.
116     FrameScope scope(masm, StackFrame::INTERNAL);
117     DCHECK((param_count == 0) ||
118            a0.is(descriptor.GetRegisterParameter(param_count - 1)));
119     // Push arguments, adjust sp.
120     __ Dsubu(sp, sp, Operand(param_count * kPointerSize));
121     for (int i = 0; i < param_count; ++i) {
122       // Store argument to stack.
123       __ sd(descriptor.GetRegisterParameter(i),
124             MemOperand(sp, (param_count - 1 - i) * kPointerSize));
125     }
126     __ CallExternalReference(miss, param_count);
127   }
128 
129   __ Ret();
130 }
131 
132 
Generate(MacroAssembler * masm)133 void DoubleToIStub::Generate(MacroAssembler* masm) {
134   Label out_of_range, only_low, negate, done;
135   Register input_reg = source();
136   Register result_reg = destination();
137 
138   int double_offset = offset();
139   // Account for saved regs if input is sp.
140   if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
141 
142   Register scratch =
143       GetRegisterThatIsNotOneOf(input_reg, result_reg);
144   Register scratch2 =
145       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
146   Register scratch3 =
147       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2);
148   DoubleRegister double_scratch = kLithiumScratchDouble;
149 
150   __ Push(scratch, scratch2, scratch3);
151   if (!skip_fastpath()) {
152     // Load double input.
153     __ ldc1(double_scratch, MemOperand(input_reg, double_offset));
154 
155     // Clear cumulative exception flags and save the FCSR.
156     __ cfc1(scratch2, FCSR);
157     __ ctc1(zero_reg, FCSR);
158 
159     // Try a conversion to a signed integer.
160     __ Trunc_w_d(double_scratch, double_scratch);
161     // Move the converted value into the result register.
162     __ mfc1(scratch3, double_scratch);
163 
164     // Retrieve and restore the FCSR.
165     __ cfc1(scratch, FCSR);
166     __ ctc1(scratch2, FCSR);
167 
168     // Check for overflow and NaNs.
169     __ And(
170         scratch, scratch,
171         kFCSROverflowFlagMask | kFCSRUnderflowFlagMask
172            | kFCSRInvalidOpFlagMask);
173     // If we had no exceptions then set result_reg and we are done.
174     Label error;
175     __ Branch(&error, ne, scratch, Operand(zero_reg));
176     __ Move(result_reg, scratch3);
177     __ Branch(&done);
178     __ bind(&error);
179   }
180 
181   // Load the double value and perform a manual truncation.
182   Register input_high = scratch2;
183   Register input_low = scratch3;
184 
185   __ lw(input_low,
186         MemOperand(input_reg, double_offset + Register::kMantissaOffset));
187   __ lw(input_high,
188         MemOperand(input_reg, double_offset + Register::kExponentOffset));
189 
190   Label normal_exponent, restore_sign;
191   // Extract the biased exponent in result.
192   __ Ext(result_reg,
193          input_high,
194          HeapNumber::kExponentShift,
195          HeapNumber::kExponentBits);
196 
197   // Check for Infinity and NaNs, which should return 0.
198   __ Subu(scratch, result_reg, HeapNumber::kExponentMask);
199   __ Movz(result_reg, zero_reg, scratch);
200   __ Branch(&done, eq, scratch, Operand(zero_reg));
201 
202   // Express exponent as delta to (number of mantissa bits + 31).
203   __ Subu(result_reg,
204           result_reg,
205           Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
206 
207   // If the delta is strictly positive, all bits would be shifted away,
208   // which means that we can return 0.
209   __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
210   __ mov(result_reg, zero_reg);
211   __ Branch(&done);
212 
213   __ bind(&normal_exponent);
214   const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
215   // Calculate shift.
216   __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
217 
218   // Save the sign.
219   Register sign = result_reg;
220   result_reg = no_reg;
221   __ And(sign, input_high, Operand(HeapNumber::kSignMask));
222 
223   // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
224   // to check for this specific case.
225   Label high_shift_needed, high_shift_done;
226   __ Branch(&high_shift_needed, lt, scratch, Operand(32));
227   __ mov(input_high, zero_reg);
228   __ Branch(&high_shift_done);
229   __ bind(&high_shift_needed);
230 
231   // Set the implicit 1 before the mantissa part in input_high.
232   __ Or(input_high,
233         input_high,
234         Operand(1 << HeapNumber::kMantissaBitsInTopWord));
235   // Shift the mantissa bits to the correct position.
236   // We don't need to clear non-mantissa bits as they will be shifted away.
237   // If they weren't, it would mean that the answer is in the 32bit range.
238   __ sllv(input_high, input_high, scratch);
239 
240   __ bind(&high_shift_done);
241 
242   // Replace the shifted bits with bits from the lower mantissa word.
243   Label pos_shift, shift_done;
244   __ li(at, 32);
245   __ subu(scratch, at, scratch);
246   __ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
247 
248   // Negate scratch.
249   __ Subu(scratch, zero_reg, scratch);
250   __ sllv(input_low, input_low, scratch);
251   __ Branch(&shift_done);
252 
253   __ bind(&pos_shift);
254   __ srlv(input_low, input_low, scratch);
255 
256   __ bind(&shift_done);
257   __ Or(input_high, input_high, Operand(input_low));
258   // Restore sign if necessary.
259   __ mov(scratch, sign);
260   result_reg = sign;
261   sign = no_reg;
262   __ Subu(result_reg, zero_reg, input_high);
263   __ Movz(result_reg, input_high, scratch);
264 
265   __ bind(&done);
266 
267   __ Pop(scratch, scratch2, scratch3);
268   __ Ret();
269 }
270 
271 
272 // Handle the case where the lhs and rhs are the same object.
273 // Equality is almost reflexive (everything but NaN), so this is a test
274 // for "identity and not NaN".
EmitIdenticalObjectComparison(MacroAssembler * masm,Label * slow,Condition cc,Strength strength)275 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
276                                           Condition cc, Strength strength) {
277   Label not_identical;
278   Label heap_number, return_equal;
279   Register exp_mask_reg = t1;
280 
281   __ Branch(&not_identical, ne, a0, Operand(a1));
282 
283   __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
284 
285   // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
286   // so we do the second best thing - test it ourselves.
287   // They are both equal and they are not both Smis so both of them are not
288   // Smis. If it's not a heap number, then return equal.
289   __ GetObjectType(a0, t0, t0);
290   if (cc == less || cc == greater) {
291     // Call runtime on identical JSObjects.
292     __ Branch(slow, greater, t0, Operand(FIRST_JS_RECEIVER_TYPE));
293     // Call runtime on identical symbols since we need to throw a TypeError.
294     __ Branch(slow, eq, t0, Operand(SYMBOL_TYPE));
295     // Call runtime on identical SIMD values since we must throw a TypeError.
296     __ Branch(slow, eq, t0, Operand(SIMD128_VALUE_TYPE));
297     if (is_strong(strength)) {
298       // Call the runtime on anything that is converted in the semantics, since
299       // we need to throw a TypeError. Smis have already been ruled out.
300       __ Branch(&return_equal, eq, t0, Operand(HEAP_NUMBER_TYPE));
301       __ And(t0, t0, Operand(kIsNotStringMask));
302       __ Branch(slow, ne, t0, Operand(zero_reg));
303     }
304   } else {
305     __ Branch(&heap_number, eq, t0, Operand(HEAP_NUMBER_TYPE));
306     // Comparing JS objects with <=, >= is complicated.
307     if (cc != eq) {
308       __ Branch(slow, greater, t0, Operand(FIRST_JS_RECEIVER_TYPE));
309       // Call runtime on identical symbols since we need to throw a TypeError.
310       __ Branch(slow, eq, t0, Operand(SYMBOL_TYPE));
311       // Call runtime on identical SIMD values since we must throw a TypeError.
312       __ Branch(slow, eq, t0, Operand(SIMD128_VALUE_TYPE));
313       if (is_strong(strength)) {
314         // Call the runtime on anything that is converted in the semantics,
315         // since we need to throw a TypeError. Smis and heap numbers have
316         // already been ruled out.
317         __ And(t0, t0, Operand(kIsNotStringMask));
318         __ Branch(slow, ne, t0, Operand(zero_reg));
319       }
320       // Normally here we fall through to return_equal, but undefined is
321       // special: (undefined == undefined) == true, but
322       // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
323       if (cc == less_equal || cc == greater_equal) {
324         __ Branch(&return_equal, ne, t0, Operand(ODDBALL_TYPE));
325         __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
326         __ Branch(&return_equal, ne, a0, Operand(a6));
327         DCHECK(is_int16(GREATER) && is_int16(LESS));
328         __ Ret(USE_DELAY_SLOT);
329         if (cc == le) {
330           // undefined <= undefined should fail.
331           __ li(v0, Operand(GREATER));
332         } else  {
333           // undefined >= undefined should fail.
334           __ li(v0, Operand(LESS));
335         }
336       }
337     }
338   }
339 
340   __ bind(&return_equal);
341   DCHECK(is_int16(GREATER) && is_int16(LESS));
342   __ Ret(USE_DELAY_SLOT);
343   if (cc == less) {
344     __ li(v0, Operand(GREATER));  // Things aren't less than themselves.
345   } else if (cc == greater) {
346     __ li(v0, Operand(LESS));     // Things aren't greater than themselves.
347   } else {
348     __ mov(v0, zero_reg);         // Things are <=, >=, ==, === themselves.
349   }
350   // For less and greater we don't have to check for NaN since the result of
351   // x < x is false regardless.  For the others here is some code to check
352   // for NaN.
353   if (cc != lt && cc != gt) {
354     __ bind(&heap_number);
355     // It is a heap number, so return non-equal if it's NaN and equal if it's
356     // not NaN.
357 
358     // The representation of NaN values has all exponent bits (52..62) set,
359     // and not all mantissa bits (0..51) clear.
360     // Read top bits of double representation (second word of value).
361     __ lwu(a6, FieldMemOperand(a0, HeapNumber::kExponentOffset));
362     // Test that exponent bits are all set.
363     __ And(a7, a6, Operand(exp_mask_reg));
364     // If all bits not set (ne cond), then not a NaN, objects are equal.
365     __ Branch(&return_equal, ne, a7, Operand(exp_mask_reg));
366 
367     // Shift out flag and all exponent bits, retaining only mantissa.
368     __ sll(a6, a6, HeapNumber::kNonMantissaBitsInTopWord);
369     // Or with all low-bits of mantissa.
370     __ lwu(a7, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
371     __ Or(v0, a7, Operand(a6));
372     // For equal we already have the right value in v0:  Return zero (equal)
373     // if all bits in mantissa are zero (it's an Infinity) and non-zero if
374     // not (it's a NaN).  For <= and >= we need to load v0 with the failing
375     // value if it's a NaN.
376     if (cc != eq) {
377       // All-zero means Infinity means equal.
378       __ Ret(eq, v0, Operand(zero_reg));
379       DCHECK(is_int16(GREATER) && is_int16(LESS));
380       __ Ret(USE_DELAY_SLOT);
381       if (cc == le) {
382         __ li(v0, Operand(GREATER));  // NaN <= NaN should fail.
383       } else {
384         __ li(v0, Operand(LESS));     // NaN >= NaN should fail.
385       }
386     }
387   }
388   // No fall through here.
389 
390   __ bind(&not_identical);
391 }
392 
393 
EmitSmiNonsmiComparison(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * slow,bool strict)394 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
395                                     Register lhs,
396                                     Register rhs,
397                                     Label* both_loaded_as_doubles,
398                                     Label* slow,
399                                     bool strict) {
400   DCHECK((lhs.is(a0) && rhs.is(a1)) ||
401          (lhs.is(a1) && rhs.is(a0)));
402 
403   Label lhs_is_smi;
404   __ JumpIfSmi(lhs, &lhs_is_smi);
405   // Rhs is a Smi.
406   // Check whether the non-smi is a heap number.
407   __ GetObjectType(lhs, t0, t0);
408   if (strict) {
409     // If lhs was not a number and rhs was a Smi then strict equality cannot
410     // succeed. Return non-equal (lhs is already not zero).
411     __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
412     __ mov(v0, lhs);
413   } else {
414     // Smi compared non-strictly with a non-Smi non-heap-number. Call
415     // the runtime.
416     __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
417   }
418   // Rhs is a smi, lhs is a number.
419   // Convert smi rhs to double.
420   __ SmiUntag(at, rhs);
421   __ mtc1(at, f14);
422   __ cvt_d_w(f14, f14);
423   __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
424 
425   // We now have both loaded as doubles.
426   __ jmp(both_loaded_as_doubles);
427 
428   __ bind(&lhs_is_smi);
429   // Lhs is a Smi.  Check whether the non-smi is a heap number.
430   __ GetObjectType(rhs, t0, t0);
431   if (strict) {
432     // If lhs was not a number and rhs was a Smi then strict equality cannot
433     // succeed. Return non-equal.
434     __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
435     __ li(v0, Operand(1));
436   } else {
437     // Smi compared non-strictly with a non-Smi non-heap-number. Call
438     // the runtime.
439     __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
440   }
441 
442   // Lhs is a smi, rhs is a number.
443   // Convert smi lhs to double.
444   __ SmiUntag(at, lhs);
445   __ mtc1(at, f12);
446   __ cvt_d_w(f12, f12);
447   __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
448   // Fall through to both_loaded_as_doubles.
449 }
450 
451 
EmitStrictTwoHeapObjectCompare(MacroAssembler * masm,Register lhs,Register rhs)452 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
453                                            Register lhs,
454                                            Register rhs) {
455     // If either operand is a JS object or an oddball value, then they are
456     // not equal since their pointers are different.
457     // There is no test for undetectability in strict equality.
458     STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
459     Label first_non_object;
460     // Get the type of the first operand into a2 and compare it with
461     // FIRST_JS_RECEIVER_TYPE.
462     __ GetObjectType(lhs, a2, a2);
463     __ Branch(&first_non_object, less, a2, Operand(FIRST_JS_RECEIVER_TYPE));
464 
465     // Return non-zero.
466     Label return_not_equal;
467     __ bind(&return_not_equal);
468     __ Ret(USE_DELAY_SLOT);
469     __ li(v0, Operand(1));
470 
471     __ bind(&first_non_object);
472     // Check for oddballs: true, false, null, undefined.
473     __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
474 
475     __ GetObjectType(rhs, a3, a3);
476     __ Branch(&return_not_equal, greater, a3, Operand(FIRST_JS_RECEIVER_TYPE));
477 
478     // Check for oddballs: true, false, null, undefined.
479     __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
480 
481     // Now that we have the types we might as well check for
482     // internalized-internalized.
483     STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
484     __ Or(a2, a2, Operand(a3));
485     __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
486     __ Branch(&return_not_equal, eq, at, Operand(zero_reg));
487 }
488 
489 
EmitCheckForTwoHeapNumbers(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * not_heap_numbers,Label * slow)490 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
491                                        Register lhs,
492                                        Register rhs,
493                                        Label* both_loaded_as_doubles,
494                                        Label* not_heap_numbers,
495                                        Label* slow) {
496   __ GetObjectType(lhs, a3, a2);
497   __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
498   __ ld(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
499   // If first was a heap number & second wasn't, go to slow case.
500   __ Branch(slow, ne, a3, Operand(a2));
501 
502   // Both are heap numbers. Load them up then jump to the code we have
503   // for that.
504   __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
505   __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
506 
507   __ jmp(both_loaded_as_doubles);
508 }
509 
510 
511 // Fast negative check for internalized-to-internalized equality.
EmitCheckForInternalizedStringsOrObjects(MacroAssembler * masm,Register lhs,Register rhs,Label * possible_strings,Label * not_both_strings)512 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
513                                                      Register lhs,
514                                                      Register rhs,
515                                                      Label* possible_strings,
516                                                      Label* not_both_strings) {
517   DCHECK((lhs.is(a0) && rhs.is(a1)) ||
518          (lhs.is(a1) && rhs.is(a0)));
519 
520   // a2 is object type of rhs.
521   Label object_test;
522   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
523   __ And(at, a2, Operand(kIsNotStringMask));
524   __ Branch(&object_test, ne, at, Operand(zero_reg));
525   __ And(at, a2, Operand(kIsNotInternalizedMask));
526   __ Branch(possible_strings, ne, at, Operand(zero_reg));
527   __ GetObjectType(rhs, a3, a3);
528   __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE));
529   __ And(at, a3, Operand(kIsNotInternalizedMask));
530   __ Branch(possible_strings, ne, at, Operand(zero_reg));
531 
532   // Both are internalized strings. We already checked they weren't the same
533   // pointer so they are not equal.
534   __ Ret(USE_DELAY_SLOT);
535   __ li(v0, Operand(1));   // Non-zero indicates not equal.
536 
537   __ bind(&object_test);
538   __ Branch(not_both_strings, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
539   __ GetObjectType(rhs, a2, a3);
540   __ Branch(not_both_strings, lt, a3, Operand(FIRST_JS_RECEIVER_TYPE));
541 
542   // If both objects are undetectable, they are equal.  Otherwise, they
543   // are not equal, since they are different objects and an object is not
544   // equal to undefined.
545   __ ld(a3, FieldMemOperand(lhs, HeapObject::kMapOffset));
546   __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset));
547   __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset));
548   __ and_(a0, a2, a3);
549   __ And(a0, a0, Operand(1 << Map::kIsUndetectable));
550   __ Ret(USE_DELAY_SLOT);
551   __ xori(v0, a0, 1 << Map::kIsUndetectable);
552 }
553 
554 
CompareICStub_CheckInputType(MacroAssembler * masm,Register input,Register scratch,CompareICState::State expected,Label * fail)555 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
556                                          Register scratch,
557                                          CompareICState::State expected,
558                                          Label* fail) {
559   Label ok;
560   if (expected == CompareICState::SMI) {
561     __ JumpIfNotSmi(input, fail);
562   } else if (expected == CompareICState::NUMBER) {
563     __ JumpIfSmi(input, &ok);
564     __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
565                 DONT_DO_SMI_CHECK);
566   }
567   // We could be strict about internalized/string here, but as long as
568   // hydrogen doesn't care, the stub doesn't have to care either.
569   __ bind(&ok);
570 }
571 
572 
573 // On entry a1 and a2 are the values to be compared.
574 // On exit a0 is 0, positive or negative to indicate the result of
575 // the comparison.
GenerateGeneric(MacroAssembler * masm)576 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
577   Register lhs = a1;
578   Register rhs = a0;
579   Condition cc = GetCondition();
580 
581   Label miss;
582   CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss);
583   CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss);
584 
585   Label slow;  // Call builtin.
586   Label not_smis, both_loaded_as_doubles;
587 
588   Label not_two_smis, smi_done;
589   __ Or(a2, a1, a0);
590   __ JumpIfNotSmi(a2, &not_two_smis);
591   __ SmiUntag(a1);
592   __ SmiUntag(a0);
593 
594   __ Ret(USE_DELAY_SLOT);
595   __ dsubu(v0, a1, a0);
596   __ bind(&not_two_smis);
597 
598   // NOTICE! This code is only reached after a smi-fast-case check, so
599   // it is certain that at least one operand isn't a smi.
600 
601   // Handle the case where the objects are identical.  Either returns the answer
602   // or goes to slow.  Only falls through if the objects were not identical.
603   EmitIdenticalObjectComparison(masm, &slow, cc, strength());
604 
605   // If either is a Smi (we know that not both are), then they can only
606   // be strictly equal if the other is a HeapNumber.
607   STATIC_ASSERT(kSmiTag == 0);
608   DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
609   __ And(a6, lhs, Operand(rhs));
610   __ JumpIfNotSmi(a6, &not_smis, a4);
611   // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
612   // 1) Return the answer.
613   // 2) Go to slow.
614   // 3) Fall through to both_loaded_as_doubles.
615   // 4) Jump to rhs_not_nan.
616   // In cases 3 and 4 we have found out we were dealing with a number-number
617   // comparison and the numbers have been loaded into f12 and f14 as doubles,
618   // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
619   EmitSmiNonsmiComparison(masm, lhs, rhs,
620                           &both_loaded_as_doubles, &slow, strict());
621 
622   __ bind(&both_loaded_as_doubles);
623   // f12, f14 are the double representations of the left hand side
624   // and the right hand side if we have FPU. Otherwise a2, a3 represent
625   // left hand side and a0, a1 represent right hand side.
626 
627   Label nan;
628   __ li(a4, Operand(LESS));
629   __ li(a5, Operand(GREATER));
630   __ li(a6, Operand(EQUAL));
631 
632   // Check if either rhs or lhs is NaN.
633   __ BranchF(NULL, &nan, eq, f12, f14);
634 
635   // Check if LESS condition is satisfied. If true, move conditionally
636   // result to v0.
637   if (kArchVariant != kMips64r6) {
638     __ c(OLT, D, f12, f14);
639     __ Movt(v0, a4);
640     // Use previous check to store conditionally to v0 oposite condition
641     // (GREATER). If rhs is equal to lhs, this will be corrected in next
642     // check.
643     __ Movf(v0, a5);
644     // Check if EQUAL condition is satisfied. If true, move conditionally
645     // result to v0.
646     __ c(EQ, D, f12, f14);
647     __ Movt(v0, a6);
648   } else {
649     Label skip;
650     __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14);
651     __ mov(v0, a4);  // Return LESS as result.
652 
653     __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14);
654     __ mov(v0, a6);  // Return EQUAL as result.
655 
656     __ mov(v0, a5);  // Return GREATER as result.
657     __ bind(&skip);
658   }
659   __ Ret();
660 
661   __ bind(&nan);
662   // NaN comparisons always fail.
663   // Load whatever we need in v0 to make the comparison fail.
664   DCHECK(is_int16(GREATER) && is_int16(LESS));
665   __ Ret(USE_DELAY_SLOT);
666   if (cc == lt || cc == le) {
667     __ li(v0, Operand(GREATER));
668   } else {
669     __ li(v0, Operand(LESS));
670   }
671 
672 
673   __ bind(&not_smis);
674   // At this point we know we are dealing with two different objects,
675   // and neither of them is a Smi. The objects are in lhs_ and rhs_.
676   if (strict()) {
677     // This returns non-equal for some object types, or falls through if it
678     // was not lucky.
679     EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
680   }
681 
682   Label check_for_internalized_strings;
683   Label flat_string_check;
684   // Check for heap-number-heap-number comparison. Can jump to slow case,
685   // or load both doubles and jump to the code that handles
686   // that case. If the inputs are not doubles then jumps to
687   // check_for_internalized_strings.
688   // In this case a2 will contain the type of lhs_.
689   EmitCheckForTwoHeapNumbers(masm,
690                              lhs,
691                              rhs,
692                              &both_loaded_as_doubles,
693                              &check_for_internalized_strings,
694                              &flat_string_check);
695 
696   __ bind(&check_for_internalized_strings);
697   if (cc == eq && !strict()) {
698     // Returns an answer for two internalized strings or two
699     // detectable objects.
700     // Otherwise jumps to string case or not both strings case.
701     // Assumes that a2 is the type of lhs_ on entry.
702     EmitCheckForInternalizedStringsOrObjects(
703         masm, lhs, rhs, &flat_string_check, &slow);
704   }
705 
706   // Check for both being sequential one-byte strings,
707   // and inline if that is the case.
708   __ bind(&flat_string_check);
709 
710   __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow);
711 
712   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
713                       a3);
714   if (cc == eq) {
715     StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, a4);
716   } else {
717     StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, a4,
718                                                     a5);
719   }
720   // Never falls through to here.
721 
722   __ bind(&slow);
723   // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
724   // a1 (rhs) second.
725   __ Push(lhs, rhs);
726   // Figure out which native to call and setup the arguments.
727   if (cc == eq) {
728     __ TailCallRuntime(strict() ? Runtime::kStrictEquals : Runtime::kEquals);
729   } else {
730     int ncr;  // NaN compare result.
731     if (cc == lt || cc == le) {
732       ncr = GREATER;
733     } else {
734       DCHECK(cc == gt || cc == ge);  // Remaining cases.
735       ncr = LESS;
736     }
737     __ li(a0, Operand(Smi::FromInt(ncr)));
738     __ push(a0);
739 
740     // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
741     // tagged as a small integer.
742     __ TailCallRuntime(is_strong(strength()) ? Runtime::kCompare_Strong
743                                              : Runtime::kCompare);
744   }
745 
746   __ bind(&miss);
747   GenerateMiss(masm);
748 }
749 
750 
Generate(MacroAssembler * masm)751 void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
752   __ mov(t9, ra);
753   __ pop(ra);
754   __ PushSafepointRegisters();
755   __ Jump(t9);
756 }
757 
758 
Generate(MacroAssembler * masm)759 void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
760   __ mov(t9, ra);
761   __ pop(ra);
762   __ PopSafepointRegisters();
763   __ Jump(t9);
764 }
765 
766 
Generate(MacroAssembler * masm)767 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
768   // We don't allow a GC during a store buffer overflow so there is no need to
769   // store the registers in any particular way, but we do have to store and
770   // restore them.
771   __ MultiPush(kJSCallerSaved | ra.bit());
772   if (save_doubles()) {
773     __ MultiPushFPU(kCallerSavedFPU);
774   }
775   const int argument_count = 1;
776   const int fp_argument_count = 0;
777   const Register scratch = a1;
778 
779   AllowExternalCallThatCantCauseGC scope(masm);
780   __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
781   __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
782   __ CallCFunction(
783       ExternalReference::store_buffer_overflow_function(isolate()),
784       argument_count);
785   if (save_doubles()) {
786     __ MultiPopFPU(kCallerSavedFPU);
787   }
788 
789   __ MultiPop(kJSCallerSaved | ra.bit());
790   __ Ret();
791 }
792 
793 
Generate(MacroAssembler * masm)794 void MathPowStub::Generate(MacroAssembler* masm) {
795   const Register base = a1;
796   const Register exponent = MathPowTaggedDescriptor::exponent();
797   DCHECK(exponent.is(a2));
798   const Register heapnumbermap = a5;
799   const Register heapnumber = v0;
800   const DoubleRegister double_base = f2;
801   const DoubleRegister double_exponent = f4;
802   const DoubleRegister double_result = f0;
803   const DoubleRegister double_scratch = f6;
804   const FPURegister single_scratch = f8;
805   const Register scratch = t1;
806   const Register scratch2 = a7;
807 
808   Label call_runtime, done, int_exponent;
809   if (exponent_type() == ON_STACK) {
810     Label base_is_smi, unpack_exponent;
811     // The exponent and base are supplied as arguments on the stack.
812     // This can only happen if the stub is called from non-optimized code.
813     // Load input parameters from stack to double registers.
814     __ ld(base, MemOperand(sp, 1 * kPointerSize));
815     __ ld(exponent, MemOperand(sp, 0 * kPointerSize));
816 
817     __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
818 
819     __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
820     __ ld(scratch, FieldMemOperand(base, JSObject::kMapOffset));
821     __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
822 
823     __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
824     __ jmp(&unpack_exponent);
825 
826     __ bind(&base_is_smi);
827     __ mtc1(scratch, single_scratch);
828     __ cvt_d_w(double_base, single_scratch);
829     __ bind(&unpack_exponent);
830 
831     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
832 
833     __ ld(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
834     __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
835     __ ldc1(double_exponent,
836             FieldMemOperand(exponent, HeapNumber::kValueOffset));
837   } else if (exponent_type() == TAGGED) {
838     // Base is already in double_base.
839     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
840 
841     __ ldc1(double_exponent,
842             FieldMemOperand(exponent, HeapNumber::kValueOffset));
843   }
844 
845   if (exponent_type() != INTEGER) {
846     Label int_exponent_convert;
847     // Detect integer exponents stored as double.
848     __ EmitFPUTruncate(kRoundToMinusInf,
849                        scratch,
850                        double_exponent,
851                        at,
852                        double_scratch,
853                        scratch2,
854                        kCheckForInexactConversion);
855     // scratch2 == 0 means there was no conversion error.
856     __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
857 
858     if (exponent_type() == ON_STACK) {
859       // Detect square root case.  Crankshaft detects constant +/-0.5 at
860       // compile time and uses DoMathPowHalf instead.  We then skip this check
861       // for non-constant cases of +/-0.5 as these hardly occur.
862       Label not_plus_half;
863 
864       // Test for 0.5.
865       __ Move(double_scratch, 0.5);
866       __ BranchF(USE_DELAY_SLOT,
867                  &not_plus_half,
868                  NULL,
869                  ne,
870                  double_exponent,
871                  double_scratch);
872       // double_scratch can be overwritten in the delay slot.
873       // Calculates square root of base.  Check for the special case of
874       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
875       __ Move(double_scratch, static_cast<double>(-V8_INFINITY));
876       __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
877       __ neg_d(double_result, double_scratch);
878 
879       // Add +0 to convert -0 to +0.
880       __ add_d(double_scratch, double_base, kDoubleRegZero);
881       __ sqrt_d(double_result, double_scratch);
882       __ jmp(&done);
883 
884       __ bind(&not_plus_half);
885       __ Move(double_scratch, -0.5);
886       __ BranchF(USE_DELAY_SLOT,
887                  &call_runtime,
888                  NULL,
889                  ne,
890                  double_exponent,
891                  double_scratch);
892       // double_scratch can be overwritten in the delay slot.
893       // Calculates square root of base.  Check for the special case of
894       // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
895       __ Move(double_scratch, static_cast<double>(-V8_INFINITY));
896       __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
897       __ Move(double_result, kDoubleRegZero);
898 
899       // Add +0 to convert -0 to +0.
900       __ add_d(double_scratch, double_base, kDoubleRegZero);
901       __ Move(double_result, 1.);
902       __ sqrt_d(double_scratch, double_scratch);
903       __ div_d(double_result, double_result, double_scratch);
904       __ jmp(&done);
905     }
906 
907     __ push(ra);
908     {
909       AllowExternalCallThatCantCauseGC scope(masm);
910       __ PrepareCallCFunction(0, 2, scratch2);
911       __ MovToFloatParameters(double_base, double_exponent);
912       __ CallCFunction(
913           ExternalReference::power_double_double_function(isolate()),
914           0, 2);
915     }
916     __ pop(ra);
917     __ MovFromFloatResult(double_result);
918     __ jmp(&done);
919 
920     __ bind(&int_exponent_convert);
921   }
922 
923   // Calculate power with integer exponent.
924   __ bind(&int_exponent);
925 
926   // Get two copies of exponent in the registers scratch and exponent.
927   if (exponent_type() == INTEGER) {
928     __ mov(scratch, exponent);
929   } else {
930     // Exponent has previously been stored into scratch as untagged integer.
931     __ mov(exponent, scratch);
932   }
933 
934   __ mov_d(double_scratch, double_base);  // Back up base.
935   __ Move(double_result, 1.0);
936 
937   // Get absolute value of exponent.
938   Label positive_exponent;
939   __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
940   __ Dsubu(scratch, zero_reg, scratch);
941   __ bind(&positive_exponent);
942 
943   Label while_true, no_carry, loop_end;
944   __ bind(&while_true);
945 
946   __ And(scratch2, scratch, 1);
947 
948   __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
949   __ mul_d(double_result, double_result, double_scratch);
950   __ bind(&no_carry);
951 
952   __ dsra(scratch, scratch, 1);
953 
954   __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
955   __ mul_d(double_scratch, double_scratch, double_scratch);
956 
957   __ Branch(&while_true);
958 
959   __ bind(&loop_end);
960 
961   __ Branch(&done, ge, exponent, Operand(zero_reg));
962   __ Move(double_scratch, 1.0);
963   __ div_d(double_result, double_scratch, double_result);
964   // Test whether result is zero.  Bail out to check for subnormal result.
965   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
966   __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
967 
968   // double_exponent may not contain the exponent value if the input was a
969   // smi.  We set it with exponent value before bailing out.
970   __ mtc1(exponent, single_scratch);
971   __ cvt_d_w(double_exponent, single_scratch);
972 
973   // Returning or bailing out.
974   Counters* counters = isolate()->counters();
975   if (exponent_type() == ON_STACK) {
976     // The arguments are still on the stack.
977     __ bind(&call_runtime);
978     __ TailCallRuntime(Runtime::kMathPowRT);
979 
980     // The stub is called from non-optimized code, which expects the result
981     // as heap number in exponent.
982     __ bind(&done);
983     __ AllocateHeapNumber(
984         heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
985     __ sdc1(double_result,
986             FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
987     DCHECK(heapnumber.is(v0));
988     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
989     __ DropAndRet(2);
990   } else {
991     __ push(ra);
992     {
993       AllowExternalCallThatCantCauseGC scope(masm);
994       __ PrepareCallCFunction(0, 2, scratch);
995       __ MovToFloatParameters(double_base, double_exponent);
996       __ CallCFunction(
997           ExternalReference::power_double_double_function(isolate()),
998           0, 2);
999     }
1000     __ pop(ra);
1001     __ MovFromFloatResult(double_result);
1002 
1003     __ bind(&done);
1004     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
1005     __ Ret();
1006   }
1007 }
1008 
1009 
NeedsImmovableCode()1010 bool CEntryStub::NeedsImmovableCode() {
1011   return true;
1012 }
1013 
1014 
GenerateStubsAheadOfTime(Isolate * isolate)1015 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
1016   CEntryStub::GenerateAheadOfTime(isolate);
1017   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
1018   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
1019   ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
1020   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
1021   CreateWeakCellStub::GenerateAheadOfTime(isolate);
1022   BinaryOpICStub::GenerateAheadOfTime(isolate);
1023   StoreRegistersStateStub::GenerateAheadOfTime(isolate);
1024   RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
1025   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
1026   StoreFastElementStub::GenerateAheadOfTime(isolate);
1027   TypeofStub::GenerateAheadOfTime(isolate);
1028 }
1029 
1030 
GenerateAheadOfTime(Isolate * isolate)1031 void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1032   StoreRegistersStateStub stub(isolate);
1033   stub.GetCode();
1034 }
1035 
1036 
GenerateAheadOfTime(Isolate * isolate)1037 void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1038   RestoreRegistersStateStub stub(isolate);
1039   stub.GetCode();
1040 }
1041 
1042 
GenerateFPStubs(Isolate * isolate)1043 void CodeStub::GenerateFPStubs(Isolate* isolate) {
1044   // Generate if not already in cache.
1045   SaveFPRegsMode mode = kSaveFPRegs;
1046   CEntryStub(isolate, 1, mode).GetCode();
1047   StoreBufferOverflowStub(isolate, mode).GetCode();
1048   isolate->set_fp_stubs_generated(true);
1049 }
1050 
1051 
GenerateAheadOfTime(Isolate * isolate)1052 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1053   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
1054   stub.GetCode();
1055 }
1056 
1057 
Generate(MacroAssembler * masm)1058 void CEntryStub::Generate(MacroAssembler* masm) {
1059   // Called from JavaScript; parameters are on stack as if calling JS function
1060   // a0: number of arguments including receiver
1061   // a1: pointer to builtin function
1062   // fp: frame pointer    (restored after C call)
1063   // sp: stack pointer    (restored as callee's sp after C call)
1064   // cp: current context  (C callee-saved)
1065   //
1066   // If argv_in_register():
1067   // a2: pointer to the first argument
1068 
1069   ProfileEntryHookStub::MaybeCallEntryHook(masm);
1070 
1071   if (argv_in_register()) {
1072     // Move argv into the correct register.
1073     __ mov(s1, a2);
1074   } else {
1075     // Compute the argv pointer in a callee-saved register.
1076     __ dsll(s1, a0, kPointerSizeLog2);
1077     __ Daddu(s1, sp, s1);
1078     __ Dsubu(s1, s1, kPointerSize);
1079   }
1080 
1081   // Enter the exit frame that transitions from JavaScript to C++.
1082   FrameScope scope(masm, StackFrame::MANUAL);
1083   __ EnterExitFrame(save_doubles());
1084 
1085   // s0: number of arguments  including receiver (C callee-saved)
1086   // s1: pointer to first argument (C callee-saved)
1087   // s2: pointer to builtin function (C callee-saved)
1088 
1089   // Prepare arguments for C routine.
1090   // a0 = argc
1091   __ mov(s0, a0);
1092   __ mov(s2, a1);
1093   // a1 = argv (set in the delay slot after find_ra below).
1094 
1095   // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
1096   // also need to reserve the 4 argument slots on the stack.
1097 
1098   __ AssertStackIsAligned();
1099 
1100   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
1101 
1102   // To let the GC traverse the return address of the exit frames, we need to
1103   // know where the return address is. The CEntryStub is unmovable, so
1104   // we can store the address on the stack to be able to find it again and
1105   // we never have to restore it, because it will not change.
1106   { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
1107     // This branch-and-link sequence is needed to find the current PC on mips,
1108     // saved to the ra register.
1109     // Use masm-> here instead of the double-underscore macro since extra
1110     // coverage code can interfere with the proper calculation of ra.
1111     Label find_ra;
1112     masm->bal(&find_ra);  // bal exposes branch delay slot.
1113     masm->mov(a1, s1);
1114     masm->bind(&find_ra);
1115 
1116     // Adjust the value in ra to point to the correct return location, 2nd
1117     // instruction past the real call into C code (the jalr(t9)), and push it.
1118     // This is the return address of the exit frame.
1119     const int kNumInstructionsToJump = 5;
1120     masm->Daddu(ra, ra, kNumInstructionsToJump * kInt32Size);
1121     masm->sd(ra, MemOperand(sp));  // This spot was reserved in EnterExitFrame.
1122     // Stack space reservation moved to the branch delay slot below.
1123     // Stack is still aligned.
1124 
1125     // Call the C routine.
1126     masm->mov(t9, s2);  // Function pointer to t9 to conform to ABI for PIC.
1127     masm->jalr(t9);
1128     // Set up sp in the delay slot.
1129     masm->daddiu(sp, sp, -kCArgsSlotsSize);
1130     // Make sure the stored 'ra' points to this position.
1131     DCHECK_EQ(kNumInstructionsToJump,
1132               masm->InstructionsGeneratedSince(&find_ra));
1133   }
1134 
1135   // Check result for exception sentinel.
1136   Label exception_returned;
1137   __ LoadRoot(a4, Heap::kExceptionRootIndex);
1138   __ Branch(&exception_returned, eq, a4, Operand(v0));
1139 
1140   // Check that there is no pending exception, otherwise we
1141   // should have returned the exception sentinel.
1142   if (FLAG_debug_code) {
1143     Label okay;
1144     ExternalReference pending_exception_address(
1145         Isolate::kPendingExceptionAddress, isolate());
1146     __ li(a2, Operand(pending_exception_address));
1147     __ ld(a2, MemOperand(a2));
1148     __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
1149     // Cannot use check here as it attempts to generate call into runtime.
1150     __ Branch(&okay, eq, a4, Operand(a2));
1151     __ stop("Unexpected pending exception");
1152     __ bind(&okay);
1153   }
1154 
1155   // Exit C frame and return.
1156   // v0:v1: result
1157   // sp: stack pointer
1158   // fp: frame pointer
1159   Register argc;
1160   if (argv_in_register()) {
1161     // We don't want to pop arguments so set argc to no_reg.
1162     argc = no_reg;
1163   } else {
1164     // s0: still holds argc (callee-saved).
1165     argc = s0;
1166   }
1167   __ LeaveExitFrame(save_doubles(), argc, true, EMIT_RETURN);
1168 
1169   // Handling of exception.
1170   __ bind(&exception_returned);
1171 
1172   ExternalReference pending_handler_context_address(
1173       Isolate::kPendingHandlerContextAddress, isolate());
1174   ExternalReference pending_handler_code_address(
1175       Isolate::kPendingHandlerCodeAddress, isolate());
1176   ExternalReference pending_handler_offset_address(
1177       Isolate::kPendingHandlerOffsetAddress, isolate());
1178   ExternalReference pending_handler_fp_address(
1179       Isolate::kPendingHandlerFPAddress, isolate());
1180   ExternalReference pending_handler_sp_address(
1181       Isolate::kPendingHandlerSPAddress, isolate());
1182 
1183   // Ask the runtime for help to determine the handler. This will set v0 to
1184   // contain the current pending exception, don't clobber it.
1185   ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1186                                  isolate());
1187   {
1188     FrameScope scope(masm, StackFrame::MANUAL);
1189     __ PrepareCallCFunction(3, 0, a0);
1190     __ mov(a0, zero_reg);
1191     __ mov(a1, zero_reg);
1192     __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
1193     __ CallCFunction(find_handler, 3);
1194   }
1195 
1196   // Retrieve the handler context, SP and FP.
1197   __ li(cp, Operand(pending_handler_context_address));
1198   __ ld(cp, MemOperand(cp));
1199   __ li(sp, Operand(pending_handler_sp_address));
1200   __ ld(sp, MemOperand(sp));
1201   __ li(fp, Operand(pending_handler_fp_address));
1202   __ ld(fp, MemOperand(fp));
1203 
1204   // If the handler is a JS frame, restore the context to the frame. Note that
1205   // the context will be set to (cp == 0) for non-JS frames.
1206   Label zero;
1207   __ Branch(&zero, eq, cp, Operand(zero_reg));
1208   __ sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1209   __ bind(&zero);
1210 
1211   // Compute the handler entry address and jump to it.
1212   __ li(a1, Operand(pending_handler_code_address));
1213   __ ld(a1, MemOperand(a1));
1214   __ li(a2, Operand(pending_handler_offset_address));
1215   __ ld(a2, MemOperand(a2));
1216   __ Daddu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag));
1217   __ Daddu(t9, a1, a2);
1218   __ Jump(t9);
1219 }
1220 
1221 
Generate(MacroAssembler * masm)1222 void JSEntryStub::Generate(MacroAssembler* masm) {
1223   Label invoke, handler_entry, exit;
1224   Isolate* isolate = masm->isolate();
1225 
1226   // TODO(plind): unify the ABI description here.
1227   // Registers:
1228   // a0: entry address
1229   // a1: function
1230   // a2: receiver
1231   // a3: argc
1232   // a4 (a4): on mips64
1233 
1234   // Stack:
1235   // 0 arg slots on mips64 (4 args slots on mips)
1236   // args -- in a4/a4 on mips64, on stack on mips
1237 
1238   ProfileEntryHookStub::MaybeCallEntryHook(masm);
1239 
1240   // Save callee saved registers on the stack.
1241   __ MultiPush(kCalleeSaved | ra.bit());
1242 
1243   // Save callee-saved FPU registers.
1244   __ MultiPushFPU(kCalleeSavedFPU);
1245   // Set up the reserved register for 0.0.
1246   __ Move(kDoubleRegZero, 0.0);
1247 
1248   // Load argv in s0 register.
1249   if (kMipsAbi == kN64) {
1250     __ mov(s0, a4);  // 5th parameter in mips64 a4 (a4) register.
1251   } else {  // Abi O32.
1252     // 5th parameter on stack for O32 abi.
1253     int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
1254     offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
1255     __ ld(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));
1256   }
1257 
1258   __ InitializeRootRegister();
1259 
1260   // We build an EntryFrame.
1261   __ li(a7, Operand(-1));  // Push a bad frame pointer to fail if it is used.
1262   int marker = type();
1263   __ li(a6, Operand(Smi::FromInt(marker)));
1264   __ li(a5, Operand(Smi::FromInt(marker)));
1265   ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate);
1266   __ li(a4, Operand(c_entry_fp));
1267   __ ld(a4, MemOperand(a4));
1268   __ Push(a7, a6, a5, a4);
1269   // Set up frame pointer for the frame to be pushed.
1270   __ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
1271 
1272   // Registers:
1273   // a0: entry_address
1274   // a1: function
1275   // a2: receiver_pointer
1276   // a3: argc
1277   // s0: argv
1278   //
1279   // Stack:
1280   // caller fp          |
1281   // function slot      | entry frame
1282   // context slot       |
1283   // bad fp (0xff...f)  |
1284   // callee saved registers + ra
1285   // [ O32: 4 args slots]
1286   // args
1287 
1288   // If this is the outermost JS call, set js_entry_sp value.
1289   Label non_outermost_js;
1290   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
1291   __ li(a5, Operand(ExternalReference(js_entry_sp)));
1292   __ ld(a6, MemOperand(a5));
1293   __ Branch(&non_outermost_js, ne, a6, Operand(zero_reg));
1294   __ sd(fp, MemOperand(a5));
1295   __ li(a4, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1296   Label cont;
1297   __ b(&cont);
1298   __ nop();   // Branch delay slot nop.
1299   __ bind(&non_outermost_js);
1300   __ li(a4, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
1301   __ bind(&cont);
1302   __ push(a4);
1303 
1304   // Jump to a faked try block that does the invoke, with a faked catch
1305   // block that sets the pending exception.
1306   __ jmp(&invoke);
1307   __ bind(&handler_entry);
1308   handler_offset_ = handler_entry.pos();
1309   // Caught exception: Store result (exception) in the pending exception
1310   // field in the JSEnv and return a failure sentinel.  Coming in here the
1311   // fp will be invalid because the PushStackHandler below sets it to 0 to
1312   // signal the existence of the JSEntry frame.
1313   __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1314                                       isolate)));
1315   __ sd(v0, MemOperand(a4));  // We come back from 'invoke'. result is in v0.
1316   __ LoadRoot(v0, Heap::kExceptionRootIndex);
1317   __ b(&exit);  // b exposes branch delay slot.
1318   __ nop();   // Branch delay slot nop.
1319 
1320   // Invoke: Link this frame into the handler chain.
1321   __ bind(&invoke);
1322   __ PushStackHandler();
1323   // If an exception not caught by another handler occurs, this handler
1324   // returns control to the code after the bal(&invoke) above, which
1325   // restores all kCalleeSaved registers (including cp and fp) to their
1326   // saved values before returning a failure to C.
1327 
1328   // Clear any pending exceptions.
1329   __ LoadRoot(a5, Heap::kTheHoleValueRootIndex);
1330   __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1331                                       isolate)));
1332   __ sd(a5, MemOperand(a4));
1333 
1334   // Invoke the function by calling through JS entry trampoline builtin.
1335   // Notice that we cannot store a reference to the trampoline code directly in
1336   // this stub, because runtime stubs are not traversed when doing GC.
1337 
1338   // Registers:
1339   // a0: entry_address
1340   // a1: function
1341   // a2: receiver_pointer
1342   // a3: argc
1343   // s0: argv
1344   //
1345   // Stack:
1346   // handler frame
1347   // entry frame
1348   // callee saved registers + ra
1349   // [ O32: 4 args slots]
1350   // args
1351 
1352   if (type() == StackFrame::ENTRY_CONSTRUCT) {
1353     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1354                                       isolate);
1355     __ li(a4, Operand(construct_entry));
1356   } else {
1357     ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
1358     __ li(a4, Operand(entry));
1359   }
1360   __ ld(t9, MemOperand(a4));  // Deref address.
1361   // Call JSEntryTrampoline.
1362   __ daddiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
1363   __ Call(t9);
1364 
1365   // Unlink this frame from the handler chain.
1366   __ PopStackHandler();
1367 
1368   __ bind(&exit);  // v0 holds result
1369   // Check if the current stack frame is marked as the outermost JS frame.
1370   Label non_outermost_js_2;
1371   __ pop(a5);
1372   __ Branch(&non_outermost_js_2,
1373             ne,
1374             a5,
1375             Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1376   __ li(a5, Operand(ExternalReference(js_entry_sp)));
1377   __ sd(zero_reg, MemOperand(a5));
1378   __ bind(&non_outermost_js_2);
1379 
1380   // Restore the top frame descriptors from the stack.
1381   __ pop(a5);
1382   __ li(a4, Operand(ExternalReference(Isolate::kCEntryFPAddress,
1383                                       isolate)));
1384   __ sd(a5, MemOperand(a4));
1385 
1386   // Reset the stack to the callee saved registers.
1387   __ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
1388 
1389   // Restore callee-saved fpu registers.
1390   __ MultiPopFPU(kCalleeSavedFPU);
1391 
1392   // Restore callee saved registers from the stack.
1393   __ MultiPop(kCalleeSaved | ra.bit());
1394   // Return.
1395   __ Jump(ra);
1396 }
1397 
1398 
Generate(MacroAssembler * masm)1399 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
1400   // Return address is in ra.
1401   Label miss;
1402 
1403   Register receiver = LoadDescriptor::ReceiverRegister();
1404   Register index = LoadDescriptor::NameRegister();
1405   Register scratch = a5;
1406   Register result = v0;
1407   DCHECK(!scratch.is(receiver) && !scratch.is(index));
1408   DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()));
1409 
1410   StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
1411                                           &miss,  // When not a string.
1412                                           &miss,  // When not a number.
1413                                           &miss,  // When index out of range.
1414                                           STRING_INDEX_IS_ARRAY_INDEX,
1415                                           RECEIVER_IS_STRING);
1416   char_at_generator.GenerateFast(masm);
1417   __ Ret();
1418 
1419   StubRuntimeCallHelper call_helper;
1420   char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
1421 
1422   __ bind(&miss);
1423   PropertyAccessCompiler::TailCallBuiltin(
1424       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1425 }
1426 
1427 
Generate(MacroAssembler * masm)1428 void InstanceOfStub::Generate(MacroAssembler* masm) {
1429   Register const object = a1;              // Object (lhs).
1430   Register const function = a0;            // Function (rhs).
1431   Register const object_map = a2;          // Map of {object}.
1432   Register const function_map = a3;        // Map of {function}.
1433   Register const function_prototype = a4;  // Prototype of {function}.
1434   Register const scratch = a5;
1435 
1436   DCHECK(object.is(InstanceOfDescriptor::LeftRegister()));
1437   DCHECK(function.is(InstanceOfDescriptor::RightRegister()));
1438 
1439   // Check if {object} is a smi.
1440   Label object_is_smi;
1441   __ JumpIfSmi(object, &object_is_smi);
1442 
1443   // Lookup the {function} and the {object} map in the global instanceof cache.
1444   // Note: This is safe because we clear the global instanceof cache whenever
1445   // we change the prototype of any object.
1446   Label fast_case, slow_case;
1447   __ ld(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
1448   __ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex);
1449   __ Branch(&fast_case, ne, function, Operand(at));
1450   __ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex);
1451   __ Branch(&fast_case, ne, object_map, Operand(at));
1452   __ Ret(USE_DELAY_SLOT);
1453   __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);  // In delay slot.
1454 
1455   // If {object} is a smi we can safely return false if {function} is a JS
1456   // function, otherwise we have to miss to the runtime and throw an exception.
1457   __ bind(&object_is_smi);
1458   __ JumpIfSmi(function, &slow_case);
1459   __ GetObjectType(function, function_map, scratch);
1460   __ Branch(&slow_case, ne, scratch, Operand(JS_FUNCTION_TYPE));
1461   __ Ret(USE_DELAY_SLOT);
1462   __ LoadRoot(v0, Heap::kFalseValueRootIndex);  // In delay slot.
1463 
1464   // Fast-case: The {function} must be a valid JSFunction.
1465   __ bind(&fast_case);
1466   __ JumpIfSmi(function, &slow_case);
1467   __ GetObjectType(function, function_map, scratch);
1468   __ Branch(&slow_case, ne, scratch, Operand(JS_FUNCTION_TYPE));
1469 
1470   // Ensure that {function} has an instance prototype.
1471   __ lbu(scratch, FieldMemOperand(function_map, Map::kBitFieldOffset));
1472   __ And(at, scratch, Operand(1 << Map::kHasNonInstancePrototype));
1473   __ Branch(&slow_case, ne, at, Operand(zero_reg));
1474 
1475   // Get the "prototype" (or initial map) of the {function}.
1476   __ ld(function_prototype,
1477         FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1478   __ AssertNotSmi(function_prototype);
1479 
1480   // Resolve the prototype if the {function} has an initial map.  Afterwards the
1481   // {function_prototype} will be either the JSReceiver prototype object or the
1482   // hole value, which means that no instances of the {function} were created so
1483   // far and hence we should return false.
1484   Label function_prototype_valid;
1485   __ GetObjectType(function_prototype, scratch, scratch);
1486   __ Branch(&function_prototype_valid, ne, scratch, Operand(MAP_TYPE));
1487   __ ld(function_prototype,
1488         FieldMemOperand(function_prototype, Map::kPrototypeOffset));
1489   __ bind(&function_prototype_valid);
1490   __ AssertNotSmi(function_prototype);
1491 
1492   // Update the global instanceof cache with the current {object} map and
1493   // {function}.  The cached answer will be set when it is known below.
1494   __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1495   __ StoreRoot(object_map, Heap::kInstanceofCacheMapRootIndex);
1496 
1497   // Loop through the prototype chain looking for the {function} prototype.
1498   // Assume true, and change to false if not found.
1499   Register const object_instance_type = function_map;
1500   Register const map_bit_field = function_map;
1501   Register const null = scratch;
1502   Register const result = v0;
1503 
1504   Label done, loop, fast_runtime_fallback;
1505   __ LoadRoot(result, Heap::kTrueValueRootIndex);
1506   __ LoadRoot(null, Heap::kNullValueRootIndex);
1507   __ bind(&loop);
1508 
1509   // Check if the object needs to be access checked.
1510   __ lbu(map_bit_field, FieldMemOperand(object_map, Map::kBitFieldOffset));
1511   __ And(map_bit_field, map_bit_field, Operand(1 << Map::kIsAccessCheckNeeded));
1512   __ Branch(&fast_runtime_fallback, ne, map_bit_field, Operand(zero_reg));
1513   // Check if the current object is a Proxy.
1514   __ lbu(object_instance_type,
1515          FieldMemOperand(object_map, Map::kInstanceTypeOffset));
1516   __ Branch(&fast_runtime_fallback, eq, object_instance_type,
1517             Operand(JS_PROXY_TYPE));
1518 
1519   __ ld(object, FieldMemOperand(object_map, Map::kPrototypeOffset));
1520   __ Branch(&done, eq, object, Operand(function_prototype));
1521   __ Branch(USE_DELAY_SLOT, &loop, ne, object, Operand(null));
1522   __ ld(object_map,
1523         FieldMemOperand(object, HeapObject::kMapOffset));  // In delay slot.
1524   __ LoadRoot(result, Heap::kFalseValueRootIndex);
1525   __ bind(&done);
1526   __ Ret(USE_DELAY_SLOT);
1527   __ StoreRoot(result,
1528                Heap::kInstanceofCacheAnswerRootIndex);  // In delay slot.
1529 
1530   // Found Proxy or access check needed: Call the runtime
1531   __ bind(&fast_runtime_fallback);
1532   __ Push(object, function_prototype);
1533   // Invalidate the instanceof cache.
1534   DCHECK(Smi::FromInt(0) == 0);
1535   __ StoreRoot(zero_reg, Heap::kInstanceofCacheFunctionRootIndex);
1536   __ TailCallRuntime(Runtime::kHasInPrototypeChain);
1537 
1538   // Slow-case: Call the %InstanceOf runtime function.
1539   __ bind(&slow_case);
1540   __ Push(object, function);
1541   __ TailCallRuntime(Runtime::kInstanceOf);
1542 }
1543 
1544 
Generate(MacroAssembler * masm)1545 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1546   Label miss;
1547   Register receiver = LoadDescriptor::ReceiverRegister();
1548   // Ensure that the vector and slot registers won't be clobbered before
1549   // calling the miss handler.
1550   DCHECK(!AreAliased(a4, a5, LoadWithVectorDescriptor::VectorRegister(),
1551                      LoadWithVectorDescriptor::SlotRegister()));
1552 
1553   NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, a4,
1554                                                           a5, &miss);
1555   __ bind(&miss);
1556   PropertyAccessCompiler::TailCallBuiltin(
1557       masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1558 }
1559 
1560 
GenerateReadElement(MacroAssembler * masm)1561 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
1562   // The displacement is the offset of the last parameter (if any)
1563   // relative to the frame pointer.
1564   const int kDisplacement =
1565       StandardFrameConstants::kCallerSPOffset - kPointerSize;
1566   DCHECK(a1.is(ArgumentsAccessReadDescriptor::index()));
1567   DCHECK(a0.is(ArgumentsAccessReadDescriptor::parameter_count()));
1568 
1569   // Check that the key is a smiGenerateReadElement.
1570   Label slow;
1571   __ JumpIfNotSmi(a1, &slow);
1572 
1573   // Check if the calling frame is an arguments adaptor frame.
1574   Label adaptor;
1575   __ ld(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1576   __ ld(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
1577   __ Branch(&adaptor,
1578             eq,
1579             a3,
1580             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1581 
1582   // Check index (a1) against formal parameters count limit passed in
1583   // through register a0. Use unsigned comparison to get negative
1584   // check for free.
1585   __ Branch(&slow, hs, a1, Operand(a0));
1586 
1587   // Read the argument from the stack and return it.
1588   __ dsubu(a3, a0, a1);
1589   __ SmiScale(a7, a3, kPointerSizeLog2);
1590   __ Daddu(a3, fp, Operand(a7));
1591   __ Ret(USE_DELAY_SLOT);
1592   __ ld(v0, MemOperand(a3, kDisplacement));
1593 
1594   // Arguments adaptor case: Check index (a1) against actual arguments
1595   // limit found in the arguments adaptor frame. Use unsigned
1596   // comparison to get negative check for free.
1597   __ bind(&adaptor);
1598   __ ld(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
1599   __ Branch(&slow, Ugreater_equal, a1, Operand(a0));
1600 
1601   // Read the argument from the adaptor frame and return it.
1602   __ dsubu(a3, a0, a1);
1603   __ SmiScale(a7, a3, kPointerSizeLog2);
1604   __ Daddu(a3, a2, Operand(a7));
1605   __ Ret(USE_DELAY_SLOT);
1606   __ ld(v0, MemOperand(a3, kDisplacement));
1607 
1608   // Slow-case: Handle non-smi or out-of-bounds access to arguments
1609   // by calling the runtime system.
1610   __ bind(&slow);
1611   __ push(a1);
1612   __ TailCallRuntime(Runtime::kArguments);
1613 }
1614 
1615 
GenerateNewSloppySlow(MacroAssembler * masm)1616 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
1617   // a1 : function
1618   // a2 : number of parameters (tagged)
1619   // a3 : parameters pointer
1620 
1621   DCHECK(a1.is(ArgumentsAccessNewDescriptor::function()));
1622   DCHECK(a2.is(ArgumentsAccessNewDescriptor::parameter_count()));
1623   DCHECK(a3.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
1624 
1625   // Check if the calling frame is an arguments adaptor frame.
1626   Label runtime;
1627   __ ld(a4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1628   __ ld(a0, MemOperand(a4, StandardFrameConstants::kContextOffset));
1629   __ Branch(&runtime, ne, a0,
1630             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1631 
1632   // Patch the arguments.length and the parameters pointer in the current frame.
1633   __ ld(a2, MemOperand(a4, ArgumentsAdaptorFrameConstants::kLengthOffset));
1634   __ SmiScale(a7, a2, kPointerSizeLog2);
1635   __ Daddu(a4, a4, Operand(a7));
1636   __ daddiu(a3, a4, StandardFrameConstants::kCallerSPOffset);
1637 
1638   __ bind(&runtime);
1639   __ Push(a1, a3, a2);
1640   __ TailCallRuntime(Runtime::kNewSloppyArguments);
1641 }
1642 
1643 
GenerateNewSloppyFast(MacroAssembler * masm)1644 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
1645   // a1 : function
1646   // a2 : number of parameters (tagged)
1647   // a3 : parameters pointer
1648   // Registers used over whole function:
1649   //  a5 : arguments count (tagged)
1650   //  a6 : mapped parameter count (tagged)
1651 
1652   DCHECK(a1.is(ArgumentsAccessNewDescriptor::function()));
1653   DCHECK(a2.is(ArgumentsAccessNewDescriptor::parameter_count()));
1654   DCHECK(a3.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
1655 
1656   // Check if the calling frame is an arguments adaptor frame.
1657   Label adaptor_frame, try_allocate, runtime;
1658   __ ld(a4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1659   __ ld(a0, MemOperand(a4, StandardFrameConstants::kContextOffset));
1660   __ Branch(&adaptor_frame, eq, a0,
1661             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1662 
1663   // No adaptor, parameter count = argument count.
1664   __ mov(a5, a2);
1665   __ Branch(USE_DELAY_SLOT, &try_allocate);
1666   __ mov(a6, a2);  // In delay slot.
1667 
1668   // We have an adaptor frame. Patch the parameters pointer.
1669   __ bind(&adaptor_frame);
1670   __ ld(a5, MemOperand(a4, ArgumentsAdaptorFrameConstants::kLengthOffset));
1671   __ SmiScale(t2, a5, kPointerSizeLog2);
1672   __ Daddu(a4, a4, Operand(t2));
1673   __ Daddu(a3, a4, Operand(StandardFrameConstants::kCallerSPOffset));
1674 
1675   // a5 = argument count (tagged)
1676   // a6 = parameter count (tagged)
1677   // Compute the mapped parameter count = min(a6, a5) in a6.
1678   __ mov(a6, a2);
1679   __ Branch(&try_allocate, le, a6, Operand(a5));
1680   __ mov(a6, a5);
1681 
1682   __ bind(&try_allocate);
1683 
1684   // Compute the sizes of backing store, parameter map, and arguments object.
1685   // 1. Parameter map, has 2 extra words containing context and backing store.
1686   const int kParameterMapHeaderSize =
1687       FixedArray::kHeaderSize + 2 * kPointerSize;
1688   // If there are no mapped parameters, we do not need the parameter_map.
1689   Label param_map_size;
1690   DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
1691   __ Branch(USE_DELAY_SLOT, &param_map_size, eq, a6, Operand(zero_reg));
1692   __ mov(t1, zero_reg);  // In delay slot: param map size = 0 when a6 == 0.
1693   __ SmiScale(t1, a6, kPointerSizeLog2);
1694   __ daddiu(t1, t1, kParameterMapHeaderSize);
1695   __ bind(&param_map_size);
1696 
1697   // 2. Backing store.
1698   __ SmiScale(t2, a5, kPointerSizeLog2);
1699   __ Daddu(t1, t1, Operand(t2));
1700   __ Daddu(t1, t1, Operand(FixedArray::kHeaderSize));
1701 
1702   // 3. Arguments object.
1703   __ Daddu(t1, t1, Operand(Heap::kSloppyArgumentsObjectSize));
1704 
1705   // Do the allocation of all three objects in one go.
1706   __ Allocate(t1, v0, t1, a4, &runtime, TAG_OBJECT);
1707 
1708   // v0 = address of new object(s) (tagged)
1709   // a2 = argument count (smi-tagged)
1710   // Get the arguments boilerplate from the current native context into a4.
1711   const int kNormalOffset =
1712       Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
1713   const int kAliasedOffset =
1714       Context::SlotOffset(Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX);
1715 
1716   __ ld(a4, NativeContextMemOperand());
1717   Label skip2_ne, skip2_eq;
1718   __ Branch(&skip2_ne, ne, a6, Operand(zero_reg));
1719   __ ld(a4, MemOperand(a4, kNormalOffset));
1720   __ bind(&skip2_ne);
1721 
1722   __ Branch(&skip2_eq, eq, a6, Operand(zero_reg));
1723   __ ld(a4, MemOperand(a4, kAliasedOffset));
1724   __ bind(&skip2_eq);
1725 
1726   // v0 = address of new object (tagged)
1727   // a2 = argument count (smi-tagged)
1728   // a4 = address of arguments map (tagged)
1729   // a6 = mapped parameter count (tagged)
1730   __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
1731   __ LoadRoot(t1, Heap::kEmptyFixedArrayRootIndex);
1732   __ sd(t1, FieldMemOperand(v0, JSObject::kPropertiesOffset));
1733   __ sd(t1, FieldMemOperand(v0, JSObject::kElementsOffset));
1734 
1735   // Set up the callee in-object property.
1736   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
1737   __ AssertNotSmi(a1);
1738   const int kCalleeOffset = JSObject::kHeaderSize +
1739       Heap::kArgumentsCalleeIndex * kPointerSize;
1740   __ sd(a1, FieldMemOperand(v0, kCalleeOffset));
1741 
1742   // Use the length (smi tagged) and set that as an in-object property too.
1743   __ AssertSmi(a5);
1744   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1745   const int kLengthOffset = JSObject::kHeaderSize +
1746       Heap::kArgumentsLengthIndex * kPointerSize;
1747   __ sd(a5, FieldMemOperand(v0, kLengthOffset));
1748 
1749   // Set up the elements pointer in the allocated arguments object.
1750   // If we allocated a parameter map, a4 will point there, otherwise
1751   // it will point to the backing store.
1752   __ Daddu(a4, v0, Operand(Heap::kSloppyArgumentsObjectSize));
1753   __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
1754 
1755   // v0 = address of new object (tagged)
1756   // a2 = argument count (tagged)
1757   // a4 = address of parameter map or backing store (tagged)
1758   // a6 = mapped parameter count (tagged)
1759   // Initialize parameter map. If there are no mapped arguments, we're done.
1760   Label skip_parameter_map;
1761   Label skip3;
1762   __ Branch(&skip3, ne, a6, Operand(Smi::FromInt(0)));
1763   // Move backing store address to a1, because it is
1764   // expected there when filling in the unmapped arguments.
1765   __ mov(a1, a4);
1766   __ bind(&skip3);
1767 
1768   __ Branch(&skip_parameter_map, eq, a6, Operand(Smi::FromInt(0)));
1769 
1770   __ LoadRoot(a5, Heap::kSloppyArgumentsElementsMapRootIndex);
1771   __ sd(a5, FieldMemOperand(a4, FixedArray::kMapOffset));
1772   __ Daddu(a5, a6, Operand(Smi::FromInt(2)));
1773   __ sd(a5, FieldMemOperand(a4, FixedArray::kLengthOffset));
1774   __ sd(cp, FieldMemOperand(a4, FixedArray::kHeaderSize + 0 * kPointerSize));
1775   __ SmiScale(t2, a6, kPointerSizeLog2);
1776   __ Daddu(a5, a4, Operand(t2));
1777   __ Daddu(a5, a5, Operand(kParameterMapHeaderSize));
1778   __ sd(a5, FieldMemOperand(a4, FixedArray::kHeaderSize + 1 * kPointerSize));
1779 
1780   // Copy the parameter slots and the holes in the arguments.
1781   // We need to fill in mapped_parameter_count slots. They index the context,
1782   // where parameters are stored in reverse order, at
1783   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
1784   // The mapped parameter thus need to get indices
1785   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
1786   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
1787   // We loop from right to left.
1788   Label parameters_loop, parameters_test;
1789   __ mov(a5, a6);
1790   __ Daddu(t1, a2, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
1791   __ Dsubu(t1, t1, Operand(a6));
1792   __ LoadRoot(a7, Heap::kTheHoleValueRootIndex);
1793   __ SmiScale(t2, a5, kPointerSizeLog2);
1794   __ Daddu(a1, a4, Operand(t2));
1795   __ Daddu(a1, a1, Operand(kParameterMapHeaderSize));
1796 
1797   // a1 = address of backing store (tagged)
1798   // a4 = address of parameter map (tagged)
1799   // a0 = temporary scratch (a.o., for address calculation)
1800   // t1 = loop variable (tagged)
1801   // a7 = the hole value
1802   __ jmp(&parameters_test);
1803 
1804   __ bind(&parameters_loop);
1805   __ Dsubu(a5, a5, Operand(Smi::FromInt(1)));
1806   __ SmiScale(a0, a5, kPointerSizeLog2);
1807   __ Daddu(a0, a0, Operand(kParameterMapHeaderSize - kHeapObjectTag));
1808   __ Daddu(t2, a4, a0);
1809   __ sd(t1, MemOperand(t2));
1810   __ Dsubu(a0, a0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
1811   __ Daddu(t2, a1, a0);
1812   __ sd(a7, MemOperand(t2));
1813   __ Daddu(t1, t1, Operand(Smi::FromInt(1)));
1814   __ bind(&parameters_test);
1815   __ Branch(&parameters_loop, ne, a5, Operand(Smi::FromInt(0)));
1816 
1817   // Restore t1 = argument count (tagged).
1818   __ ld(a5, FieldMemOperand(v0, kLengthOffset));
1819 
1820   __ bind(&skip_parameter_map);
1821   // v0 = address of new object (tagged)
1822   // a1 = address of backing store (tagged)
1823   // a5 = argument count (tagged)
1824   // a6 = mapped parameter count (tagged)
1825   // t1 = scratch
1826   // Copy arguments header and remaining slots (if there are any).
1827   __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
1828   __ sd(t1, FieldMemOperand(a1, FixedArray::kMapOffset));
1829   __ sd(a5, FieldMemOperand(a1, FixedArray::kLengthOffset));
1830 
1831   Label arguments_loop, arguments_test;
1832   __ SmiScale(t2, a6, kPointerSizeLog2);
1833   __ Dsubu(a3, a3, Operand(t2));
1834   __ jmp(&arguments_test);
1835 
1836   __ bind(&arguments_loop);
1837   __ Dsubu(a3, a3, Operand(kPointerSize));
1838   __ ld(a4, MemOperand(a3, 0));
1839   __ SmiScale(t2, a6, kPointerSizeLog2);
1840   __ Daddu(t1, a1, Operand(t2));
1841   __ sd(a4, FieldMemOperand(t1, FixedArray::kHeaderSize));
1842   __ Daddu(a6, a6, Operand(Smi::FromInt(1)));
1843 
1844   __ bind(&arguments_test);
1845   __ Branch(&arguments_loop, lt, a6, Operand(a5));
1846 
1847   // Return.
1848   __ Ret();
1849 
1850   // Do the runtime call to allocate the arguments object.
1851   // a5 = argument count (tagged)
1852   __ bind(&runtime);
1853   __ Push(a1, a3, a5);
1854   __ TailCallRuntime(Runtime::kNewSloppyArguments);
1855 }
1856 
1857 
Generate(MacroAssembler * masm)1858 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
1859   // Return address is in ra.
1860   Label slow;
1861 
1862   Register receiver = LoadDescriptor::ReceiverRegister();
1863   Register key = LoadDescriptor::NameRegister();
1864 
1865   // Check that the key is an array index, that is Uint32.
1866   __ And(t0, key, Operand(kSmiTagMask | kSmiSignMask));
1867   __ Branch(&slow, ne, t0, Operand(zero_reg));
1868 
1869   // Everything is fine, call runtime.
1870   __ Push(receiver, key);  // Receiver, key.
1871 
1872   // Perform tail call to the entry.
1873   __ TailCallRuntime(Runtime::kLoadElementWithInterceptor);
1874 
1875   __ bind(&slow);
1876   PropertyAccessCompiler::TailCallBuiltin(
1877       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1878 }
1879 
1880 
GenerateNewStrict(MacroAssembler * masm)1881 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1882   // a1 : function
1883   // a2 : number of parameters (tagged)
1884   // a3 : parameters pointer
1885 
1886   DCHECK(a1.is(ArgumentsAccessNewDescriptor::function()));
1887   DCHECK(a2.is(ArgumentsAccessNewDescriptor::parameter_count()));
1888   DCHECK(a3.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
1889 
1890   // Check if the calling frame is an arguments adaptor frame.
1891   Label try_allocate, runtime;
1892   __ ld(a4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1893   __ ld(a0, MemOperand(a4, StandardFrameConstants::kContextOffset));
1894   __ Branch(&try_allocate, ne, a0,
1895             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1896 
1897   // Patch the arguments.length and the parameters pointer.
1898   __ ld(a2, MemOperand(a4, ArgumentsAdaptorFrameConstants::kLengthOffset));
1899   __ SmiScale(at, a2, kPointerSizeLog2);
1900   __ Daddu(a4, a4, Operand(at));
1901   __ Daddu(a3, a4, Operand(StandardFrameConstants::kCallerSPOffset));
1902 
1903   // Try the new space allocation. Start out with computing the size
1904   // of the arguments object and the elements array in words.
1905   Label add_arguments_object;
1906   __ bind(&try_allocate);
1907   __ SmiUntag(t1, a2);
1908   __ Branch(&add_arguments_object, eq, a2, Operand(zero_reg));
1909 
1910   __ Daddu(t1, t1, Operand(FixedArray::kHeaderSize / kPointerSize));
1911   __ bind(&add_arguments_object);
1912   __ Daddu(t1, t1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
1913 
1914   // Do the allocation of both objects in one go.
1915   __ Allocate(t1, v0, a4, a5, &runtime,
1916               static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
1917 
1918   // Get the arguments boilerplate from the current native context.
1919   __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, a4);
1920 
1921   __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
1922   __ LoadRoot(a5, Heap::kEmptyFixedArrayRootIndex);
1923   __ sd(a5, FieldMemOperand(v0, JSObject::kPropertiesOffset));
1924   __ sd(a5, FieldMemOperand(v0, JSObject::kElementsOffset));
1925 
1926   // Get the length (smi tagged) and set that as an in-object property too.
1927   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1928   __ AssertSmi(a2);
1929   __ sd(a2,
1930         FieldMemOperand(v0, JSObject::kHeaderSize +
1931                                 Heap::kArgumentsLengthIndex * kPointerSize));
1932 
1933   Label done;
1934   __ Branch(&done, eq, a2, Operand(zero_reg));
1935 
1936   // Set up the elements pointer in the allocated arguments object and
1937   // initialize the header in the elements fixed array.
1938   __ Daddu(a4, v0, Operand(Heap::kStrictArgumentsObjectSize));
1939   __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
1940   __ LoadRoot(a5, Heap::kFixedArrayMapRootIndex);
1941   __ sd(a5, FieldMemOperand(a4, FixedArray::kMapOffset));
1942   __ sd(a2, FieldMemOperand(a4, FixedArray::kLengthOffset));
1943   __ SmiUntag(a2);
1944 
1945   // Copy the fixed array slots.
1946   Label loop;
1947   // Set up a4 to point to the first array slot.
1948   __ Daddu(a4, a4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
1949   __ bind(&loop);
1950   // Pre-decrement a3 with kPointerSize on each iteration.
1951   // Pre-decrement in order to skip receiver.
1952   __ Daddu(a3, a3, Operand(-kPointerSize));
1953   __ ld(a5, MemOperand(a3));
1954   // Post-increment a4 with kPointerSize on each iteration.
1955   __ sd(a5, MemOperand(a4));
1956   __ Daddu(a4, a4, Operand(kPointerSize));
1957   __ Dsubu(a2, a2, Operand(1));
1958   __ Branch(&loop, ne, a2, Operand(zero_reg));
1959 
1960   // Return.
1961   __ bind(&done);
1962   __ Ret();
1963 
1964   // Do the runtime call to allocate the arguments object.
1965   __ bind(&runtime);
1966   __ Push(a1, a3, a2);
1967   __ TailCallRuntime(Runtime::kNewStrictArguments);
1968 }
1969 
1970 
GenerateNew(MacroAssembler * masm)1971 void RestParamAccessStub::GenerateNew(MacroAssembler* masm) {
1972   // a2 : number of parameters (tagged)
1973   // a3 : parameters pointer
1974   // a4 : rest parameter index (tagged)
1975   // Check if the calling frame is an arguments adaptor frame.
1976 
1977   Label runtime;
1978   __ ld(a0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1979   __ ld(a5, MemOperand(a0, StandardFrameConstants::kContextOffset));
1980   __ Branch(&runtime, ne, a5,
1981             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1982 
1983   // Patch the arguments.length and the parameters pointer.
1984   __ ld(a2, MemOperand(a0, ArgumentsAdaptorFrameConstants::kLengthOffset));
1985   __ SmiScale(at, a2, kPointerSizeLog2);
1986 
1987   __ Daddu(a3, a0, Operand(at));
1988   __ Daddu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
1989 
1990   // Do the runtime call to allocate the arguments object.
1991   __ bind(&runtime);
1992   __ Push(a2, a3, a4);
1993   __ TailCallRuntime(Runtime::kNewRestParam);
1994 }
1995 
1996 
Generate(MacroAssembler * masm)1997 void RegExpExecStub::Generate(MacroAssembler* masm) {
1998   // Just jump directly to runtime if native RegExp is not selected at compile
1999   // time or if regexp entry in generated code is turned off runtime switch or
2000   // at compilation.
2001 #ifdef V8_INTERPRETED_REGEXP
2002   __ TailCallRuntime(Runtime::kRegExpExec);
2003 #else  // V8_INTERPRETED_REGEXP
2004 
2005   // Stack frame on entry.
2006   //  sp[0]: last_match_info (expected JSArray)
2007   //  sp[4]: previous index
2008   //  sp[8]: subject string
2009   //  sp[12]: JSRegExp object
2010 
2011   const int kLastMatchInfoOffset = 0 * kPointerSize;
2012   const int kPreviousIndexOffset = 1 * kPointerSize;
2013   const int kSubjectOffset = 2 * kPointerSize;
2014   const int kJSRegExpOffset = 3 * kPointerSize;
2015 
2016   Label runtime;
2017   // Allocation of registers for this function. These are in callee save
2018   // registers and will be preserved by the call to the native RegExp code, as
2019   // this code is called using the normal C calling convention. When calling
2020   // directly from generated code the native RegExp code will not do a GC and
2021   // therefore the content of these registers are safe to use after the call.
2022   // MIPS - using s0..s2, since we are not using CEntry Stub.
2023   Register subject = s0;
2024   Register regexp_data = s1;
2025   Register last_match_info_elements = s2;
2026 
2027   // Ensure that a RegExp stack is allocated.
2028   ExternalReference address_of_regexp_stack_memory_address =
2029       ExternalReference::address_of_regexp_stack_memory_address(
2030           isolate());
2031   ExternalReference address_of_regexp_stack_memory_size =
2032       ExternalReference::address_of_regexp_stack_memory_size(isolate());
2033   __ li(a0, Operand(address_of_regexp_stack_memory_size));
2034   __ ld(a0, MemOperand(a0, 0));
2035   __ Branch(&runtime, eq, a0, Operand(zero_reg));
2036 
2037   // Check that the first argument is a JSRegExp object.
2038   __ ld(a0, MemOperand(sp, kJSRegExpOffset));
2039   STATIC_ASSERT(kSmiTag == 0);
2040   __ JumpIfSmi(a0, &runtime);
2041   __ GetObjectType(a0, a1, a1);
2042   __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
2043 
2044   // Check that the RegExp has been compiled (data contains a fixed array).
2045   __ ld(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
2046   if (FLAG_debug_code) {
2047     __ SmiTst(regexp_data, a4);
2048     __ Check(nz,
2049              kUnexpectedTypeForRegExpDataFixedArrayExpected,
2050              a4,
2051              Operand(zero_reg));
2052     __ GetObjectType(regexp_data, a0, a0);
2053     __ Check(eq,
2054              kUnexpectedTypeForRegExpDataFixedArrayExpected,
2055              a0,
2056              Operand(FIXED_ARRAY_TYPE));
2057   }
2058 
2059   // regexp_data: RegExp data (FixedArray)
2060   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
2061   __ ld(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
2062   __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
2063 
2064   // regexp_data: RegExp data (FixedArray)
2065   // Check that the number of captures fit in the static offsets vector buffer.
2066   __ ld(a2,
2067          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2068   // Check (number_of_captures + 1) * 2 <= offsets vector size
2069   // Or          number_of_captures * 2 <= offsets vector size - 2
2070   // Or          number_of_captures     <= offsets vector size / 2 - 1
2071   // Multiplying by 2 comes for free since a2 is smi-tagged.
2072   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
2073   int temp = Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1;
2074   __ Branch(&runtime, hi, a2, Operand(Smi::FromInt(temp)));
2075 
2076   // Reset offset for possibly sliced string.
2077   __ mov(t0, zero_reg);
2078   __ ld(subject, MemOperand(sp, kSubjectOffset));
2079   __ JumpIfSmi(subject, &runtime);
2080   __ mov(a3, subject);  // Make a copy of the original subject string.
2081   __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2082   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2083   // subject: subject string
2084   // a3: subject string
2085   // a0: subject string instance type
2086   // regexp_data: RegExp data (FixedArray)
2087   // Handle subject string according to its encoding and representation:
2088   // (1) Sequential string?  If yes, go to (5).
2089   // (2) Anything but sequential or cons?  If yes, go to (6).
2090   // (3) Cons string.  If the string is flat, replace subject with first string.
2091   //     Otherwise bailout.
2092   // (4) Is subject external?  If yes, go to (7).
2093   // (5) Sequential string.  Load regexp code according to encoding.
2094   // (E) Carry on.
2095   /// [...]
2096 
2097   // Deferred code at the end of the stub:
2098   // (6) Not a long external string?  If yes, go to (8).
2099   // (7) External string.  Make it, offset-wise, look like a sequential string.
2100   //     Go to (5).
2101   // (8) Short external string or not a string?  If yes, bail out to runtime.
2102   // (9) Sliced string.  Replace subject with parent.  Go to (4).
2103 
2104   Label check_underlying;   // (4)
2105   Label seq_string;         // (5)
2106   Label not_seq_nor_cons;   // (6)
2107   Label external_string;    // (7)
2108   Label not_long_external;  // (8)
2109 
2110   // (1) Sequential string?  If yes, go to (5).
2111   __ And(a1,
2112          a0,
2113          Operand(kIsNotStringMask |
2114                  kStringRepresentationMask |
2115                  kShortExternalStringMask));
2116   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
2117   __ Branch(&seq_string, eq, a1, Operand(zero_reg));  // Go to (5).
2118 
2119   // (2) Anything but sequential or cons?  If yes, go to (6).
2120   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2121   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2122   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2123   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2124   // Go to (6).
2125   __ Branch(&not_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
2126 
2127   // (3) Cons string.  Check that it's flat.
2128   // Replace subject with first string and reload instance type.
2129   __ ld(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
2130   __ LoadRoot(a1, Heap::kempty_stringRootIndex);
2131   __ Branch(&runtime, ne, a0, Operand(a1));
2132   __ ld(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2133 
2134   // (4) Is subject external?  If yes, go to (7).
2135   __ bind(&check_underlying);
2136   __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2137   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2138   STATIC_ASSERT(kSeqStringTag == 0);
2139   __ And(at, a0, Operand(kStringRepresentationMask));
2140   // The underlying external string is never a short external string.
2141   STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
2142   STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2143   __ Branch(&external_string, ne, at, Operand(zero_reg));  // Go to (7).
2144 
2145   // (5) Sequential string.  Load regexp code according to encoding.
2146   __ bind(&seq_string);
2147   // subject: sequential subject string (or look-alike, external string)
2148   // a3: original subject string
2149   // Load previous index and check range before a3 is overwritten.  We have to
2150   // use a3 instead of subject here because subject might have been only made
2151   // to look like a sequential string when it actually is an external string.
2152   __ ld(a1, MemOperand(sp, kPreviousIndexOffset));
2153   __ JumpIfNotSmi(a1, &runtime);
2154   __ ld(a3, FieldMemOperand(a3, String::kLengthOffset));
2155   __ Branch(&runtime, ls, a3, Operand(a1));
2156   __ SmiUntag(a1);
2157 
2158   STATIC_ASSERT(kStringEncodingMask == 4);
2159   STATIC_ASSERT(kOneByteStringTag == 4);
2160   STATIC_ASSERT(kTwoByteStringTag == 0);
2161   __ And(a0, a0, Operand(kStringEncodingMask));  // Non-zero for one_byte.
2162   __ ld(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
2163   __ dsra(a3, a0, 2);  // a3 is 1 for one_byte, 0 for UC16 (used below).
2164   __ ld(a5, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
2165   __ Movz(t9, a5, a0);  // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
2166 
2167   // (E) Carry on.  String handling is done.
2168   // t9: irregexp code
2169   // Check that the irregexp code has been generated for the actual string
2170   // encoding. If it has, the field contains a code object otherwise it contains
2171   // a smi (code flushing support).
2172   __ JumpIfSmi(t9, &runtime);
2173 
2174   // a1: previous index
2175   // a3: encoding of subject string (1 if one_byte, 0 if two_byte);
2176   // t9: code
2177   // subject: Subject string
2178   // regexp_data: RegExp data (FixedArray)
2179   // All checks done. Now push arguments for native regexp code.
2180   __ IncrementCounter(isolate()->counters()->regexp_entry_native(),
2181                       1, a0, a2);
2182 
2183   // Isolates: note we add an additional parameter here (isolate pointer).
2184   const int kRegExpExecuteArguments = 9;
2185   const int kParameterRegisters = (kMipsAbi == kN64) ? 8 : 4;
2186   __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
2187 
2188   // Stack pointer now points to cell where return address is to be written.
2189   // Arguments are before that on the stack or in registers, meaning we
2190   // treat the return address as argument 5. Thus every argument after that
2191   // needs to be shifted back by 1. Since DirectCEntryStub will handle
2192   // allocating space for the c argument slots, we don't need to calculate
2193   // that into the argument positions on the stack. This is how the stack will
2194   // look (sp meaning the value of sp at this moment):
2195   // Abi n64:
2196   //   [sp + 1] - Argument 9
2197   //   [sp + 0] - saved ra
2198   // Abi O32:
2199   //   [sp + 5] - Argument 9
2200   //   [sp + 4] - Argument 8
2201   //   [sp + 3] - Argument 7
2202   //   [sp + 2] - Argument 6
2203   //   [sp + 1] - Argument 5
2204   //   [sp + 0] - saved ra
2205 
2206   if (kMipsAbi == kN64) {
2207     // Argument 9: Pass current isolate address.
2208     __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
2209     __ sd(a0, MemOperand(sp, 1 * kPointerSize));
2210 
2211     // Argument 8: Indicate that this is a direct call from JavaScript.
2212     __ li(a7, Operand(1));
2213 
2214     // Argument 7: Start (high end) of backtracking stack memory area.
2215     __ li(a0, Operand(address_of_regexp_stack_memory_address));
2216     __ ld(a0, MemOperand(a0, 0));
2217     __ li(a2, Operand(address_of_regexp_stack_memory_size));
2218     __ ld(a2, MemOperand(a2, 0));
2219     __ daddu(a6, a0, a2);
2220 
2221     // Argument 6: Set the number of capture registers to zero to force global
2222     // regexps to behave as non-global. This does not affect non-global regexps.
2223     __ mov(a5, zero_reg);
2224 
2225     // Argument 5: static offsets vector buffer.
2226     __ li(a4, Operand(
2227           ExternalReference::address_of_static_offsets_vector(isolate())));
2228   } else {  // O32.
2229     DCHECK(kMipsAbi == kO32);
2230 
2231     // Argument 9: Pass current isolate address.
2232     // CFunctionArgumentOperand handles MIPS stack argument slots.
2233     __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
2234     __ sd(a0, MemOperand(sp, 5 * kPointerSize));
2235 
2236     // Argument 8: Indicate that this is a direct call from JavaScript.
2237     __ li(a0, Operand(1));
2238     __ sd(a0, MemOperand(sp, 4 * kPointerSize));
2239 
2240     // Argument 7: Start (high end) of backtracking stack memory area.
2241     __ li(a0, Operand(address_of_regexp_stack_memory_address));
2242     __ ld(a0, MemOperand(a0, 0));
2243     __ li(a2, Operand(address_of_regexp_stack_memory_size));
2244     __ ld(a2, MemOperand(a2, 0));
2245     __ daddu(a0, a0, a2);
2246     __ sd(a0, MemOperand(sp, 3 * kPointerSize));
2247 
2248     // Argument 6: Set the number of capture registers to zero to force global
2249     // regexps to behave as non-global. This does not affect non-global regexps.
2250     __ mov(a0, zero_reg);
2251     __ sd(a0, MemOperand(sp, 2 * kPointerSize));
2252 
2253     // Argument 5: static offsets vector buffer.
2254     __ li(a0, Operand(
2255           ExternalReference::address_of_static_offsets_vector(isolate())));
2256     __ sd(a0, MemOperand(sp, 1 * kPointerSize));
2257   }
2258 
2259   // For arguments 4 and 3 get string length, calculate start of string data
2260   // and calculate the shift of the index (0 for one_byte and 1 for two byte).
2261   __ Daddu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
2262   __ Xor(a3, a3, Operand(1));  // 1 for 2-byte str, 0 for 1-byte.
2263   // Load the length from the original subject string from the previous stack
2264   // frame. Therefore we have to use fp, which points exactly to two pointer
2265   // sizes below the previous sp. (Because creating a new stack frame pushes
2266   // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
2267   __ ld(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
2268   // If slice offset is not 0, load the length from the original sliced string.
2269   // Argument 4, a3: End of string data
2270   // Argument 3, a2: Start of string data
2271   // Prepare start and end index of the input.
2272   __ dsllv(t1, t0, a3);
2273   __ daddu(t0, t2, t1);
2274   __ dsllv(t1, a1, a3);
2275   __ daddu(a2, t0, t1);
2276 
2277   __ ld(t2, FieldMemOperand(subject, String::kLengthOffset));
2278 
2279   __ SmiUntag(t2);
2280   __ dsllv(t1, t2, a3);
2281   __ daddu(a3, t0, t1);
2282   // Argument 2 (a1): Previous index.
2283   // Already there
2284 
2285   // Argument 1 (a0): Subject string.
2286   __ mov(a0, subject);
2287 
2288   // Locate the code entry and call it.
2289   __ Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
2290   DirectCEntryStub stub(isolate());
2291   stub.GenerateCall(masm, t9);
2292 
2293   __ LeaveExitFrame(false, no_reg, true);
2294 
2295   // v0: result
2296   // subject: subject string (callee saved)
2297   // regexp_data: RegExp data (callee saved)
2298   // last_match_info_elements: Last match info elements (callee saved)
2299   // Check the result.
2300   Label success;
2301   __ Branch(&success, eq, v0, Operand(1));
2302   // We expect exactly one result since we force the called regexp to behave
2303   // as non-global.
2304   Label failure;
2305   __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
2306   // If not exception it can only be retry. Handle that in the runtime system.
2307   __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
2308   // Result must now be exception. If there is no pending exception already a
2309   // stack overflow (on the backtrack stack) was detected in RegExp code but
2310   // haven't created the exception yet. Handle that in the runtime system.
2311   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
2312   __ li(a1, Operand(isolate()->factory()->the_hole_value()));
2313   __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2314                                       isolate())));
2315   __ ld(v0, MemOperand(a2, 0));
2316   __ Branch(&runtime, eq, v0, Operand(a1));
2317 
2318   // For exception, throw the exception again.
2319   __ TailCallRuntime(Runtime::kRegExpExecReThrow);
2320 
2321   __ bind(&failure);
2322   // For failure and exception return null.
2323   __ li(v0, Operand(isolate()->factory()->null_value()));
2324   __ DropAndRet(4);
2325 
2326   // Process the result from the native regexp code.
2327   __ bind(&success);
2328 
2329   __ lw(a1, UntagSmiFieldMemOperand(
2330       regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2331   // Calculate number of capture registers (number_of_captures + 1) * 2.
2332   __ Daddu(a1, a1, Operand(1));
2333   __ dsll(a1, a1, 1);  // Multiply by 2.
2334 
2335   __ ld(a0, MemOperand(sp, kLastMatchInfoOffset));
2336   __ JumpIfSmi(a0, &runtime);
2337   __ GetObjectType(a0, a2, a2);
2338   __ Branch(&runtime, ne, a2, Operand(JS_ARRAY_TYPE));
2339   // Check that the JSArray is in fast case.
2340   __ ld(last_match_info_elements,
2341         FieldMemOperand(a0, JSArray::kElementsOffset));
2342   __ ld(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
2343   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
2344   __ Branch(&runtime, ne, a0, Operand(at));
2345   // Check that the last match info has space for the capture registers and the
2346   // additional information.
2347   __ ld(a0,
2348         FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
2349   __ Daddu(a2, a1, Operand(RegExpImpl::kLastMatchOverhead));
2350 
2351   __ SmiUntag(at, a0);
2352   __ Branch(&runtime, gt, a2, Operand(at));
2353 
2354   // a1: number of capture registers
2355   // subject: subject string
2356   // Store the capture count.
2357   __ SmiTag(a2, a1);  // To smi.
2358   __ sd(a2, FieldMemOperand(last_match_info_elements,
2359                              RegExpImpl::kLastCaptureCountOffset));
2360   // Store last subject and last input.
2361   __ sd(subject,
2362          FieldMemOperand(last_match_info_elements,
2363                          RegExpImpl::kLastSubjectOffset));
2364   __ mov(a2, subject);
2365   __ RecordWriteField(last_match_info_elements,
2366                       RegExpImpl::kLastSubjectOffset,
2367                       subject,
2368                       a7,
2369                       kRAHasNotBeenSaved,
2370                       kDontSaveFPRegs);
2371   __ mov(subject, a2);
2372   __ sd(subject,
2373          FieldMemOperand(last_match_info_elements,
2374                          RegExpImpl::kLastInputOffset));
2375   __ RecordWriteField(last_match_info_elements,
2376                       RegExpImpl::kLastInputOffset,
2377                       subject,
2378                       a7,
2379                       kRAHasNotBeenSaved,
2380                       kDontSaveFPRegs);
2381 
2382   // Get the static offsets vector filled by the native regexp code.
2383   ExternalReference address_of_static_offsets_vector =
2384       ExternalReference::address_of_static_offsets_vector(isolate());
2385   __ li(a2, Operand(address_of_static_offsets_vector));
2386 
2387   // a1: number of capture registers
2388   // a2: offsets vector
2389   Label next_capture, done;
2390   // Capture register counter starts from number of capture registers and
2391   // counts down until wrapping after zero.
2392   __ Daddu(a0,
2393          last_match_info_elements,
2394          Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
2395   __ bind(&next_capture);
2396   __ Dsubu(a1, a1, Operand(1));
2397   __ Branch(&done, lt, a1, Operand(zero_reg));
2398   // Read the value from the static offsets vector buffer.
2399   __ lw(a3, MemOperand(a2, 0));
2400   __ daddiu(a2, a2, kIntSize);
2401   // Store the smi value in the last match info.
2402   __ SmiTag(a3);
2403   __ sd(a3, MemOperand(a0, 0));
2404   __ Branch(&next_capture, USE_DELAY_SLOT);
2405   __ daddiu(a0, a0, kPointerSize);  // In branch delay slot.
2406 
2407   __ bind(&done);
2408 
2409   // Return last match info.
2410   __ ld(v0, MemOperand(sp, kLastMatchInfoOffset));
2411   __ DropAndRet(4);
2412 
2413   // Do the runtime call to execute the regexp.
2414   __ bind(&runtime);
2415   __ TailCallRuntime(Runtime::kRegExpExec);
2416 
2417   // Deferred code for string handling.
2418   // (6) Not a long external string?  If yes, go to (8).
2419   __ bind(&not_seq_nor_cons);
2420   // Go to (8).
2421   __ Branch(&not_long_external, gt, a1, Operand(kExternalStringTag));
2422 
2423   // (7) External string.  Make it, offset-wise, look like a sequential string.
2424   __ bind(&external_string);
2425   __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2426   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2427   if (FLAG_debug_code) {
2428     // Assert that we do not have a cons or slice (indirect strings) here.
2429     // Sequential strings have already been ruled out.
2430     __ And(at, a0, Operand(kIsIndirectStringMask));
2431     __ Assert(eq,
2432               kExternalStringExpectedButNotFound,
2433               at,
2434               Operand(zero_reg));
2435   }
2436   __ ld(subject,
2437         FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2438   // Move the pointer so that offset-wise, it looks like a sequential string.
2439   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2440   __ Dsubu(subject,
2441           subject,
2442           SeqTwoByteString::kHeaderSize - kHeapObjectTag);
2443   __ jmp(&seq_string);    // Go to (5).
2444 
2445   // (8) Short external string or not a string?  If yes, bail out to runtime.
2446   __ bind(&not_long_external);
2447   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
2448   __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
2449   __ Branch(&runtime, ne, at, Operand(zero_reg));
2450 
2451   // (9) Sliced string.  Replace subject with parent.  Go to (4).
2452   // Load offset into t0 and replace subject string with parent.
2453   __ ld(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
2454   __ SmiUntag(t0);
2455   __ ld(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
2456   __ jmp(&check_underlying);  // Go to (4).
2457 #endif  // V8_INTERPRETED_REGEXP
2458 }
2459 
2460 
CallStubInRecordCallTarget(MacroAssembler * masm,CodeStub * stub)2461 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
2462   // a0 : number of arguments to the construct function
2463   // a2 : feedback vector
2464   // a3 : slot in feedback vector (Smi)
2465   // a1 : the function to call
2466   FrameScope scope(masm, StackFrame::INTERNAL);
2467   const RegList kSavedRegs = 1 << 4 |  // a0
2468                              1 << 5 |  // a1
2469                              1 << 6 |  // a2
2470                              1 << 7;   // a3
2471 
2472 
2473   // Number-of-arguments register must be smi-tagged to call out.
2474   __ SmiTag(a0);
2475   __ MultiPush(kSavedRegs);
2476 
2477   __ CallStub(stub);
2478 
2479   __ MultiPop(kSavedRegs);
2480   __ SmiUntag(a0);
2481 }
2482 
2483 
GenerateRecordCallTarget(MacroAssembler * masm)2484 static void GenerateRecordCallTarget(MacroAssembler* masm) {
2485   // Cache the called function in a feedback vector slot.  Cache states
2486   // are uninitialized, monomorphic (indicated by a JSFunction), and
2487   // megamorphic.
2488   // a0 : number of arguments to the construct function
2489   // a1 : the function to call
2490   // a2 : feedback vector
2491   // a3 : slot in feedback vector (Smi)
2492   Label initialize, done, miss, megamorphic, not_array_function;
2493 
2494   DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2495             masm->isolate()->heap()->megamorphic_symbol());
2496   DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2497             masm->isolate()->heap()->uninitialized_symbol());
2498 
2499   // Load the cache state into a5.
2500   __ dsrl(a5, a3, 32 - kPointerSizeLog2);
2501   __ Daddu(a5, a2, Operand(a5));
2502   __ ld(a5, FieldMemOperand(a5, FixedArray::kHeaderSize));
2503 
2504   // A monomorphic cache hit or an already megamorphic state: invoke the
2505   // function without changing the state.
2506   // We don't know if a5 is a WeakCell or a Symbol, but it's harmless to read at
2507   // this position in a symbol (see static asserts in type-feedback-vector.h).
2508   Label check_allocation_site;
2509   Register feedback_map = a6;
2510   Register weak_value = t0;
2511   __ ld(weak_value, FieldMemOperand(a5, WeakCell::kValueOffset));
2512   __ Branch(&done, eq, a1, Operand(weak_value));
2513   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
2514   __ Branch(&done, eq, a5, Operand(at));
2515   __ ld(feedback_map, FieldMemOperand(a5, HeapObject::kMapOffset));
2516   __ LoadRoot(at, Heap::kWeakCellMapRootIndex);
2517   __ Branch(&check_allocation_site, ne, feedback_map, Operand(at));
2518 
2519   // If the weak cell is cleared, we have a new chance to become monomorphic.
2520   __ JumpIfSmi(weak_value, &initialize);
2521   __ jmp(&megamorphic);
2522 
2523   __ bind(&check_allocation_site);
2524   // If we came here, we need to see if we are the array function.
2525   // If we didn't have a matching function, and we didn't find the megamorph
2526   // sentinel, then we have in the slot either some other function or an
2527   // AllocationSite.
2528   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2529   __ Branch(&miss, ne, feedback_map, Operand(at));
2530 
2531   // Make sure the function is the Array() function
2532   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a5);
2533   __ Branch(&megamorphic, ne, a1, Operand(a5));
2534   __ jmp(&done);
2535 
2536   __ bind(&miss);
2537 
2538   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2539   // megamorphic.
2540   __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
2541   __ Branch(&initialize, eq, a5, Operand(at));
2542   // MegamorphicSentinel is an immortal immovable object (undefined) so no
2543   // write-barrier is needed.
2544   __ bind(&megamorphic);
2545   __ dsrl(a5, a3, 32 - kPointerSizeLog2);
2546   __ Daddu(a5, a2, Operand(a5));
2547   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
2548   __ sd(at, FieldMemOperand(a5, FixedArray::kHeaderSize));
2549   __ jmp(&done);
2550 
2551   // An uninitialized cache is patched with the function.
2552   __ bind(&initialize);
2553   // Make sure the function is the Array() function.
2554   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a5);
2555   __ Branch(&not_array_function, ne, a1, Operand(a5));
2556 
2557   // The target function is the Array constructor,
2558   // Create an AllocationSite if we don't already have it, store it in the
2559   // slot.
2560   CreateAllocationSiteStub create_stub(masm->isolate());
2561   CallStubInRecordCallTarget(masm, &create_stub);
2562   __ Branch(&done);
2563 
2564   __ bind(&not_array_function);
2565 
2566   CreateWeakCellStub weak_cell_stub(masm->isolate());
2567   CallStubInRecordCallTarget(masm, &weak_cell_stub);
2568   __ bind(&done);
2569 }
2570 
2571 
Generate(MacroAssembler * masm)2572 void CallConstructStub::Generate(MacroAssembler* masm) {
2573   // a0 : number of arguments
2574   // a1 : the function to call
2575   // a2 : feedback vector
2576   // a3 : slot in feedback vector (Smi, for RecordCallTarget)
2577 
2578   Label non_function;
2579   // Check that the function is not a smi.
2580   __ JumpIfSmi(a1, &non_function);
2581   // Check that the function is a JSFunction.
2582   __ GetObjectType(a1, a5, a5);
2583   __ Branch(&non_function, ne, a5, Operand(JS_FUNCTION_TYPE));
2584 
2585   GenerateRecordCallTarget(masm);
2586 
2587   __ dsrl(at, a3, 32 - kPointerSizeLog2);
2588   __ Daddu(a5, a2, at);
2589   Label feedback_register_initialized;
2590   // Put the AllocationSite from the feedback vector into a2, or undefined.
2591   __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize));
2592   __ ld(a5, FieldMemOperand(a2, AllocationSite::kMapOffset));
2593   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2594   __ Branch(&feedback_register_initialized, eq, a5, Operand(at));
2595   __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
2596   __ bind(&feedback_register_initialized);
2597 
2598   __ AssertUndefinedOrAllocationSite(a2, a5);
2599 
2600   // Pass function as new target.
2601   __ mov(a3, a1);
2602 
2603   // Tail call to the function-specific construct stub (still in the caller
2604   // context at this point).
2605   __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2606   __ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kConstructStubOffset));
2607   __ Daddu(at, a4, Operand(Code::kHeaderSize - kHeapObjectTag));
2608   __ Jump(at);
2609 
2610   __ bind(&non_function);
2611   __ mov(a3, a1);
2612   __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
2613 }
2614 
2615 
2616 // StringCharCodeAtGenerator.
GenerateFast(MacroAssembler * masm)2617 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2618   DCHECK(!a4.is(index_));
2619   DCHECK(!a4.is(result_));
2620   DCHECK(!a4.is(object_));
2621 
2622   // If the receiver is a smi trigger the non-string case.
2623   if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2624     __ JumpIfSmi(object_, receiver_not_string_);
2625 
2626     // Fetch the instance type of the receiver into result register.
2627     __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2628     __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2629     // If the receiver is not a string trigger the non-string case.
2630     __ And(a4, result_, Operand(kIsNotStringMask));
2631     __ Branch(receiver_not_string_, ne, a4, Operand(zero_reg));
2632   }
2633 
2634   // If the index is non-smi trigger the non-smi case.
2635   __ JumpIfNotSmi(index_, &index_not_smi_);
2636 
2637   __ bind(&got_smi_index_);
2638 
2639   // Check for index out of range.
2640   __ ld(a4, FieldMemOperand(object_, String::kLengthOffset));
2641   __ Branch(index_out_of_range_, ls, a4, Operand(index_));
2642 
2643   __ SmiUntag(index_);
2644 
2645   StringCharLoadGenerator::Generate(masm,
2646                                     object_,
2647                                     index_,
2648                                     result_,
2649                                     &call_runtime_);
2650 
2651   __ SmiTag(result_);
2652   __ bind(&exit_);
2653 }
2654 
2655 
HandleArrayCase(MacroAssembler * masm,Label * miss)2656 void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
2657   // a1 - function
2658   // a3 - slot id
2659   // a2 - vector
2660   // a4 - allocation site (loaded from vector[slot])
2661   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, at);
2662   __ Branch(miss, ne, a1, Operand(at));
2663 
2664   __ li(a0, Operand(arg_count()));
2665 
2666   // Increment the call count for monomorphic function calls.
2667   __ dsrl(t0, a3, 32 - kPointerSizeLog2);
2668   __ Daddu(a3, a2, Operand(t0));
2669   __ ld(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
2670   __ Daddu(t0, t0, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2671   __ sd(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
2672 
2673   __ mov(a2, a4);
2674   __ mov(a3, a1);
2675   ArrayConstructorStub stub(masm->isolate(), arg_count());
2676   __ TailCallStub(&stub);
2677 }
2678 
2679 
Generate(MacroAssembler * masm)2680 void CallICStub::Generate(MacroAssembler* masm) {
2681   // a1 - function
2682   // a3 - slot id (Smi)
2683   // a2 - vector
2684   Label extra_checks_or_miss, call, call_function;
2685   int argc = arg_count();
2686   ParameterCount actual(argc);
2687 
2688   // The checks. First, does r1 match the recorded monomorphic target?
2689   __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2690   __ Daddu(a4, a2, Operand(a4));
2691   __ ld(a4, FieldMemOperand(a4, FixedArray::kHeaderSize));
2692 
2693   // We don't know that we have a weak cell. We might have a private symbol
2694   // or an AllocationSite, but the memory is safe to examine.
2695   // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
2696   // FixedArray.
2697   // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
2698   // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
2699   // computed, meaning that it can't appear to be a pointer. If the low bit is
2700   // 0, then hash is computed, but the 0 bit prevents the field from appearing
2701   // to be a pointer.
2702   STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
2703   STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
2704                     WeakCell::kValueOffset &&
2705                 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
2706 
2707   __ ld(a5, FieldMemOperand(a4, WeakCell::kValueOffset));
2708   __ Branch(&extra_checks_or_miss, ne, a1, Operand(a5));
2709 
2710   // The compare above could have been a SMI/SMI comparison. Guard against this
2711   // convincing us that we have a monomorphic JSFunction.
2712   __ JumpIfSmi(a1, &extra_checks_or_miss);
2713 
2714   // Increment the call count for monomorphic function calls.
2715   __ dsrl(t0, a3, 32 - kPointerSizeLog2);
2716   __ Daddu(a3, a2, Operand(t0));
2717   __ ld(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
2718   __ Daddu(t0, t0, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2719   __ sd(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
2720 
2721   __ bind(&call_function);
2722   __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode()),
2723           RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg),
2724           USE_DELAY_SLOT);
2725   __ li(a0, Operand(argc));  // In delay slot.
2726 
2727   __ bind(&extra_checks_or_miss);
2728   Label uninitialized, miss, not_allocation_site;
2729 
2730   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
2731   __ Branch(&call, eq, a4, Operand(at));
2732 
2733   // Verify that a4 contains an AllocationSite
2734   __ ld(a5, FieldMemOperand(a4, HeapObject::kMapOffset));
2735   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2736   __ Branch(&not_allocation_site, ne, a5, Operand(at));
2737 
2738   HandleArrayCase(masm, &miss);
2739 
2740   __ bind(&not_allocation_site);
2741 
2742   // The following cases attempt to handle MISS cases without going to the
2743   // runtime.
2744   if (FLAG_trace_ic) {
2745     __ Branch(&miss);
2746   }
2747 
2748   __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
2749   __ Branch(&uninitialized, eq, a4, Operand(at));
2750 
2751   // We are going megamorphic. If the feedback is a JSFunction, it is fine
2752   // to handle it here. More complex cases are dealt with in the runtime.
2753   __ AssertNotSmi(a4);
2754   __ GetObjectType(a4, a5, a5);
2755   __ Branch(&miss, ne, a5, Operand(JS_FUNCTION_TYPE));
2756   __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2757   __ Daddu(a4, a2, Operand(a4));
2758   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
2759   __ sd(at, FieldMemOperand(a4, FixedArray::kHeaderSize));
2760 
2761   __ bind(&call);
2762   __ Jump(masm->isolate()->builtins()->Call(convert_mode()),
2763           RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg),
2764           USE_DELAY_SLOT);
2765   __ li(a0, Operand(argc));  // In delay slot.
2766 
2767   __ bind(&uninitialized);
2768 
2769   // We are going monomorphic, provided we actually have a JSFunction.
2770   __ JumpIfSmi(a1, &miss);
2771 
2772   // Goto miss case if we do not have a function.
2773   __ GetObjectType(a1, a4, a4);
2774   __ Branch(&miss, ne, a4, Operand(JS_FUNCTION_TYPE));
2775 
2776   // Make sure the function is not the Array() function, which requires special
2777   // behavior on MISS.
2778   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a4);
2779   __ Branch(&miss, eq, a1, Operand(a4));
2780 
2781   // Make sure the function belongs to the same native context.
2782   __ ld(t0, FieldMemOperand(a1, JSFunction::kContextOffset));
2783   __ ld(t0, ContextMemOperand(t0, Context::NATIVE_CONTEXT_INDEX));
2784   __ ld(t1, NativeContextMemOperand());
2785   __ Branch(&miss, ne, t0, Operand(t1));
2786 
2787   // Initialize the call counter.
2788   __ dsrl(at, a3, 32 - kPointerSizeLog2);
2789   __ Daddu(at, a2, Operand(at));
2790   __ li(t0, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2791   __ sd(t0, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
2792 
2793   // Store the function. Use a stub since we need a frame for allocation.
2794   // a2 - vector
2795   // a3 - slot
2796   // a1 - function
2797   {
2798     FrameScope scope(masm, StackFrame::INTERNAL);
2799     CreateWeakCellStub create_stub(masm->isolate());
2800     __ Push(a1);
2801     __ CallStub(&create_stub);
2802     __ Pop(a1);
2803   }
2804 
2805   __ Branch(&call_function);
2806 
2807   // We are here because tracing is on or we encountered a MISS case we can't
2808   // handle here.
2809   __ bind(&miss);
2810   GenerateMiss(masm);
2811 
2812   __ Branch(&call);
2813 }
2814 
2815 
GenerateMiss(MacroAssembler * masm)2816 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2817   FrameScope scope(masm, StackFrame::INTERNAL);
2818 
2819   // Push the receiver and the function and feedback info.
2820   __ Push(a1, a2, a3);
2821 
2822   // Call the entry.
2823   __ CallRuntime(Runtime::kCallIC_Miss);
2824 
2825   // Move result to a1 and exit the internal frame.
2826   __ mov(a1, v0);
2827 }
2828 
2829 
GenerateSlow(MacroAssembler * masm,EmbedMode embed_mode,const RuntimeCallHelper & call_helper)2830 void StringCharCodeAtGenerator::GenerateSlow(
2831     MacroAssembler* masm, EmbedMode embed_mode,
2832     const RuntimeCallHelper& call_helper) {
2833   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2834 
2835   // Index is not a smi.
2836   __ bind(&index_not_smi_);
2837   // If index is a heap number, try converting it to an integer.
2838   __ CheckMap(index_,
2839               result_,
2840               Heap::kHeapNumberMapRootIndex,
2841               index_not_number_,
2842               DONT_DO_SMI_CHECK);
2843   call_helper.BeforeCall(masm);
2844   // Consumed by runtime conversion function:
2845   if (embed_mode == PART_OF_IC_HANDLER) {
2846     __ Push(LoadWithVectorDescriptor::VectorRegister(),
2847             LoadWithVectorDescriptor::SlotRegister(), object_, index_);
2848   } else {
2849     __ Push(object_, index_);
2850   }
2851   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2852     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero);
2853   } else {
2854     DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2855     // NumberToSmi discards numbers that are not exact integers.
2856     __ CallRuntime(Runtime::kNumberToSmi);
2857   }
2858 
2859   // Save the conversion result before the pop instructions below
2860   // have a chance to overwrite it.
2861 
2862   __ Move(index_, v0);
2863   if (embed_mode == PART_OF_IC_HANDLER) {
2864     __ Pop(LoadWithVectorDescriptor::VectorRegister(),
2865            LoadWithVectorDescriptor::SlotRegister(), object_);
2866   } else {
2867     __ pop(object_);
2868   }
2869   // Reload the instance type.
2870   __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2871   __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2872   call_helper.AfterCall(masm);
2873   // If index is still not a smi, it must be out of range.
2874   __ JumpIfNotSmi(index_, index_out_of_range_);
2875   // Otherwise, return to the fast path.
2876   __ Branch(&got_smi_index_);
2877 
2878   // Call runtime. We get here when the receiver is a string and the
2879   // index is a number, but the code of getting the actual character
2880   // is too complex (e.g., when the string needs to be flattened).
2881   __ bind(&call_runtime_);
2882   call_helper.BeforeCall(masm);
2883   __ SmiTag(index_);
2884   __ Push(object_, index_);
2885   __ CallRuntime(Runtime::kStringCharCodeAtRT);
2886 
2887   __ Move(result_, v0);
2888 
2889   call_helper.AfterCall(masm);
2890   __ jmp(&exit_);
2891 
2892   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2893 }
2894 
2895 
2896 // -------------------------------------------------------------------------
2897 // StringCharFromCodeGenerator
2898 
GenerateFast(MacroAssembler * masm)2899 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2900   // Fast case of Heap::LookupSingleCharacterStringFromCode.
2901   __ JumpIfNotSmi(code_, &slow_case_);
2902   __ Branch(&slow_case_, hi, code_,
2903             Operand(Smi::FromInt(String::kMaxOneByteCharCode)));
2904 
2905   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
2906   // At this point code register contains smi tagged one_byte char code.
2907   __ SmiScale(at, code_, kPointerSizeLog2);
2908   __ Daddu(result_, result_, at);
2909   __ ld(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
2910   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
2911   __ Branch(&slow_case_, eq, result_, Operand(at));
2912   __ bind(&exit_);
2913 }
2914 
2915 
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)2916 void StringCharFromCodeGenerator::GenerateSlow(
2917     MacroAssembler* masm,
2918     const RuntimeCallHelper& call_helper) {
2919   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2920 
2921   __ bind(&slow_case_);
2922   call_helper.BeforeCall(masm);
2923   __ push(code_);
2924   __ CallRuntime(Runtime::kStringCharFromCode);
2925   __ Move(result_, v0);
2926 
2927   call_helper.AfterCall(masm);
2928   __ Branch(&exit_);
2929 
2930   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2931 }
2932 
2933 
2934 enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
2935 
2936 
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch,String::Encoding encoding)2937 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
2938                                           Register dest,
2939                                           Register src,
2940                                           Register count,
2941                                           Register scratch,
2942                                           String::Encoding encoding) {
2943   if (FLAG_debug_code) {
2944     // Check that destination is word aligned.
2945     __ And(scratch, dest, Operand(kPointerAlignmentMask));
2946     __ Check(eq,
2947              kDestinationOfCopyNotAligned,
2948              scratch,
2949              Operand(zero_reg));
2950   }
2951 
2952   // Assumes word reads and writes are little endian.
2953   // Nothing to do for zero characters.
2954   Label done;
2955 
2956   if (encoding == String::TWO_BYTE_ENCODING) {
2957     __ Daddu(count, count, count);
2958   }
2959 
2960   Register limit = count;  // Read until dest equals this.
2961   __ Daddu(limit, dest, Operand(count));
2962 
2963   Label loop_entry, loop;
2964   // Copy bytes from src to dest until dest hits limit.
2965   __ Branch(&loop_entry);
2966   __ bind(&loop);
2967   __ lbu(scratch, MemOperand(src));
2968   __ daddiu(src, src, 1);
2969   __ sb(scratch, MemOperand(dest));
2970   __ daddiu(dest, dest, 1);
2971   __ bind(&loop_entry);
2972   __ Branch(&loop, lt, dest, Operand(limit));
2973 
2974   __ bind(&done);
2975 }
2976 
2977 
Generate(MacroAssembler * masm)2978 void SubStringStub::Generate(MacroAssembler* masm) {
2979   Label runtime;
2980   // Stack frame on entry.
2981   //  ra: return address
2982   //  sp[0]: to
2983   //  sp[4]: from
2984   //  sp[8]: string
2985 
2986   // This stub is called from the native-call %_SubString(...), so
2987   // nothing can be assumed about the arguments. It is tested that:
2988   //  "string" is a sequential string,
2989   //  both "from" and "to" are smis, and
2990   //  0 <= from <= to <= string.length.
2991   // If any of these assumptions fail, we call the runtime system.
2992 
2993   const int kToOffset = 0 * kPointerSize;
2994   const int kFromOffset = 1 * kPointerSize;
2995   const int kStringOffset = 2 * kPointerSize;
2996 
2997   __ ld(a2, MemOperand(sp, kToOffset));
2998   __ ld(a3, MemOperand(sp, kFromOffset));
2999 
3000   STATIC_ASSERT(kSmiTag == 0);
3001 
3002   // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
3003   // safe in this case.
3004   __ JumpIfNotSmi(a2, &runtime);
3005   __ JumpIfNotSmi(a3, &runtime);
3006   // Both a2 and a3 are untagged integers.
3007 
3008   __ SmiUntag(a2, a2);
3009   __ SmiUntag(a3, a3);
3010   __ Branch(&runtime, lt, a3, Operand(zero_reg));  // From < 0.
3011 
3012   __ Branch(&runtime, gt, a3, Operand(a2));  // Fail if from > to.
3013   __ Dsubu(a2, a2, a3);
3014 
3015   // Make sure first argument is a string.
3016   __ ld(v0, MemOperand(sp, kStringOffset));
3017   __ JumpIfSmi(v0, &runtime);
3018   __ ld(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
3019   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3020   __ And(a4, a1, Operand(kIsNotStringMask));
3021 
3022   __ Branch(&runtime, ne, a4, Operand(zero_reg));
3023 
3024   Label single_char;
3025   __ Branch(&single_char, eq, a2, Operand(1));
3026 
3027   // Short-cut for the case of trivial substring.
3028   Label return_v0;
3029   // v0: original string
3030   // a2: result string length
3031   __ ld(a4, FieldMemOperand(v0, String::kLengthOffset));
3032   __ SmiUntag(a4);
3033   // Return original string.
3034   __ Branch(&return_v0, eq, a2, Operand(a4));
3035   // Longer than original string's length or negative: unsafe arguments.
3036   __ Branch(&runtime, hi, a2, Operand(a4));
3037   // Shorter than original string's length: an actual substring.
3038 
3039   // Deal with different string types: update the index if necessary
3040   // and put the underlying string into a5.
3041   // v0: original string
3042   // a1: instance type
3043   // a2: length
3044   // a3: from index (untagged)
3045   Label underlying_unpacked, sliced_string, seq_or_external_string;
3046   // If the string is not indirect, it can only be sequential or external.
3047   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3048   STATIC_ASSERT(kIsIndirectStringMask != 0);
3049   __ And(a4, a1, Operand(kIsIndirectStringMask));
3050   __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, a4, Operand(zero_reg));
3051   // a4 is used as a scratch register and can be overwritten in either case.
3052   __ And(a4, a1, Operand(kSlicedNotConsMask));
3053   __ Branch(&sliced_string, ne, a4, Operand(zero_reg));
3054   // Cons string.  Check whether it is flat, then fetch first part.
3055   __ ld(a5, FieldMemOperand(v0, ConsString::kSecondOffset));
3056   __ LoadRoot(a4, Heap::kempty_stringRootIndex);
3057   __ Branch(&runtime, ne, a5, Operand(a4));
3058   __ ld(a5, FieldMemOperand(v0, ConsString::kFirstOffset));
3059   // Update instance type.
3060   __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
3061   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3062   __ jmp(&underlying_unpacked);
3063 
3064   __ bind(&sliced_string);
3065   // Sliced string.  Fetch parent and correct start index by offset.
3066   __ ld(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
3067   __ ld(a4, FieldMemOperand(v0, SlicedString::kOffsetOffset));
3068   __ SmiUntag(a4);  // Add offset to index.
3069   __ Daddu(a3, a3, a4);
3070   // Update instance type.
3071   __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
3072   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3073   __ jmp(&underlying_unpacked);
3074 
3075   __ bind(&seq_or_external_string);
3076   // Sequential or external string.  Just move string to the expected register.
3077   __ mov(a5, v0);
3078 
3079   __ bind(&underlying_unpacked);
3080 
3081   if (FLAG_string_slices) {
3082     Label copy_routine;
3083     // a5: underlying subject string
3084     // a1: instance type of underlying subject string
3085     // a2: length
3086     // a3: adjusted start index (untagged)
3087     // Short slice.  Copy instead of slicing.
3088     __ Branch(&copy_routine, lt, a2, Operand(SlicedString::kMinLength));
3089     // Allocate new sliced string.  At this point we do not reload the instance
3090     // type including the string encoding because we simply rely on the info
3091     // provided by the original string.  It does not matter if the original
3092     // string's encoding is wrong because we always have to recheck encoding of
3093     // the newly created string's parent anyways due to externalized strings.
3094     Label two_byte_slice, set_slice_header;
3095     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3096     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3097     __ And(a4, a1, Operand(kStringEncodingMask));
3098     __ Branch(&two_byte_slice, eq, a4, Operand(zero_reg));
3099     __ AllocateOneByteSlicedString(v0, a2, a6, a7, &runtime);
3100     __ jmp(&set_slice_header);
3101     __ bind(&two_byte_slice);
3102     __ AllocateTwoByteSlicedString(v0, a2, a6, a7, &runtime);
3103     __ bind(&set_slice_header);
3104     __ SmiTag(a3);
3105     __ sd(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
3106     __ sd(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
3107     __ jmp(&return_v0);
3108 
3109     __ bind(&copy_routine);
3110   }
3111 
3112   // a5: underlying subject string
3113   // a1: instance type of underlying subject string
3114   // a2: length
3115   // a3: adjusted start index (untagged)
3116   Label two_byte_sequential, sequential_string, allocate_result;
3117   STATIC_ASSERT(kExternalStringTag != 0);
3118   STATIC_ASSERT(kSeqStringTag == 0);
3119   __ And(a4, a1, Operand(kExternalStringTag));
3120   __ Branch(&sequential_string, eq, a4, Operand(zero_reg));
3121 
3122   // Handle external string.
3123   // Rule out short external strings.
3124   STATIC_ASSERT(kShortExternalStringTag != 0);
3125   __ And(a4, a1, Operand(kShortExternalStringTag));
3126   __ Branch(&runtime, ne, a4, Operand(zero_reg));
3127   __ ld(a5, FieldMemOperand(a5, ExternalString::kResourceDataOffset));
3128   // a5 already points to the first character of underlying string.
3129   __ jmp(&allocate_result);
3130 
3131   __ bind(&sequential_string);
3132   // Locate first character of underlying subject string.
3133   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3134   __ Daddu(a5, a5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3135 
3136   __ bind(&allocate_result);
3137   // Sequential acii string.  Allocate the result.
3138   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3139   __ And(a4, a1, Operand(kStringEncodingMask));
3140   __ Branch(&two_byte_sequential, eq, a4, Operand(zero_reg));
3141 
3142   // Allocate and copy the resulting one_byte string.
3143   __ AllocateOneByteString(v0, a2, a4, a6, a7, &runtime);
3144 
3145   // Locate first character of substring to copy.
3146   __ Daddu(a5, a5, a3);
3147 
3148   // Locate first character of result.
3149   __ Daddu(a1, v0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3150 
3151   // v0: result string
3152   // a1: first character of result string
3153   // a2: result string length
3154   // a5: first character of substring to copy
3155   STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3156   StringHelper::GenerateCopyCharacters(
3157       masm, a1, a5, a2, a3, String::ONE_BYTE_ENCODING);
3158   __ jmp(&return_v0);
3159 
3160   // Allocate and copy the resulting two-byte string.
3161   __ bind(&two_byte_sequential);
3162   __ AllocateTwoByteString(v0, a2, a4, a6, a7, &runtime);
3163 
3164   // Locate first character of substring to copy.
3165   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
3166   __ dsll(a4, a3, 1);
3167   __ Daddu(a5, a5, a4);
3168   // Locate first character of result.
3169   __ Daddu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3170 
3171   // v0: result string.
3172   // a1: first character of result.
3173   // a2: result length.
3174   // a5: first character of substring to copy.
3175   STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3176   StringHelper::GenerateCopyCharacters(
3177       masm, a1, a5, a2, a3, String::TWO_BYTE_ENCODING);
3178 
3179   __ bind(&return_v0);
3180   Counters* counters = isolate()->counters();
3181   __ IncrementCounter(counters->sub_string_native(), 1, a3, a4);
3182   __ DropAndRet(3);
3183 
3184   // Just jump to runtime to create the sub string.
3185   __ bind(&runtime);
3186   __ TailCallRuntime(Runtime::kSubString);
3187 
3188   __ bind(&single_char);
3189   // v0: original string
3190   // a1: instance type
3191   // a2: length
3192   // a3: from index (untagged)
3193   __ SmiTag(a3);
3194   StringCharAtGenerator generator(v0, a3, a2, v0, &runtime, &runtime, &runtime,
3195                                   STRING_INDEX_IS_NUMBER, RECEIVER_IS_STRING);
3196   generator.GenerateFast(masm);
3197   __ DropAndRet(3);
3198   generator.SkipSlow(masm, &runtime);
3199 }
3200 
3201 
Generate(MacroAssembler * masm)3202 void ToNumberStub::Generate(MacroAssembler* masm) {
3203   // The ToNumber stub takes one argument in a0.
3204   Label not_smi;
3205   __ JumpIfNotSmi(a0, &not_smi);
3206   __ Ret(USE_DELAY_SLOT);
3207   __ mov(v0, a0);
3208   __ bind(&not_smi);
3209 
3210   Label not_heap_number;
3211   __ ld(a1, FieldMemOperand(a0, HeapObject::kMapOffset));
3212   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3213   // a0: object
3214   // a1: instance type.
3215   __ Branch(&not_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE));
3216   __ Ret(USE_DELAY_SLOT);
3217   __ mov(v0, a0);
3218   __ bind(&not_heap_number);
3219 
3220   Label not_string, slow_string;
3221   __ Branch(&not_string, hs, a1, Operand(FIRST_NONSTRING_TYPE));
3222   // Check if string has a cached array index.
3223   __ lwu(a2, FieldMemOperand(a0, String::kHashFieldOffset));
3224   __ And(at, a2, Operand(String::kContainsCachedArrayIndexMask));
3225   __ Branch(&slow_string, ne, at, Operand(zero_reg));
3226   __ IndexFromHash(a2, a0);
3227   __ Ret(USE_DELAY_SLOT);
3228   __ mov(v0, a0);
3229   __ bind(&slow_string);
3230   __ push(a0);  // Push argument.
3231   __ TailCallRuntime(Runtime::kStringToNumber);
3232   __ bind(&not_string);
3233 
3234   Label not_oddball;
3235   __ Branch(&not_oddball, ne, a1, Operand(ODDBALL_TYPE));
3236   __ Ret(USE_DELAY_SLOT);
3237   __ ld(v0, FieldMemOperand(a0, Oddball::kToNumberOffset));
3238   __ bind(&not_oddball);
3239 
3240   __ push(a0);  // Push argument.
3241   __ TailCallRuntime(Runtime::kToNumber);
3242 }
3243 
3244 
Generate(MacroAssembler * masm)3245 void ToLengthStub::Generate(MacroAssembler* masm) {
3246   // The ToLength stub takes on argument in a0.
3247   Label not_smi, positive_smi;
3248   __ JumpIfNotSmi(a0, &not_smi);
3249   STATIC_ASSERT(kSmiTag == 0);
3250   __ Branch(&positive_smi, ge, a0, Operand(zero_reg));
3251   __ mov(a0, zero_reg);
3252   __ bind(&positive_smi);
3253   __ Ret(USE_DELAY_SLOT);
3254   __ mov(v0, a0);
3255   __ bind(&not_smi);
3256 
3257   __ push(a0);  // Push argument.
3258   __ TailCallRuntime(Runtime::kToLength);
3259 }
3260 
3261 
Generate(MacroAssembler * masm)3262 void ToStringStub::Generate(MacroAssembler* masm) {
3263   // The ToString stub takes on argument in a0.
3264   Label is_number;
3265   __ JumpIfSmi(a0, &is_number);
3266 
3267   Label not_string;
3268   __ GetObjectType(a0, a1, a1);
3269   // a0: receiver
3270   // a1: receiver instance type
3271   __ Branch(&not_string, ge, a1, Operand(FIRST_NONSTRING_TYPE));
3272   __ Ret(USE_DELAY_SLOT);
3273   __ mov(v0, a0);
3274   __ bind(&not_string);
3275 
3276   Label not_heap_number;
3277   __ Branch(&not_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE));
3278   __ bind(&is_number);
3279   NumberToStringStub stub(isolate());
3280   __ TailCallStub(&stub);
3281   __ bind(&not_heap_number);
3282 
3283   Label not_oddball;
3284   __ Branch(&not_oddball, ne, a1, Operand(ODDBALL_TYPE));
3285   __ Ret(USE_DELAY_SLOT);
3286   __ ld(v0, FieldMemOperand(a0, Oddball::kToStringOffset));
3287   __ bind(&not_oddball);
3288 
3289   __ push(a0);  // Push argument.
3290   __ TailCallRuntime(Runtime::kToString);
3291 }
3292 
3293 
GenerateFlatOneByteStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)3294 void StringHelper::GenerateFlatOneByteStringEquals(
3295     MacroAssembler* masm, Register left, Register right, Register scratch1,
3296     Register scratch2, Register scratch3) {
3297   Register length = scratch1;
3298 
3299   // Compare lengths.
3300   Label strings_not_equal, check_zero_length;
3301   __ ld(length, FieldMemOperand(left, String::kLengthOffset));
3302   __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
3303   __ Branch(&check_zero_length, eq, length, Operand(scratch2));
3304   __ bind(&strings_not_equal);
3305   // Can not put li in delayslot, it has multi instructions.
3306   __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
3307   __ Ret();
3308 
3309   // Check if the length is zero.
3310   Label compare_chars;
3311   __ bind(&check_zero_length);
3312   STATIC_ASSERT(kSmiTag == 0);
3313   __ Branch(&compare_chars, ne, length, Operand(zero_reg));
3314   DCHECK(is_int16((intptr_t)Smi::FromInt(EQUAL)));
3315   __ Ret(USE_DELAY_SLOT);
3316   __ li(v0, Operand(Smi::FromInt(EQUAL)));
3317 
3318   // Compare characters.
3319   __ bind(&compare_chars);
3320 
3321   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
3322                                   v0, &strings_not_equal);
3323 
3324   // Characters are equal.
3325   __ Ret(USE_DELAY_SLOT);
3326   __ li(v0, Operand(Smi::FromInt(EQUAL)));
3327 }
3328 
3329 
GenerateCompareFlatOneByteStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3,Register scratch4)3330 void StringHelper::GenerateCompareFlatOneByteStrings(
3331     MacroAssembler* masm, Register left, Register right, Register scratch1,
3332     Register scratch2, Register scratch3, Register scratch4) {
3333   Label result_not_equal, compare_lengths;
3334   // Find minimum length and length difference.
3335   __ ld(scratch1, FieldMemOperand(left, String::kLengthOffset));
3336   __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
3337   __ Dsubu(scratch3, scratch1, Operand(scratch2));
3338   Register length_delta = scratch3;
3339   __ slt(scratch4, scratch2, scratch1);
3340   __ Movn(scratch1, scratch2, scratch4);
3341   Register min_length = scratch1;
3342   STATIC_ASSERT(kSmiTag == 0);
3343   __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
3344 
3345   // Compare loop.
3346   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3347                                   scratch4, v0, &result_not_equal);
3348 
3349   // Compare lengths - strings up to min-length are equal.
3350   __ bind(&compare_lengths);
3351   DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
3352   // Use length_delta as result if it's zero.
3353   __ mov(scratch2, length_delta);
3354   __ mov(scratch4, zero_reg);
3355   __ mov(v0, zero_reg);
3356 
3357   __ bind(&result_not_equal);
3358   // Conditionally update the result based either on length_delta or
3359   // the last comparion performed in the loop above.
3360   Label ret;
3361   __ Branch(&ret, eq, scratch2, Operand(scratch4));
3362   __ li(v0, Operand(Smi::FromInt(GREATER)));
3363   __ Branch(&ret, gt, scratch2, Operand(scratch4));
3364   __ li(v0, Operand(Smi::FromInt(LESS)));
3365   __ bind(&ret);
3366   __ Ret();
3367 }
3368 
3369 
GenerateOneByteCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch1,Register scratch2,Register scratch3,Label * chars_not_equal)3370 void StringHelper::GenerateOneByteCharsCompareLoop(
3371     MacroAssembler* masm, Register left, Register right, Register length,
3372     Register scratch1, Register scratch2, Register scratch3,
3373     Label* chars_not_equal) {
3374   // Change index to run from -length to -1 by adding length to string
3375   // start. This means that loop ends when index reaches zero, which
3376   // doesn't need an additional compare.
3377   __ SmiUntag(length);
3378   __ Daddu(scratch1, length,
3379           Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3380   __ Daddu(left, left, Operand(scratch1));
3381   __ Daddu(right, right, Operand(scratch1));
3382   __ Dsubu(length, zero_reg, length);
3383   Register index = length;  // index = -length;
3384 
3385 
3386   // Compare loop.
3387   Label loop;
3388   __ bind(&loop);
3389   __ Daddu(scratch3, left, index);
3390   __ lbu(scratch1, MemOperand(scratch3));
3391   __ Daddu(scratch3, right, index);
3392   __ lbu(scratch2, MemOperand(scratch3));
3393   __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
3394   __ Daddu(index, index, 1);
3395   __ Branch(&loop, ne, index, Operand(zero_reg));
3396 }
3397 
3398 
Generate(MacroAssembler * masm)3399 void StringCompareStub::Generate(MacroAssembler* masm) {
3400   // ----------- S t a t e -------------
3401   //  -- a1    : left
3402   //  -- a0    : right
3403   //  -- ra    : return address
3404   // -----------------------------------
3405   __ AssertString(a1);
3406   __ AssertString(a0);
3407 
3408   Label not_same;
3409   __ Branch(&not_same, ne, a0, Operand(a1));
3410   __ li(v0, Operand(Smi::FromInt(EQUAL)));
3411   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a1,
3412                       a2);
3413   __ Ret();
3414 
3415   __ bind(&not_same);
3416 
3417   // Check that both objects are sequential one-byte strings.
3418   Label runtime;
3419   __ JumpIfNotBothSequentialOneByteStrings(a1, a0, a2, a3, &runtime);
3420 
3421   // Compare flat ASCII strings natively.
3422   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
3423                       a3);
3424   StringHelper::GenerateCompareFlatOneByteStrings(masm, a1, a0, a2, a3, t0, t1);
3425 
3426   __ bind(&runtime);
3427   __ Push(a1, a0);
3428   __ TailCallRuntime(Runtime::kStringCompare);
3429 }
3430 
3431 
Generate(MacroAssembler * masm)3432 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3433   // ----------- S t a t e -------------
3434   //  -- a1    : left
3435   //  -- a0    : right
3436   //  -- ra    : return address
3437   // -----------------------------------
3438 
3439   // Load a2 with the allocation site. We stick an undefined dummy value here
3440   // and replace it with the real allocation site later when we instantiate this
3441   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3442   __ li(a2, handle(isolate()->heap()->undefined_value()));
3443 
3444   // Make sure that we actually patched the allocation site.
3445   if (FLAG_debug_code) {
3446     __ And(at, a2, Operand(kSmiTagMask));
3447     __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg));
3448     __ ld(a4, FieldMemOperand(a2, HeapObject::kMapOffset));
3449     __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
3450     __ Assert(eq, kExpectedAllocationSite, a4, Operand(at));
3451   }
3452 
3453   // Tail call into the stub that handles binary operations with allocation
3454   // sites.
3455   BinaryOpWithAllocationSiteStub stub(isolate(), state());
3456   __ TailCallStub(&stub);
3457 }
3458 
3459 
GenerateBooleans(MacroAssembler * masm)3460 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
3461   DCHECK_EQ(CompareICState::BOOLEAN, state());
3462   Label miss;
3463 
3464   __ CheckMap(a1, a2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
3465   __ CheckMap(a0, a3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
3466   if (op() != Token::EQ_STRICT && is_strong(strength())) {
3467     __ TailCallRuntime(Runtime::kThrowStrongModeImplicitConversion);
3468   } else {
3469     if (!Token::IsEqualityOp(op())) {
3470       __ ld(a1, FieldMemOperand(a1, Oddball::kToNumberOffset));
3471       __ AssertSmi(a1);
3472       __ ld(a0, FieldMemOperand(a0, Oddball::kToNumberOffset));
3473       __ AssertSmi(a0);
3474     }
3475     __ Ret(USE_DELAY_SLOT);
3476     __ Dsubu(v0, a1, a0);
3477   }
3478 
3479   __ bind(&miss);
3480   GenerateMiss(masm);
3481 }
3482 
3483 
GenerateSmis(MacroAssembler * masm)3484 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3485   DCHECK(state() == CompareICState::SMI);
3486   Label miss;
3487   __ Or(a2, a1, a0);
3488   __ JumpIfNotSmi(a2, &miss);
3489 
3490   if (GetCondition() == eq) {
3491     // For equality we do not care about the sign of the result.
3492     __ Ret(USE_DELAY_SLOT);
3493     __ Dsubu(v0, a0, a1);
3494   } else {
3495     // Untag before subtracting to avoid handling overflow.
3496     __ SmiUntag(a1);
3497     __ SmiUntag(a0);
3498     __ Ret(USE_DELAY_SLOT);
3499     __ Dsubu(v0, a1, a0);
3500   }
3501 
3502   __ bind(&miss);
3503   GenerateMiss(masm);
3504 }
3505 
3506 
GenerateNumbers(MacroAssembler * masm)3507 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3508   DCHECK(state() == CompareICState::NUMBER);
3509 
3510   Label generic_stub;
3511   Label unordered, maybe_undefined1, maybe_undefined2;
3512   Label miss;
3513 
3514   if (left() == CompareICState::SMI) {
3515     __ JumpIfNotSmi(a1, &miss);
3516   }
3517   if (right() == CompareICState::SMI) {
3518     __ JumpIfNotSmi(a0, &miss);
3519   }
3520 
3521   // Inlining the double comparison and falling back to the general compare
3522   // stub if NaN is involved.
3523   // Load left and right operand.
3524   Label done, left, left_smi, right_smi;
3525   __ JumpIfSmi(a0, &right_smi);
3526   __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
3527               DONT_DO_SMI_CHECK);
3528   __ Dsubu(a2, a0, Operand(kHeapObjectTag));
3529   __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
3530   __ Branch(&left);
3531   __ bind(&right_smi);
3532   __ SmiUntag(a2, a0);  // Can't clobber a0 yet.
3533   FPURegister single_scratch = f6;
3534   __ mtc1(a2, single_scratch);
3535   __ cvt_d_w(f2, single_scratch);
3536 
3537   __ bind(&left);
3538   __ JumpIfSmi(a1, &left_smi);
3539   __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
3540               DONT_DO_SMI_CHECK);
3541   __ Dsubu(a2, a1, Operand(kHeapObjectTag));
3542   __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
3543   __ Branch(&done);
3544   __ bind(&left_smi);
3545   __ SmiUntag(a2, a1);  // Can't clobber a1 yet.
3546   single_scratch = f8;
3547   __ mtc1(a2, single_scratch);
3548   __ cvt_d_w(f0, single_scratch);
3549 
3550   __ bind(&done);
3551 
3552   // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
3553   Label fpu_eq, fpu_lt;
3554   // Test if equal, and also handle the unordered/NaN case.
3555   __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
3556 
3557   // Test if less (unordered case is already handled).
3558   __ BranchF(&fpu_lt, NULL, lt, f0, f2);
3559 
3560   // Otherwise it's greater, so just fall thru, and return.
3561   DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS));
3562   __ Ret(USE_DELAY_SLOT);
3563   __ li(v0, Operand(GREATER));
3564 
3565   __ bind(&fpu_eq);
3566   __ Ret(USE_DELAY_SLOT);
3567   __ li(v0, Operand(EQUAL));
3568 
3569   __ bind(&fpu_lt);
3570   __ Ret(USE_DELAY_SLOT);
3571   __ li(v0, Operand(LESS));
3572 
3573   __ bind(&unordered);
3574   __ bind(&generic_stub);
3575   CompareICStub stub(isolate(), op(), strength(), CompareICState::GENERIC,
3576                      CompareICState::GENERIC, CompareICState::GENERIC);
3577   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3578 
3579   __ bind(&maybe_undefined1);
3580   if (Token::IsOrderedRelationalCompareOp(op())) {
3581     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3582     __ Branch(&miss, ne, a0, Operand(at));
3583     __ JumpIfSmi(a1, &unordered);
3584     __ GetObjectType(a1, a2, a2);
3585     __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
3586     __ jmp(&unordered);
3587   }
3588 
3589   __ bind(&maybe_undefined2);
3590   if (Token::IsOrderedRelationalCompareOp(op())) {
3591     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3592     __ Branch(&unordered, eq, a1, Operand(at));
3593   }
3594 
3595   __ bind(&miss);
3596   GenerateMiss(masm);
3597 }
3598 
3599 
GenerateInternalizedStrings(MacroAssembler * masm)3600 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3601   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3602   Label miss;
3603 
3604   // Registers containing left and right operands respectively.
3605   Register left = a1;
3606   Register right = a0;
3607   Register tmp1 = a2;
3608   Register tmp2 = a3;
3609 
3610   // Check that both operands are heap objects.
3611   __ JumpIfEitherSmi(left, right, &miss);
3612 
3613   // Check that both operands are internalized strings.
3614   __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3615   __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3616   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3617   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3618   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3619   __ Or(tmp1, tmp1, Operand(tmp2));
3620   __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3621   __ Branch(&miss, ne, at, Operand(zero_reg));
3622 
3623   // Make sure a0 is non-zero. At this point input operands are
3624   // guaranteed to be non-zero.
3625   DCHECK(right.is(a0));
3626   STATIC_ASSERT(EQUAL == 0);
3627   STATIC_ASSERT(kSmiTag == 0);
3628   __ mov(v0, right);
3629   // Internalized strings are compared by identity.
3630   __ Ret(ne, left, Operand(right));
3631   DCHECK(is_int16(EQUAL));
3632   __ Ret(USE_DELAY_SLOT);
3633   __ li(v0, Operand(Smi::FromInt(EQUAL)));
3634 
3635   __ bind(&miss);
3636   GenerateMiss(masm);
3637 }
3638 
3639 
GenerateUniqueNames(MacroAssembler * masm)3640 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3641   DCHECK(state() == CompareICState::UNIQUE_NAME);
3642   DCHECK(GetCondition() == eq);
3643   Label miss;
3644 
3645   // Registers containing left and right operands respectively.
3646   Register left = a1;
3647   Register right = a0;
3648   Register tmp1 = a2;
3649   Register tmp2 = a3;
3650 
3651   // Check that both operands are heap objects.
3652   __ JumpIfEitherSmi(left, right, &miss);
3653 
3654   // Check that both operands are unique names. This leaves the instance
3655   // types loaded in tmp1 and tmp2.
3656   __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3657   __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3658   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3659   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3660 
3661   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
3662   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
3663 
3664   // Use a0 as result
3665   __ mov(v0, a0);
3666 
3667   // Unique names are compared by identity.
3668   Label done;
3669   __ Branch(&done, ne, left, Operand(right));
3670   // Make sure a0 is non-zero. At this point input operands are
3671   // guaranteed to be non-zero.
3672   DCHECK(right.is(a0));
3673   STATIC_ASSERT(EQUAL == 0);
3674   STATIC_ASSERT(kSmiTag == 0);
3675   __ li(v0, Operand(Smi::FromInt(EQUAL)));
3676   __ bind(&done);
3677   __ Ret();
3678 
3679   __ bind(&miss);
3680   GenerateMiss(masm);
3681 }
3682 
3683 
GenerateStrings(MacroAssembler * masm)3684 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3685   DCHECK(state() == CompareICState::STRING);
3686   Label miss;
3687 
3688   bool equality = Token::IsEqualityOp(op());
3689 
3690   // Registers containing left and right operands respectively.
3691   Register left = a1;
3692   Register right = a0;
3693   Register tmp1 = a2;
3694   Register tmp2 = a3;
3695   Register tmp3 = a4;
3696   Register tmp4 = a5;
3697   Register tmp5 = a6;
3698 
3699   // Check that both operands are heap objects.
3700   __ JumpIfEitherSmi(left, right, &miss);
3701 
3702   // Check that both operands are strings. This leaves the instance
3703   // types loaded in tmp1 and tmp2.
3704   __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3705   __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3706   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3707   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3708   STATIC_ASSERT(kNotStringTag != 0);
3709   __ Or(tmp3, tmp1, tmp2);
3710   __ And(tmp5, tmp3, Operand(kIsNotStringMask));
3711   __ Branch(&miss, ne, tmp5, Operand(zero_reg));
3712 
3713   // Fast check for identical strings.
3714   Label left_ne_right;
3715   STATIC_ASSERT(EQUAL == 0);
3716   STATIC_ASSERT(kSmiTag == 0);
3717   __ Branch(&left_ne_right, ne, left, Operand(right));
3718   __ Ret(USE_DELAY_SLOT);
3719   __ mov(v0, zero_reg);  // In the delay slot.
3720   __ bind(&left_ne_right);
3721 
3722   // Handle not identical strings.
3723 
3724   // Check that both strings are internalized strings. If they are, we're done
3725   // because we already know they are not identical. We know they are both
3726   // strings.
3727   if (equality) {
3728     DCHECK(GetCondition() == eq);
3729     STATIC_ASSERT(kInternalizedTag == 0);
3730     __ Or(tmp3, tmp1, Operand(tmp2));
3731     __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask));
3732     Label is_symbol;
3733     __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg));
3734     // Make sure a0 is non-zero. At this point input operands are
3735     // guaranteed to be non-zero.
3736     DCHECK(right.is(a0));
3737     __ Ret(USE_DELAY_SLOT);
3738     __ mov(v0, a0);  // In the delay slot.
3739     __ bind(&is_symbol);
3740   }
3741 
3742   // Check that both strings are sequential one_byte.
3743   Label runtime;
3744   __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
3745                                                     &runtime);
3746 
3747   // Compare flat one_byte strings. Returns when done.
3748   if (equality) {
3749     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
3750                                                   tmp3);
3751   } else {
3752     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3753                                                     tmp2, tmp3, tmp4);
3754   }
3755 
3756   // Handle more complex cases in runtime.
3757   __ bind(&runtime);
3758   __ Push(left, right);
3759   if (equality) {
3760     __ TailCallRuntime(Runtime::kStringEquals);
3761   } else {
3762     __ TailCallRuntime(Runtime::kStringCompare);
3763   }
3764 
3765   __ bind(&miss);
3766   GenerateMiss(masm);
3767 }
3768 
3769 
GenerateReceivers(MacroAssembler * masm)3770 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
3771   DCHECK_EQ(CompareICState::RECEIVER, state());
3772   Label miss;
3773   __ And(a2, a1, Operand(a0));
3774   __ JumpIfSmi(a2, &miss);
3775 
3776   STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
3777   __ GetObjectType(a0, a2, a2);
3778   __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
3779   __ GetObjectType(a1, a2, a2);
3780   __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
3781 
3782   DCHECK_EQ(eq, GetCondition());
3783   __ Ret(USE_DELAY_SLOT);
3784   __ dsubu(v0, a0, a1);
3785 
3786   __ bind(&miss);
3787   GenerateMiss(masm);
3788 }
3789 
3790 
GenerateKnownReceivers(MacroAssembler * masm)3791 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
3792   Label miss;
3793   Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
3794   __ And(a2, a1, a0);
3795   __ JumpIfSmi(a2, &miss);
3796   __ GetWeakValue(a4, cell);
3797   __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
3798   __ ld(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
3799   __ Branch(&miss, ne, a2, Operand(a4));
3800   __ Branch(&miss, ne, a3, Operand(a4));
3801 
3802   if (Token::IsEqualityOp(op())) {
3803     __ Ret(USE_DELAY_SLOT);
3804     __ dsubu(v0, a0, a1);
3805   } else if (is_strong(strength())) {
3806     __ TailCallRuntime(Runtime::kThrowStrongModeImplicitConversion);
3807   } else {
3808     if (op() == Token::LT || op() == Token::LTE) {
3809       __ li(a2, Operand(Smi::FromInt(GREATER)));
3810     } else {
3811       __ li(a2, Operand(Smi::FromInt(LESS)));
3812     }
3813     __ Push(a1, a0, a2);
3814     __ TailCallRuntime(Runtime::kCompare);
3815   }
3816 
3817   __ bind(&miss);
3818   GenerateMiss(masm);
3819 }
3820 
3821 
GenerateMiss(MacroAssembler * masm)3822 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3823   {
3824     // Call the runtime system in a fresh internal frame.
3825     FrameScope scope(masm, StackFrame::INTERNAL);
3826     __ Push(a1, a0);
3827     __ Push(ra, a1, a0);
3828     __ li(a4, Operand(Smi::FromInt(op())));
3829     __ daddiu(sp, sp, -kPointerSize);
3830     __ CallRuntime(Runtime::kCompareIC_Miss, 3, kDontSaveFPRegs,
3831                    USE_DELAY_SLOT);
3832     __ sd(a4, MemOperand(sp));  // In the delay slot.
3833     // Compute the entry point of the rewritten stub.
3834     __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
3835     // Restore registers.
3836     __ Pop(a1, a0, ra);
3837   }
3838   __ Jump(a2);
3839 }
3840 
3841 
Generate(MacroAssembler * masm)3842 void DirectCEntryStub::Generate(MacroAssembler* masm) {
3843   // Make place for arguments to fit C calling convention. Most of the callers
3844   // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
3845   // so they handle stack restoring and we don't have to do that here.
3846   // Any caller of DirectCEntryStub::GenerateCall must take care of dropping
3847   // kCArgsSlotsSize stack space after the call.
3848   __ daddiu(sp, sp, -kCArgsSlotsSize);
3849   // Place the return address on the stack, making the call
3850   // GC safe. The RegExp backend also relies on this.
3851   __ sd(ra, MemOperand(sp, kCArgsSlotsSize));
3852   __ Call(t9);  // Call the C++ function.
3853   __ ld(t9, MemOperand(sp, kCArgsSlotsSize));
3854 
3855   if (FLAG_debug_code && FLAG_enable_slow_asserts) {
3856     // In case of an error the return address may point to a memory area
3857     // filled with kZapValue by the GC.
3858     // Dereference the address and check for this.
3859     __ Uld(a4, MemOperand(t9));
3860     __ Assert(ne, kReceivedInvalidReturnAddress, a4,
3861         Operand(reinterpret_cast<uint64_t>(kZapValue)));
3862   }
3863   __ Jump(t9);
3864 }
3865 
3866 
GenerateCall(MacroAssembler * masm,Register target)3867 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
3868                                     Register target) {
3869   intptr_t loc =
3870       reinterpret_cast<intptr_t>(GetCode().location());
3871   __ Move(t9, target);
3872   __ li(at, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
3873   __ Call(at);
3874 }
3875 
3876 
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register receiver,Register properties,Handle<Name> name,Register scratch0)3877 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3878                                                       Label* miss,
3879                                                       Label* done,
3880                                                       Register receiver,
3881                                                       Register properties,
3882                                                       Handle<Name> name,
3883                                                       Register scratch0) {
3884   DCHECK(name->IsUniqueName());
3885   // If names of slots in range from 1 to kProbes - 1 for the hash value are
3886   // not equal to the name and kProbes-th slot is not used (its name is the
3887   // undefined value), it guarantees the hash table doesn't contain the
3888   // property. It's true even if some slots represent deleted properties
3889   // (their names are the hole value).
3890   for (int i = 0; i < kInlinedProbes; i++) {
3891     // scratch0 points to properties hash.
3892     // Compute the masked index: (hash + i + i * i) & mask.
3893     Register index = scratch0;
3894     // Capacity is smi 2^n.
3895     __ SmiLoadUntag(index, FieldMemOperand(properties, kCapacityOffset));
3896     __ Dsubu(index, index, Operand(1));
3897     __ And(index, index,
3898            Operand(name->Hash() + NameDictionary::GetProbeOffset(i)));
3899 
3900     // Scale the index by multiplying by the entry size.
3901     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
3902     __ dsll(at, index, 1);
3903     __ Daddu(index, index, at);  // index *= 3.
3904 
3905     Register entity_name = scratch0;
3906     // Having undefined at this place means the name is not contained.
3907     STATIC_ASSERT(kSmiTagSize == 1);
3908     Register tmp = properties;
3909 
3910     __ dsll(scratch0, index, kPointerSizeLog2);
3911     __ Daddu(tmp, properties, scratch0);
3912     __ ld(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
3913 
3914     DCHECK(!tmp.is(entity_name));
3915     __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
3916     __ Branch(done, eq, entity_name, Operand(tmp));
3917 
3918     // Load the hole ready for use below:
3919     __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
3920 
3921     // Stop if found the property.
3922     __ Branch(miss, eq, entity_name, Operand(Handle<Name>(name)));
3923 
3924     Label good;
3925     __ Branch(&good, eq, entity_name, Operand(tmp));
3926 
3927     // Check if the entry name is not a unique name.
3928     __ ld(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
3929     __ lbu(entity_name,
3930            FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
3931     __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
3932     __ bind(&good);
3933 
3934     // Restore the properties.
3935     __ ld(properties,
3936           FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3937   }
3938 
3939   const int spill_mask =
3940       (ra.bit() | a6.bit() | a5.bit() | a4.bit() | a3.bit() |
3941        a2.bit() | a1.bit() | a0.bit() | v0.bit());
3942 
3943   __ MultiPush(spill_mask);
3944   __ ld(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3945   __ li(a1, Operand(Handle<Name>(name)));
3946   NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
3947   __ CallStub(&stub);
3948   __ mov(at, v0);
3949   __ MultiPop(spill_mask);
3950 
3951   __ Branch(done, eq, at, Operand(zero_reg));
3952   __ Branch(miss, ne, at, Operand(zero_reg));
3953 }
3954 
3955 
3956 // Probe the name dictionary in the |elements| register. Jump to the
3957 // |done| label if a property with the given name is found. Jump to
3958 // the |miss| label otherwise.
3959 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register scratch1,Register scratch2)3960 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3961                                                       Label* miss,
3962                                                       Label* done,
3963                                                       Register elements,
3964                                                       Register name,
3965                                                       Register scratch1,
3966                                                       Register scratch2) {
3967   DCHECK(!elements.is(scratch1));
3968   DCHECK(!elements.is(scratch2));
3969   DCHECK(!name.is(scratch1));
3970   DCHECK(!name.is(scratch2));
3971 
3972   __ AssertName(name);
3973 
3974   // Compute the capacity mask.
3975   __ ld(scratch1, FieldMemOperand(elements, kCapacityOffset));
3976   __ SmiUntag(scratch1);
3977   __ Dsubu(scratch1, scratch1, Operand(1));
3978 
3979   // Generate an unrolled loop that performs a few probes before
3980   // giving up. Measurements done on Gmail indicate that 2 probes
3981   // cover ~93% of loads from dictionaries.
3982   for (int i = 0; i < kInlinedProbes; i++) {
3983     // Compute the masked index: (hash + i + i * i) & mask.
3984     __ lwu(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
3985     if (i > 0) {
3986       // Add the probe offset (i + i * i) left shifted to avoid right shifting
3987       // the hash in a separate instruction. The value hash + i + i * i is right
3988       // shifted in the following and instruction.
3989       DCHECK(NameDictionary::GetProbeOffset(i) <
3990              1 << (32 - Name::kHashFieldOffset));
3991       __ Daddu(scratch2, scratch2, Operand(
3992           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3993     }
3994     __ dsrl(scratch2, scratch2, Name::kHashShift);
3995     __ And(scratch2, scratch1, scratch2);
3996 
3997     // Scale the index by multiplying by the entry size.
3998     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
3999     // scratch2 = scratch2 * 3.
4000 
4001     __ dsll(at, scratch2, 1);
4002     __ Daddu(scratch2, scratch2, at);
4003 
4004     // Check if the key is identical to the name.
4005     __ dsll(at, scratch2, kPointerSizeLog2);
4006     __ Daddu(scratch2, elements, at);
4007     __ ld(at, FieldMemOperand(scratch2, kElementsStartOffset));
4008     __ Branch(done, eq, name, Operand(at));
4009   }
4010 
4011   const int spill_mask =
4012       (ra.bit() | a6.bit() | a5.bit() | a4.bit() |
4013        a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
4014       ~(scratch1.bit() | scratch2.bit());
4015 
4016   __ MultiPush(spill_mask);
4017   if (name.is(a0)) {
4018     DCHECK(!elements.is(a1));
4019     __ Move(a1, name);
4020     __ Move(a0, elements);
4021   } else {
4022     __ Move(a0, elements);
4023     __ Move(a1, name);
4024   }
4025   NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
4026   __ CallStub(&stub);
4027   __ mov(scratch2, a2);
4028   __ mov(at, v0);
4029   __ MultiPop(spill_mask);
4030 
4031   __ Branch(done, ne, at, Operand(zero_reg));
4032   __ Branch(miss, eq, at, Operand(zero_reg));
4033 }
4034 
4035 
Generate(MacroAssembler * masm)4036 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4037   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
4038   // we cannot call anything that could cause a GC from this stub.
4039   // Registers:
4040   //  result: NameDictionary to probe
4041   //  a1: key
4042   //  dictionary: NameDictionary to probe.
4043   //  index: will hold an index of entry if lookup is successful.
4044   //         might alias with result_.
4045   // Returns:
4046   //  result_ is zero if lookup failed, non zero otherwise.
4047 
4048   Register result = v0;
4049   Register dictionary = a0;
4050   Register key = a1;
4051   Register index = a2;
4052   Register mask = a3;
4053   Register hash = a4;
4054   Register undefined = a5;
4055   Register entry_key = a6;
4056 
4057   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4058 
4059   __ ld(mask, FieldMemOperand(dictionary, kCapacityOffset));
4060   __ SmiUntag(mask);
4061   __ Dsubu(mask, mask, Operand(1));
4062 
4063   __ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset));
4064 
4065   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
4066 
4067   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4068     // Compute the masked index: (hash + i + i * i) & mask.
4069     // Capacity is smi 2^n.
4070     if (i > 0) {
4071       // Add the probe offset (i + i * i) left shifted to avoid right shifting
4072       // the hash in a separate instruction. The value hash + i + i * i is right
4073       // shifted in the following and instruction.
4074       DCHECK(NameDictionary::GetProbeOffset(i) <
4075              1 << (32 - Name::kHashFieldOffset));
4076       __ Daddu(index, hash, Operand(
4077           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
4078     } else {
4079       __ mov(index, hash);
4080     }
4081     __ dsrl(index, index, Name::kHashShift);
4082     __ And(index, mask, index);
4083 
4084     // Scale the index by multiplying by the entry size.
4085     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
4086     // index *= 3.
4087     __ mov(at, index);
4088     __ dsll(index, index, 1);
4089     __ Daddu(index, index, at);
4090 
4091 
4092     STATIC_ASSERT(kSmiTagSize == 1);
4093     __ dsll(index, index, kPointerSizeLog2);
4094     __ Daddu(index, index, dictionary);
4095     __ ld(entry_key, FieldMemOperand(index, kElementsStartOffset));
4096 
4097     // Having undefined at this place means the name is not contained.
4098     __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
4099 
4100     // Stop if found the property.
4101     __ Branch(&in_dictionary, eq, entry_key, Operand(key));
4102 
4103     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
4104       // Check if the entry name is not a unique name.
4105       __ ld(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
4106       __ lbu(entry_key,
4107              FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
4108       __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
4109     }
4110   }
4111 
4112   __ bind(&maybe_in_dictionary);
4113   // If we are doing negative lookup then probing failure should be
4114   // treated as a lookup success. For positive lookup probing failure
4115   // should be treated as lookup failure.
4116   if (mode() == POSITIVE_LOOKUP) {
4117     __ Ret(USE_DELAY_SLOT);
4118     __ mov(result, zero_reg);
4119   }
4120 
4121   __ bind(&in_dictionary);
4122   __ Ret(USE_DELAY_SLOT);
4123   __ li(result, 1);
4124 
4125   __ bind(&not_in_dictionary);
4126   __ Ret(USE_DELAY_SLOT);
4127   __ mov(result, zero_reg);
4128 }
4129 
4130 
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)4131 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
4132     Isolate* isolate) {
4133   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
4134   stub1.GetCode();
4135   // Hydrogen code stubs need stub2 at snapshot time.
4136   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
4137   stub2.GetCode();
4138 }
4139 
4140 
4141 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
4142 // the value has just been written into the object, now this stub makes sure
4143 // we keep the GC informed.  The word in the object where the value has been
4144 // written is in the address register.
Generate(MacroAssembler * masm)4145 void RecordWriteStub::Generate(MacroAssembler* masm) {
4146   Label skip_to_incremental_noncompacting;
4147   Label skip_to_incremental_compacting;
4148 
4149   // The first two branch+nop instructions are generated with labels so as to
4150   // get the offset fixed up correctly by the bind(Label*) call.  We patch it
4151   // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
4152   // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
4153   // incremental heap marking.
4154   // See RecordWriteStub::Patch for details.
4155   __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
4156   __ nop();
4157   __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
4158   __ nop();
4159 
4160   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4161     __ RememberedSetHelper(object(),
4162                            address(),
4163                            value(),
4164                            save_fp_regs_mode(),
4165                            MacroAssembler::kReturnAtEnd);
4166   }
4167   __ Ret();
4168 
4169   __ bind(&skip_to_incremental_noncompacting);
4170   GenerateIncremental(masm, INCREMENTAL);
4171 
4172   __ bind(&skip_to_incremental_compacting);
4173   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4174 
4175   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
4176   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
4177 
4178   PatchBranchIntoNop(masm, 0);
4179   PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
4180 }
4181 
4182 
GenerateIncremental(MacroAssembler * masm,Mode mode)4183 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4184   regs_.Save(masm);
4185 
4186   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4187     Label dont_need_remembered_set;
4188 
4189     __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
4190     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
4191                            regs_.scratch0(),
4192                            &dont_need_remembered_set);
4193 
4194     __ CheckPageFlag(regs_.object(),
4195                      regs_.scratch0(),
4196                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
4197                      ne,
4198                      &dont_need_remembered_set);
4199 
4200     // First notify the incremental marker if necessary, then update the
4201     // remembered set.
4202     CheckNeedsToInformIncrementalMarker(
4203         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
4204     InformIncrementalMarker(masm);
4205     regs_.Restore(masm);
4206     __ RememberedSetHelper(object(),
4207                            address(),
4208                            value(),
4209                            save_fp_regs_mode(),
4210                            MacroAssembler::kReturnAtEnd);
4211 
4212     __ bind(&dont_need_remembered_set);
4213   }
4214 
4215   CheckNeedsToInformIncrementalMarker(
4216       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
4217   InformIncrementalMarker(masm);
4218   regs_.Restore(masm);
4219   __ Ret();
4220 }
4221 
4222 
InformIncrementalMarker(MacroAssembler * masm)4223 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4224   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4225   int argument_count = 3;
4226   __ PrepareCallCFunction(argument_count, regs_.scratch0());
4227   Register address =
4228       a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
4229   DCHECK(!address.is(regs_.object()));
4230   DCHECK(!address.is(a0));
4231   __ Move(address, regs_.address());
4232   __ Move(a0, regs_.object());
4233   __ Move(a1, address);
4234   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
4235 
4236   AllowExternalCallThatCantCauseGC scope(masm);
4237   __ CallCFunction(
4238       ExternalReference::incremental_marking_record_write_function(isolate()),
4239       argument_count);
4240   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4241 }
4242 
4243 
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)4244 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4245     MacroAssembler* masm,
4246     OnNoNeedToInformIncrementalMarker on_no_need,
4247     Mode mode) {
4248   Label on_black;
4249   Label need_incremental;
4250   Label need_incremental_pop_scratch;
4251 
4252   __ And(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
4253   __ ld(regs_.scratch1(),
4254         MemOperand(regs_.scratch0(),
4255                    MemoryChunk::kWriteBarrierCounterOffset));
4256   __ Dsubu(regs_.scratch1(), regs_.scratch1(), Operand(1));
4257   __ sd(regs_.scratch1(),
4258          MemOperand(regs_.scratch0(),
4259                     MemoryChunk::kWriteBarrierCounterOffset));
4260   __ Branch(&need_incremental, lt, regs_.scratch1(), Operand(zero_reg));
4261 
4262   // Let's look at the color of the object:  If it is not black we don't have
4263   // to inform the incremental marker.
4264   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
4265 
4266   regs_.Restore(masm);
4267   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4268     __ RememberedSetHelper(object(),
4269                            address(),
4270                            value(),
4271                            save_fp_regs_mode(),
4272                            MacroAssembler::kReturnAtEnd);
4273   } else {
4274     __ Ret();
4275   }
4276 
4277   __ bind(&on_black);
4278 
4279   // Get the value from the slot.
4280   __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
4281 
4282   if (mode == INCREMENTAL_COMPACTION) {
4283     Label ensure_not_white;
4284 
4285     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
4286                      regs_.scratch1(),  // Scratch.
4287                      MemoryChunk::kEvacuationCandidateMask,
4288                      eq,
4289                      &ensure_not_white);
4290 
4291     __ CheckPageFlag(regs_.object(),
4292                      regs_.scratch1(),  // Scratch.
4293                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4294                      eq,
4295                      &need_incremental);
4296 
4297     __ bind(&ensure_not_white);
4298   }
4299 
4300   // We need extra registers for this, so we push the object and the address
4301   // register temporarily.
4302   __ Push(regs_.object(), regs_.address());
4303   __ JumpIfWhite(regs_.scratch0(),  // The value.
4304                  regs_.scratch1(),  // Scratch.
4305                  regs_.object(),    // Scratch.
4306                  regs_.address(),   // Scratch.
4307                  &need_incremental_pop_scratch);
4308   __ Pop(regs_.object(), regs_.address());
4309 
4310   regs_.Restore(masm);
4311   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4312     __ RememberedSetHelper(object(),
4313                            address(),
4314                            value(),
4315                            save_fp_regs_mode(),
4316                            MacroAssembler::kReturnAtEnd);
4317   } else {
4318     __ Ret();
4319   }
4320 
4321   __ bind(&need_incremental_pop_scratch);
4322   __ Pop(regs_.object(), regs_.address());
4323 
4324   __ bind(&need_incremental);
4325 
4326   // Fall through when we need to inform the incremental marker.
4327 }
4328 
4329 
Generate(MacroAssembler * masm)4330 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4331   CEntryStub ces(isolate(), 1, kSaveFPRegs);
4332   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4333   int parameter_count_offset =
4334       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4335   __ ld(a1, MemOperand(fp, parameter_count_offset));
4336   if (function_mode() == JS_FUNCTION_STUB_MODE) {
4337     __ Daddu(a1, a1, Operand(1));
4338   }
4339   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4340   __ dsll(a1, a1, kPointerSizeLog2);
4341   __ Ret(USE_DELAY_SLOT);
4342   __ Daddu(sp, sp, a1);
4343 }
4344 
4345 
Generate(MacroAssembler * masm)4346 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4347   __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
4348   LoadICStub stub(isolate(), state());
4349   stub.GenerateForTrampoline(masm);
4350 }
4351 
4352 
Generate(MacroAssembler * masm)4353 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4354   __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
4355   KeyedLoadICStub stub(isolate(), state());
4356   stub.GenerateForTrampoline(masm);
4357 }
4358 
4359 
Generate(MacroAssembler * masm)4360 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
4361   __ EmitLoadTypeFeedbackVector(a2);
4362   CallICStub stub(isolate(), state());
4363   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4364 }
4365 
4366 
Generate(MacroAssembler * masm)4367 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
4368 
4369 
GenerateForTrampoline(MacroAssembler * masm)4370 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4371   GenerateImpl(masm, true);
4372 }
4373 
4374 
HandleArrayCases(MacroAssembler * masm,Register feedback,Register receiver_map,Register scratch1,Register scratch2,bool is_polymorphic,Label * miss)4375 static void HandleArrayCases(MacroAssembler* masm, Register feedback,
4376                              Register receiver_map, Register scratch1,
4377                              Register scratch2, bool is_polymorphic,
4378                              Label* miss) {
4379   // feedback initially contains the feedback array
4380   Label next_loop, prepare_next;
4381   Label start_polymorphic;
4382 
4383   Register cached_map = scratch1;
4384 
4385   __ ld(cached_map,
4386         FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0)));
4387   __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4388   __ Branch(&start_polymorphic, ne, receiver_map, Operand(cached_map));
4389   // found, now call handler.
4390   Register handler = feedback;
4391   __ ld(handler, FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1)));
4392   __ Daddu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
4393   __ Jump(t9);
4394 
4395   Register length = scratch2;
4396   __ bind(&start_polymorphic);
4397   __ ld(length, FieldMemOperand(feedback, FixedArray::kLengthOffset));
4398   if (!is_polymorphic) {
4399     // If the IC could be monomorphic we have to make sure we don't go past the
4400     // end of the feedback array.
4401     __ Branch(miss, eq, length, Operand(Smi::FromInt(2)));
4402   }
4403 
4404   Register too_far = length;
4405   Register pointer_reg = feedback;
4406 
4407   // +-----+------+------+-----+-----+ ... ----+
4408   // | map | len  | wm0  | h0  | wm1 |      hN |
4409   // +-----+------+------+-----+-----+ ... ----+
4410   //                 0      1     2        len-1
4411   //                              ^              ^
4412   //                              |              |
4413   //                         pointer_reg      too_far
4414   //                         aka feedback     scratch2
4415   // also need receiver_map
4416   // use cached_map (scratch1) to look in the weak map values.
4417   __ SmiScale(too_far, length, kPointerSizeLog2);
4418   __ Daddu(too_far, feedback, Operand(too_far));
4419   __ Daddu(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4420   __ Daddu(pointer_reg, feedback,
4421            Operand(FixedArray::OffsetOfElementAt(2) - kHeapObjectTag));
4422 
4423   __ bind(&next_loop);
4424   __ ld(cached_map, MemOperand(pointer_reg));
4425   __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4426   __ Branch(&prepare_next, ne, receiver_map, Operand(cached_map));
4427   __ ld(handler, MemOperand(pointer_reg, kPointerSize));
4428   __ Daddu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
4429   __ Jump(t9);
4430 
4431   __ bind(&prepare_next);
4432   __ Daddu(pointer_reg, pointer_reg, Operand(kPointerSize * 2));
4433   __ Branch(&next_loop, lt, pointer_reg, Operand(too_far));
4434 
4435   // We exhausted our array of map handler pairs.
4436   __ Branch(miss);
4437 }
4438 
4439 
HandleMonomorphicCase(MacroAssembler * masm,Register receiver,Register receiver_map,Register feedback,Register vector,Register slot,Register scratch,Label * compare_map,Label * load_smi_map,Label * try_array)4440 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
4441                                   Register receiver_map, Register feedback,
4442                                   Register vector, Register slot,
4443                                   Register scratch, Label* compare_map,
4444                                   Label* load_smi_map, Label* try_array) {
4445   __ JumpIfSmi(receiver, load_smi_map);
4446   __ ld(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
4447   __ bind(compare_map);
4448   Register cached_map = scratch;
4449   // Move the weak map into the weak_cell register.
4450   __ ld(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset));
4451   __ Branch(try_array, ne, cached_map, Operand(receiver_map));
4452   Register handler = feedback;
4453   __ SmiScale(handler, slot, kPointerSizeLog2);
4454   __ Daddu(handler, vector, Operand(handler));
4455   __ ld(handler,
4456         FieldMemOperand(handler, FixedArray::kHeaderSize + kPointerSize));
4457   __ Daddu(t9, handler, Code::kHeaderSize - kHeapObjectTag);
4458   __ Jump(t9);
4459 }
4460 
4461 
GenerateImpl(MacroAssembler * masm,bool in_frame)4462 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4463   Register receiver = LoadWithVectorDescriptor::ReceiverRegister();  // a1
4464   Register name = LoadWithVectorDescriptor::NameRegister();          // a2
4465   Register vector = LoadWithVectorDescriptor::VectorRegister();      // a3
4466   Register slot = LoadWithVectorDescriptor::SlotRegister();          // a0
4467   Register feedback = a4;
4468   Register receiver_map = a5;
4469   Register scratch1 = a6;
4470 
4471   __ SmiScale(feedback, slot, kPointerSizeLog2);
4472   __ Daddu(feedback, vector, Operand(feedback));
4473   __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4474 
4475   // Try to quickly handle the monomorphic case without knowing for sure
4476   // if we have a weak cell in feedback. We do know it's safe to look
4477   // at WeakCell::kValueOffset.
4478   Label try_array, load_smi_map, compare_map;
4479   Label not_array, miss;
4480   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4481                         scratch1, &compare_map, &load_smi_map, &try_array);
4482 
4483   // Is it a fixed array?
4484   __ bind(&try_array);
4485   __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4486   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
4487   __ Branch(&not_array, ne, scratch1, Operand(at));
4488   HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, true, &miss);
4489 
4490   __ bind(&not_array);
4491   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
4492   __ Branch(&miss, ne, feedback, Operand(at));
4493   Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4494       Code::ComputeHandlerFlags(Code::LOAD_IC));
4495   masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags,
4496                                                receiver, name, feedback,
4497                                                receiver_map, scratch1, a7);
4498 
4499   __ bind(&miss);
4500   LoadIC::GenerateMiss(masm);
4501 
4502   __ bind(&load_smi_map);
4503   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4504   __ Branch(&compare_map);
4505 }
4506 
4507 
Generate(MacroAssembler * masm)4508 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
4509   GenerateImpl(masm, false);
4510 }
4511 
4512 
GenerateForTrampoline(MacroAssembler * masm)4513 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4514   GenerateImpl(masm, true);
4515 }
4516 
4517 
GenerateImpl(MacroAssembler * masm,bool in_frame)4518 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4519   Register receiver = LoadWithVectorDescriptor::ReceiverRegister();  // a1
4520   Register key = LoadWithVectorDescriptor::NameRegister();           // a2
4521   Register vector = LoadWithVectorDescriptor::VectorRegister();      // a3
4522   Register slot = LoadWithVectorDescriptor::SlotRegister();          // a0
4523   Register feedback = a4;
4524   Register receiver_map = a5;
4525   Register scratch1 = a6;
4526 
4527   __ SmiScale(feedback, slot, kPointerSizeLog2);
4528   __ Daddu(feedback, vector, Operand(feedback));
4529   __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4530 
4531   // Try to quickly handle the monomorphic case without knowing for sure
4532   // if we have a weak cell in feedback. We do know it's safe to look
4533   // at WeakCell::kValueOffset.
4534   Label try_array, load_smi_map, compare_map;
4535   Label not_array, miss;
4536   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4537                         scratch1, &compare_map, &load_smi_map, &try_array);
4538 
4539   __ bind(&try_array);
4540   // Is it a fixed array?
4541   __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4542   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
4543   __ Branch(&not_array, ne, scratch1, Operand(at));
4544   // We have a polymorphic element handler.
4545   __ JumpIfNotSmi(key, &miss);
4546 
4547   Label polymorphic, try_poly_name;
4548   __ bind(&polymorphic);
4549   HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, true, &miss);
4550 
4551   __ bind(&not_array);
4552   // Is it generic?
4553   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
4554   __ Branch(&try_poly_name, ne, feedback, Operand(at));
4555   Handle<Code> megamorphic_stub =
4556       KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4557   __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
4558 
4559   __ bind(&try_poly_name);
4560   // We might have a name in feedback, and a fixed array in the next slot.
4561   __ Branch(&miss, ne, key, Operand(feedback));
4562   // If the name comparison succeeded, we know we have a fixed array with
4563   // at least one map/handler pair.
4564   __ SmiScale(feedback, slot, kPointerSizeLog2);
4565   __ Daddu(feedback, vector, Operand(feedback));
4566   __ ld(feedback,
4567         FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
4568   HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, false, &miss);
4569 
4570   __ bind(&miss);
4571   KeyedLoadIC::GenerateMiss(masm);
4572 
4573   __ bind(&load_smi_map);
4574   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4575   __ Branch(&compare_map);
4576 }
4577 
4578 
Generate(MacroAssembler * masm)4579 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4580   __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
4581   VectorStoreICStub stub(isolate(), state());
4582   stub.GenerateForTrampoline(masm);
4583 }
4584 
4585 
Generate(MacroAssembler * masm)4586 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4587   __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
4588   VectorKeyedStoreICStub stub(isolate(), state());
4589   stub.GenerateForTrampoline(masm);
4590 }
4591 
4592 
Generate(MacroAssembler * masm)4593 void VectorStoreICStub::Generate(MacroAssembler* masm) {
4594   GenerateImpl(masm, false);
4595 }
4596 
4597 
GenerateForTrampoline(MacroAssembler * masm)4598 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4599   GenerateImpl(masm, true);
4600 }
4601 
4602 
GenerateImpl(MacroAssembler * masm,bool in_frame)4603 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4604   Register receiver = VectorStoreICDescriptor::ReceiverRegister();  // a1
4605   Register key = VectorStoreICDescriptor::NameRegister();           // a2
4606   Register vector = VectorStoreICDescriptor::VectorRegister();      // a3
4607   Register slot = VectorStoreICDescriptor::SlotRegister();          // a4
4608   DCHECK(VectorStoreICDescriptor::ValueRegister().is(a0));          // a0
4609   Register feedback = a5;
4610   Register receiver_map = a6;
4611   Register scratch1 = a7;
4612 
4613   __ SmiScale(scratch1, slot, kPointerSizeLog2);
4614   __ Daddu(feedback, vector, Operand(scratch1));
4615   __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4616 
4617   // Try to quickly handle the monomorphic case without knowing for sure
4618   // if we have a weak cell in feedback. We do know it's safe to look
4619   // at WeakCell::kValueOffset.
4620   Label try_array, load_smi_map, compare_map;
4621   Label not_array, miss;
4622   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4623                         scratch1, &compare_map, &load_smi_map, &try_array);
4624 
4625   // Is it a fixed array?
4626   __ bind(&try_array);
4627   __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4628   __ Branch(&not_array, ne, scratch1, Heap::kFixedArrayMapRootIndex);
4629 
4630   Register scratch2 = t0;
4631   HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, true,
4632                    &miss);
4633 
4634   __ bind(&not_array);
4635   __ Branch(&miss, ne, feedback, Heap::kmegamorphic_symbolRootIndex);
4636   Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4637       Code::ComputeHandlerFlags(Code::STORE_IC));
4638   masm->isolate()->stub_cache()->GenerateProbe(
4639       masm, Code::STORE_IC, code_flags, receiver, key, feedback, receiver_map,
4640       scratch1, scratch2);
4641 
4642   __ bind(&miss);
4643   StoreIC::GenerateMiss(masm);
4644 
4645   __ bind(&load_smi_map);
4646   __ Branch(USE_DELAY_SLOT, &compare_map);
4647   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);  // In delay slot.
4648 }
4649 
4650 
Generate(MacroAssembler * masm)4651 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
4652   GenerateImpl(masm, false);
4653 }
4654 
4655 
GenerateForTrampoline(MacroAssembler * masm)4656 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4657   GenerateImpl(masm, true);
4658 }
4659 
4660 
HandlePolymorphicStoreCase(MacroAssembler * masm,Register feedback,Register receiver_map,Register scratch1,Register scratch2,Label * miss)4661 static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register feedback,
4662                                        Register receiver_map, Register scratch1,
4663                                        Register scratch2, Label* miss) {
4664   // feedback initially contains the feedback array
4665   Label next_loop, prepare_next;
4666   Label start_polymorphic;
4667   Label transition_call;
4668 
4669   Register cached_map = scratch1;
4670   Register too_far = scratch2;
4671   Register pointer_reg = feedback;
4672 
4673   __ ld(too_far, FieldMemOperand(feedback, FixedArray::kLengthOffset));
4674 
4675   // +-----+------+------+-----+-----+-----+ ... ----+
4676   // | map | len  | wm0  | wt0 | h0  | wm1 |      hN |
4677   // +-----+------+------+-----+-----+ ----+ ... ----+
4678   //                 0      1     2              len-1
4679   //                 ^                                 ^
4680   //                 |                                 |
4681   //             pointer_reg                        too_far
4682   //             aka feedback                       scratch2
4683   // also need receiver_map
4684   // use cached_map (scratch1) to look in the weak map values.
4685   __ SmiScale(too_far, too_far, kPointerSizeLog2);
4686   __ Daddu(too_far, feedback, Operand(too_far));
4687   __ Daddu(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4688   __ Daddu(pointer_reg, feedback,
4689            Operand(FixedArray::OffsetOfElementAt(0) - kHeapObjectTag));
4690 
4691   __ bind(&next_loop);
4692   __ ld(cached_map, MemOperand(pointer_reg));
4693   __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4694   __ Branch(&prepare_next, ne, receiver_map, Operand(cached_map));
4695   // Is it a transitioning store?
4696   __ ld(too_far, MemOperand(pointer_reg, kPointerSize));
4697   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4698   __ Branch(&transition_call, ne, too_far, Operand(at));
4699 
4700   __ ld(pointer_reg, MemOperand(pointer_reg, kPointerSize * 2));
4701   __ Daddu(t9, pointer_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
4702   __ Jump(t9);
4703 
4704   __ bind(&transition_call);
4705   __ ld(too_far, FieldMemOperand(too_far, WeakCell::kValueOffset));
4706   __ JumpIfSmi(too_far, miss);
4707 
4708   __ ld(receiver_map, MemOperand(pointer_reg, kPointerSize * 2));
4709   // Load the map into the correct register.
4710   DCHECK(feedback.is(VectorStoreTransitionDescriptor::MapRegister()));
4711   __ Move(feedback, too_far);
4712   __ Daddu(t9, receiver_map, Operand(Code::kHeaderSize - kHeapObjectTag));
4713   __ Jump(t9);
4714 
4715   __ bind(&prepare_next);
4716   __ Daddu(pointer_reg, pointer_reg, Operand(kPointerSize * 3));
4717   __ Branch(&next_loop, lt, pointer_reg, Operand(too_far));
4718 
4719   // We exhausted our array of map handler pairs.
4720   __ Branch(miss);
4721 }
4722 
4723 
GenerateImpl(MacroAssembler * masm,bool in_frame)4724 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4725   Register receiver = VectorStoreICDescriptor::ReceiverRegister();  // a1
4726   Register key = VectorStoreICDescriptor::NameRegister();           // a2
4727   Register vector = VectorStoreICDescriptor::VectorRegister();      // a3
4728   Register slot = VectorStoreICDescriptor::SlotRegister();          // a4
4729   DCHECK(VectorStoreICDescriptor::ValueRegister().is(a0));          // a0
4730   Register feedback = a5;
4731   Register receiver_map = a6;
4732   Register scratch1 = a7;
4733 
4734   __ SmiScale(scratch1, slot, kPointerSizeLog2);
4735   __ Daddu(feedback, vector, Operand(scratch1));
4736   __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4737 
4738   // Try to quickly handle the monomorphic case without knowing for sure
4739   // if we have a weak cell in feedback. We do know it's safe to look
4740   // at WeakCell::kValueOffset.
4741   Label try_array, load_smi_map, compare_map;
4742   Label not_array, miss;
4743   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4744                         scratch1, &compare_map, &load_smi_map, &try_array);
4745 
4746   __ bind(&try_array);
4747   // Is it a fixed array?
4748   __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4749   __ Branch(&not_array, ne, scratch1, Heap::kFixedArrayMapRootIndex);
4750 
4751   // We have a polymorphic element handler.
4752   Label try_poly_name;
4753 
4754   Register scratch2 = t0;
4755 
4756   HandlePolymorphicStoreCase(masm, feedback, receiver_map, scratch1, scratch2,
4757                              &miss);
4758 
4759   __ bind(&not_array);
4760   // Is it generic?
4761   __ Branch(&try_poly_name, ne, feedback, Heap::kmegamorphic_symbolRootIndex);
4762   Handle<Code> megamorphic_stub =
4763       KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4764   __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
4765 
4766   __ bind(&try_poly_name);
4767   // We might have a name in feedback, and a fixed array in the next slot.
4768   __ Branch(&miss, ne, key, Operand(feedback));
4769   // If the name comparison succeeded, we know we have a fixed array with
4770   // at least one map/handler pair.
4771   __ SmiScale(scratch1, slot, kPointerSizeLog2);
4772   __ Daddu(feedback, vector, Operand(scratch1));
4773   __ ld(feedback,
4774         FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
4775   HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, false,
4776                    &miss);
4777 
4778   __ bind(&miss);
4779   KeyedStoreIC::GenerateMiss(masm);
4780 
4781   __ bind(&load_smi_map);
4782   __ Branch(USE_DELAY_SLOT, &compare_map);
4783   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);  // In delay slot.
4784 }
4785 
4786 
MaybeCallEntryHook(MacroAssembler * masm)4787 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4788   if (masm->isolate()->function_entry_hook() != NULL) {
4789     ProfileEntryHookStub stub(masm->isolate());
4790     __ push(ra);
4791     __ CallStub(&stub);
4792     __ pop(ra);
4793   }
4794 }
4795 
4796 
Generate(MacroAssembler * masm)4797 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4798   // The entry hook is a "push ra" instruction, followed by a call.
4799   // Note: on MIPS "push" is 2 instruction
4800   const int32_t kReturnAddressDistanceFromFunctionStart =
4801       Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize);
4802 
4803   // This should contain all kJSCallerSaved registers.
4804   const RegList kSavedRegs =
4805      kJSCallerSaved |  // Caller saved registers.
4806      s5.bit();         // Saved stack pointer.
4807 
4808   // We also save ra, so the count here is one higher than the mask indicates.
4809   const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
4810 
4811   // Save all caller-save registers as this may be called from anywhere.
4812   __ MultiPush(kSavedRegs | ra.bit());
4813 
4814   // Compute the function's address for the first argument.
4815   __ Dsubu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
4816 
4817   // The caller's return address is above the saved temporaries.
4818   // Grab that for the second argument to the hook.
4819   __ Daddu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
4820 
4821   // Align the stack if necessary.
4822   int frame_alignment = masm->ActivationFrameAlignment();
4823   if (frame_alignment > kPointerSize) {
4824     __ mov(s5, sp);
4825     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
4826     __ And(sp, sp, Operand(-frame_alignment));
4827   }
4828 
4829   __ Dsubu(sp, sp, kCArgsSlotsSize);
4830 #if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
4831   int64_t entry_hook =
4832       reinterpret_cast<int64_t>(isolate()->function_entry_hook());
4833   __ li(t9, Operand(entry_hook));
4834 #else
4835   // Under the simulator we need to indirect the entry hook through a
4836   // trampoline function at a known address.
4837   // It additionally takes an isolate as a third parameter.
4838   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
4839 
4840   ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4841   __ li(t9, Operand(ExternalReference(&dispatcher,
4842                                       ExternalReference::BUILTIN_CALL,
4843                                       isolate())));
4844 #endif
4845   // Call C function through t9 to conform ABI for PIC.
4846   __ Call(t9);
4847 
4848   // Restore the stack pointer if needed.
4849   if (frame_alignment > kPointerSize) {
4850     __ mov(sp, s5);
4851   } else {
4852     __ Daddu(sp, sp, kCArgsSlotsSize);
4853   }
4854 
4855   // Also pop ra to get Ret(0).
4856   __ MultiPop(kSavedRegs | ra.bit());
4857   __ Ret();
4858 }
4859 
4860 
4861 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)4862 static void CreateArrayDispatch(MacroAssembler* masm,
4863                                 AllocationSiteOverrideMode mode) {
4864   if (mode == DISABLE_ALLOCATION_SITES) {
4865     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4866     __ TailCallStub(&stub);
4867   } else if (mode == DONT_OVERRIDE) {
4868     int last_index = GetSequenceIndexFromFastElementsKind(
4869         TERMINAL_FAST_ELEMENTS_KIND);
4870     for (int i = 0; i <= last_index; ++i) {
4871       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4872       T stub(masm->isolate(), kind);
4873       __ TailCallStub(&stub, eq, a3, Operand(kind));
4874     }
4875 
4876     // If we reached this point there is a problem.
4877     __ Abort(kUnexpectedElementsKindInArrayConstructor);
4878   } else {
4879     UNREACHABLE();
4880   }
4881 }
4882 
4883 
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)4884 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4885                                            AllocationSiteOverrideMode mode) {
4886   // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4887   // a3 - kind (if mode != DISABLE_ALLOCATION_SITES)
4888   // a0 - number of arguments
4889   // a1 - constructor?
4890   // sp[0] - last argument
4891   Label normal_sequence;
4892   if (mode == DONT_OVERRIDE) {
4893     STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
4894     STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4895     STATIC_ASSERT(FAST_ELEMENTS == 2);
4896     STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
4897     STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
4898     STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4899 
4900     // is the low bit set? If so, we are holey and that is good.
4901     __ And(at, a3, Operand(1));
4902     __ Branch(&normal_sequence, ne, at, Operand(zero_reg));
4903   }
4904   // look at the first argument
4905   __ ld(a5, MemOperand(sp, 0));
4906   __ Branch(&normal_sequence, eq, a5, Operand(zero_reg));
4907 
4908   if (mode == DISABLE_ALLOCATION_SITES) {
4909     ElementsKind initial = GetInitialFastElementsKind();
4910     ElementsKind holey_initial = GetHoleyElementsKind(initial);
4911 
4912     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4913                                                   holey_initial,
4914                                                   DISABLE_ALLOCATION_SITES);
4915     __ TailCallStub(&stub_holey);
4916 
4917     __ bind(&normal_sequence);
4918     ArraySingleArgumentConstructorStub stub(masm->isolate(),
4919                                             initial,
4920                                             DISABLE_ALLOCATION_SITES);
4921     __ TailCallStub(&stub);
4922   } else if (mode == DONT_OVERRIDE) {
4923     // We are going to create a holey array, but our kind is non-holey.
4924     // Fix kind and retry (only if we have an allocation site in the slot).
4925     __ Daddu(a3, a3, Operand(1));
4926 
4927     if (FLAG_debug_code) {
4928       __ ld(a5, FieldMemOperand(a2, 0));
4929       __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
4930       __ Assert(eq, kExpectedAllocationSite, a5, Operand(at));
4931     }
4932 
4933     // Save the resulting elements kind in type info. We can't just store a3
4934     // in the AllocationSite::transition_info field because elements kind is
4935     // restricted to a portion of the field...upper bits need to be left alone.
4936     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4937     __ ld(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4938     __ Daddu(a4, a4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
4939     __ sd(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4940 
4941 
4942     __ bind(&normal_sequence);
4943     int last_index = GetSequenceIndexFromFastElementsKind(
4944         TERMINAL_FAST_ELEMENTS_KIND);
4945     for (int i = 0; i <= last_index; ++i) {
4946       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4947       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4948       __ TailCallStub(&stub, eq, a3, Operand(kind));
4949     }
4950 
4951     // If we reached this point there is a problem.
4952     __ Abort(kUnexpectedElementsKindInArrayConstructor);
4953   } else {
4954     UNREACHABLE();
4955   }
4956 }
4957 
4958 
4959 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)4960 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4961   int to_index = GetSequenceIndexFromFastElementsKind(
4962       TERMINAL_FAST_ELEMENTS_KIND);
4963   for (int i = 0; i <= to_index; ++i) {
4964     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4965     T stub(isolate, kind);
4966     stub.GetCode();
4967     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4968       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4969       stub1.GetCode();
4970     }
4971   }
4972 }
4973 
4974 
GenerateStubsAheadOfTime(Isolate * isolate)4975 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4976   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4977       isolate);
4978   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4979       isolate);
4980   ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4981       isolate);
4982 }
4983 
4984 
GenerateStubsAheadOfTime(Isolate * isolate)4985 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4986     Isolate* isolate) {
4987   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4988   for (int i = 0; i < 2; i++) {
4989     // For internal arrays we only need a few things.
4990     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4991     stubh1.GetCode();
4992     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4993     stubh2.GetCode();
4994     InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4995     stubh3.GetCode();
4996   }
4997 }
4998 
4999 
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)5000 void ArrayConstructorStub::GenerateDispatchToArrayStub(
5001     MacroAssembler* masm,
5002     AllocationSiteOverrideMode mode) {
5003   if (argument_count() == ANY) {
5004     Label not_zero_case, not_one_case;
5005     __ And(at, a0, a0);
5006     __ Branch(&not_zero_case, ne, at, Operand(zero_reg));
5007     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
5008 
5009     __ bind(&not_zero_case);
5010     __ Branch(&not_one_case, gt, a0, Operand(1));
5011     CreateArrayDispatchOneArgument(masm, mode);
5012 
5013     __ bind(&not_one_case);
5014     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
5015   } else if (argument_count() == NONE) {
5016     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
5017   } else if (argument_count() == ONE) {
5018     CreateArrayDispatchOneArgument(masm, mode);
5019   } else if (argument_count() == MORE_THAN_ONE) {
5020     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
5021   } else {
5022     UNREACHABLE();
5023   }
5024 }
5025 
5026 
Generate(MacroAssembler * masm)5027 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
5028   // ----------- S t a t e -------------
5029   //  -- a0 : argc (only if argument_count() == ANY)
5030   //  -- a1 : constructor
5031   //  -- a2 : AllocationSite or undefined
5032   //  -- a3 : new target
5033   //  -- sp[0] : last argument
5034   // -----------------------------------
5035 
5036   if (FLAG_debug_code) {
5037     // The array construct code is only set for the global and natives
5038     // builtin Array functions which always have maps.
5039 
5040     // Initial map for the builtin Array function should be a map.
5041     __ ld(a4, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
5042     // Will both indicate a NULL and a Smi.
5043     __ SmiTst(a4, at);
5044     __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
5045         at, Operand(zero_reg));
5046     __ GetObjectType(a4, a4, a5);
5047     __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
5048         a5, Operand(MAP_TYPE));
5049 
5050     // We should either have undefined in a2 or a valid AllocationSite
5051     __ AssertUndefinedOrAllocationSite(a2, a4);
5052   }
5053 
5054   // Enter the context of the Array function.
5055   __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
5056 
5057   Label subclassing;
5058   __ Branch(&subclassing, ne, a1, Operand(a3));
5059 
5060   Label no_info;
5061   // Get the elements kind and case on that.
5062   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5063   __ Branch(&no_info, eq, a2, Operand(at));
5064 
5065   __ ld(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
5066   __ SmiUntag(a3);
5067   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
5068   __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask));
5069   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
5070 
5071   __ bind(&no_info);
5072   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
5073 
5074   // Subclassing.
5075   __ bind(&subclassing);
5076   switch (argument_count()) {
5077     case ANY:
5078     case MORE_THAN_ONE:
5079       __ dsll(at, a0, kPointerSizeLog2);
5080       __ Daddu(at, sp, at);
5081       __ sd(a1, MemOperand(at));
5082       __ li(at, Operand(3));
5083       __ Daddu(a0, a0, at);
5084       break;
5085     case NONE:
5086       __ sd(a1, MemOperand(sp, 0 * kPointerSize));
5087       __ li(a0, Operand(3));
5088       break;
5089     case ONE:
5090       __ sd(a1, MemOperand(sp, 1 * kPointerSize));
5091       __ li(a0, Operand(4));
5092       break;
5093   }
5094   __ Push(a3, a2);
5095   __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
5096 }
5097 
5098 
GenerateCase(MacroAssembler * masm,ElementsKind kind)5099 void InternalArrayConstructorStub::GenerateCase(
5100     MacroAssembler* masm, ElementsKind kind) {
5101 
5102   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
5103   __ TailCallStub(&stub0, lo, a0, Operand(1));
5104 
5105   InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
5106   __ TailCallStub(&stubN, hi, a0, Operand(1));
5107 
5108   if (IsFastPackedElementsKind(kind)) {
5109     // We might need to create a holey array
5110     // look at the first argument.
5111     __ ld(at, MemOperand(sp, 0));
5112 
5113     InternalArraySingleArgumentConstructorStub
5114         stub1_holey(isolate(), GetHoleyElementsKind(kind));
5115     __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg));
5116   }
5117 
5118   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
5119   __ TailCallStub(&stub1);
5120 }
5121 
5122 
Generate(MacroAssembler * masm)5123 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
5124   // ----------- S t a t e -------------
5125   //  -- a0 : argc
5126   //  -- a1 : constructor
5127   //  -- sp[0] : return address
5128   //  -- sp[4] : last argument
5129   // -----------------------------------
5130 
5131   if (FLAG_debug_code) {
5132     // The array construct code is only set for the global and natives
5133     // builtin Array functions which always have maps.
5134 
5135     // Initial map for the builtin Array function should be a map.
5136     __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
5137     // Will both indicate a NULL and a Smi.
5138     __ SmiTst(a3, at);
5139     __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
5140         at, Operand(zero_reg));
5141     __ GetObjectType(a3, a3, a4);
5142     __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
5143         a4, Operand(MAP_TYPE));
5144   }
5145 
5146   // Figure out the right elements kind.
5147   __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
5148 
5149   // Load the map's "bit field 2" into a3. We only need the first byte,
5150   // but the following bit field extraction takes care of that anyway.
5151   __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset));
5152   // Retrieve elements_kind from bit field 2.
5153   __ DecodeField<Map::ElementsKindBits>(a3);
5154 
5155   if (FLAG_debug_code) {
5156     Label done;
5157     __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS));
5158     __ Assert(
5159         eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray,
5160         a3, Operand(FAST_HOLEY_ELEMENTS));
5161     __ bind(&done);
5162   }
5163 
5164   Label fast_elements_case;
5165   __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS));
5166   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
5167 
5168   __ bind(&fast_elements_case);
5169   GenerateCase(masm, FAST_ELEMENTS);
5170 }
5171 
5172 
Generate(MacroAssembler * masm)5173 void LoadGlobalViaContextStub::Generate(MacroAssembler* masm) {
5174   Register context_reg = cp;
5175   Register slot_reg = a2;
5176   Register result_reg = v0;
5177   Label slow_case;
5178 
5179   // Go up context chain to the script context.
5180   for (int i = 0; i < depth(); ++i) {
5181     __ ld(result_reg, ContextMemOperand(context_reg, Context::PREVIOUS_INDEX));
5182     context_reg = result_reg;
5183   }
5184 
5185   // Load the PropertyCell value at the specified slot.
5186   __ dsll(at, slot_reg, kPointerSizeLog2);
5187   __ Daddu(at, at, Operand(context_reg));
5188   __ ld(result_reg, ContextMemOperand(at, 0));
5189   __ ld(result_reg, FieldMemOperand(result_reg, PropertyCell::kValueOffset));
5190 
5191   // Check that value is not the_hole.
5192   __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
5193   __ Branch(&slow_case, eq, result_reg, Operand(at));
5194   __ Ret();
5195 
5196   // Fallback to the runtime.
5197   __ bind(&slow_case);
5198   __ SmiTag(slot_reg);
5199   __ Push(slot_reg);
5200   __ TailCallRuntime(Runtime::kLoadGlobalViaContext);
5201 }
5202 
5203 
Generate(MacroAssembler * masm)5204 void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) {
5205   Register context_reg = cp;
5206   Register slot_reg = a2;
5207   Register value_reg = a0;
5208   Register cell_reg = a4;
5209   Register cell_value_reg = a5;
5210   Register cell_details_reg = a6;
5211   Label fast_heapobject_case, fast_smi_case, slow_case;
5212 
5213   if (FLAG_debug_code) {
5214     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
5215     __ Check(ne, kUnexpectedValue, value_reg, Operand(at));
5216   }
5217 
5218   // Go up context chain to the script context.
5219   for (int i = 0; i < depth(); ++i) {
5220     __ ld(cell_reg, ContextMemOperand(context_reg, Context::PREVIOUS_INDEX));
5221     context_reg = cell_reg;
5222   }
5223 
5224   // Load the PropertyCell at the specified slot.
5225   __ dsll(at, slot_reg, kPointerSizeLog2);
5226   __ Daddu(at, at, Operand(context_reg));
5227   __ ld(cell_reg, ContextMemOperand(at, 0));
5228 
5229   // Load PropertyDetails for the cell (actually only the cell_type and kind).
5230   __ ld(cell_details_reg,
5231         FieldMemOperand(cell_reg, PropertyCell::kDetailsOffset));
5232   __ SmiUntag(cell_details_reg);
5233   __ And(cell_details_reg, cell_details_reg,
5234          PropertyDetails::PropertyCellTypeField::kMask |
5235              PropertyDetails::KindField::kMask |
5236              PropertyDetails::kAttributesReadOnlyMask);
5237 
5238   // Check if PropertyCell holds mutable data.
5239   Label not_mutable_data;
5240   __ Branch(&not_mutable_data, ne, cell_details_reg,
5241             Operand(PropertyDetails::PropertyCellTypeField::encode(
5242                         PropertyCellType::kMutable) |
5243                     PropertyDetails::KindField::encode(kData)));
5244   __ JumpIfSmi(value_reg, &fast_smi_case);
5245   __ bind(&fast_heapobject_case);
5246   __ sd(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
5247   __ RecordWriteField(cell_reg, PropertyCell::kValueOffset, value_reg,
5248                       cell_details_reg, kRAHasNotBeenSaved, kDontSaveFPRegs,
5249                       EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
5250   // RecordWriteField clobbers the value register, so we need to reload.
5251   __ Ret(USE_DELAY_SLOT);
5252   __ ld(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
5253   __ bind(&not_mutable_data);
5254 
5255   // Check if PropertyCell value matches the new value (relevant for Constant,
5256   // ConstantType and Undefined cells).
5257   Label not_same_value;
5258   __ ld(cell_value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
5259   __ Branch(&not_same_value, ne, value_reg, Operand(cell_value_reg));
5260   // Make sure the PropertyCell is not marked READ_ONLY.
5261   __ And(at, cell_details_reg, PropertyDetails::kAttributesReadOnlyMask);
5262   __ Branch(&slow_case, ne, at, Operand(zero_reg));
5263   if (FLAG_debug_code) {
5264     Label done;
5265     // This can only be true for Constant, ConstantType and Undefined cells,
5266     // because we never store the_hole via this stub.
5267     __ Branch(&done, eq, cell_details_reg,
5268               Operand(PropertyDetails::PropertyCellTypeField::encode(
5269                           PropertyCellType::kConstant) |
5270                       PropertyDetails::KindField::encode(kData)));
5271     __ Branch(&done, eq, cell_details_reg,
5272               Operand(PropertyDetails::PropertyCellTypeField::encode(
5273                           PropertyCellType::kConstantType) |
5274                       PropertyDetails::KindField::encode(kData)));
5275     __ Check(eq, kUnexpectedValue, cell_details_reg,
5276              Operand(PropertyDetails::PropertyCellTypeField::encode(
5277                          PropertyCellType::kUndefined) |
5278                      PropertyDetails::KindField::encode(kData)));
5279     __ bind(&done);
5280   }
5281   __ Ret();
5282   __ bind(&not_same_value);
5283 
5284   // Check if PropertyCell contains data with constant type (and is not
5285   // READ_ONLY).
5286   __ Branch(&slow_case, ne, cell_details_reg,
5287             Operand(PropertyDetails::PropertyCellTypeField::encode(
5288                         PropertyCellType::kConstantType) |
5289                     PropertyDetails::KindField::encode(kData)));
5290 
5291   // Now either both old and new values must be SMIs or both must be heap
5292   // objects with same map.
5293   Label value_is_heap_object;
5294   __ JumpIfNotSmi(value_reg, &value_is_heap_object);
5295   __ JumpIfNotSmi(cell_value_reg, &slow_case);
5296   // Old and new values are SMIs, no need for a write barrier here.
5297   __ bind(&fast_smi_case);
5298   __ Ret(USE_DELAY_SLOT);
5299   __ sd(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
5300   __ bind(&value_is_heap_object);
5301   __ JumpIfSmi(cell_value_reg, &slow_case);
5302   Register cell_value_map_reg = cell_value_reg;
5303   __ ld(cell_value_map_reg,
5304         FieldMemOperand(cell_value_reg, HeapObject::kMapOffset));
5305   __ Branch(&fast_heapobject_case, eq, cell_value_map_reg,
5306             FieldMemOperand(value_reg, HeapObject::kMapOffset));
5307 
5308   // Fallback to the runtime.
5309   __ bind(&slow_case);
5310   __ SmiTag(slot_reg);
5311   __ Push(slot_reg, value_reg);
5312   __ TailCallRuntime(is_strict(language_mode())
5313                          ? Runtime::kStoreGlobalViaContext_Strict
5314                          : Runtime::kStoreGlobalViaContext_Sloppy);
5315 }
5316 
5317 
AddressOffset(ExternalReference ref0,ExternalReference ref1)5318 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
5319   int64_t offset = (ref0.address() - ref1.address());
5320   DCHECK(static_cast<int>(offset) == offset);
5321   return static_cast<int>(offset);
5322 }
5323 
5324 
5325 // Calls an API function.  Allocates HandleScope, extracts returned value
5326 // from handle and propagates exceptions.  Restores context.  stack_space
5327 // - space to be unwound on exit (includes the call JS arguments space and
5328 // the additional space allocated for the fast call).
CallApiFunctionAndReturn(MacroAssembler * masm,Register function_address,ExternalReference thunk_ref,int stack_space,int32_t stack_space_offset,MemOperand return_value_operand,MemOperand * context_restore_operand)5329 static void CallApiFunctionAndReturn(
5330     MacroAssembler* masm, Register function_address,
5331     ExternalReference thunk_ref, int stack_space, int32_t stack_space_offset,
5332     MemOperand return_value_operand, MemOperand* context_restore_operand) {
5333   Isolate* isolate = masm->isolate();
5334   ExternalReference next_address =
5335       ExternalReference::handle_scope_next_address(isolate);
5336   const int kNextOffset = 0;
5337   const int kLimitOffset = AddressOffset(
5338       ExternalReference::handle_scope_limit_address(isolate), next_address);
5339   const int kLevelOffset = AddressOffset(
5340       ExternalReference::handle_scope_level_address(isolate), next_address);
5341 
5342   DCHECK(function_address.is(a1) || function_address.is(a2));
5343 
5344   Label profiler_disabled;
5345   Label end_profiler_check;
5346   __ li(t9, Operand(ExternalReference::is_profiling_address(isolate)));
5347   __ lb(t9, MemOperand(t9, 0));
5348   __ Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
5349 
5350   // Additional parameter is the address of the actual callback.
5351   __ li(t9, Operand(thunk_ref));
5352   __ jmp(&end_profiler_check);
5353 
5354   __ bind(&profiler_disabled);
5355   __ mov(t9, function_address);
5356   __ bind(&end_profiler_check);
5357 
5358   // Allocate HandleScope in callee-save registers.
5359   __ li(s3, Operand(next_address));
5360   __ ld(s0, MemOperand(s3, kNextOffset));
5361   __ ld(s1, MemOperand(s3, kLimitOffset));
5362   __ lw(s2, MemOperand(s3, kLevelOffset));
5363   __ Addu(s2, s2, Operand(1));
5364   __ sw(s2, MemOperand(s3, kLevelOffset));
5365 
5366   if (FLAG_log_timer_events) {
5367     FrameScope frame(masm, StackFrame::MANUAL);
5368     __ PushSafepointRegisters();
5369     __ PrepareCallCFunction(1, a0);
5370     __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
5371     __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5372                      1);
5373     __ PopSafepointRegisters();
5374   }
5375 
5376   // Native call returns to the DirectCEntry stub which redirects to the
5377   // return address pushed on stack (could have moved after GC).
5378   // DirectCEntry stub itself is generated early and never moves.
5379   DirectCEntryStub stub(isolate);
5380   stub.GenerateCall(masm, t9);
5381 
5382   if (FLAG_log_timer_events) {
5383     FrameScope frame(masm, StackFrame::MANUAL);
5384     __ PushSafepointRegisters();
5385     __ PrepareCallCFunction(1, a0);
5386     __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
5387     __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5388                      1);
5389     __ PopSafepointRegisters();
5390   }
5391 
5392   Label promote_scheduled_exception;
5393   Label delete_allocated_handles;
5394   Label leave_exit_frame;
5395   Label return_value_loaded;
5396 
5397   // Load value from ReturnValue.
5398   __ ld(v0, return_value_operand);
5399   __ bind(&return_value_loaded);
5400 
5401   // No more valid handles (the result handle was the last one). Restore
5402   // previous handle scope.
5403   __ sd(s0, MemOperand(s3, kNextOffset));
5404   if (__ emit_debug_code()) {
5405     __ lw(a1, MemOperand(s3, kLevelOffset));
5406     __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2));
5407   }
5408   __ Subu(s2, s2, Operand(1));
5409   __ sw(s2, MemOperand(s3, kLevelOffset));
5410   __ ld(at, MemOperand(s3, kLimitOffset));
5411   __ Branch(&delete_allocated_handles, ne, s1, Operand(at));
5412 
5413   // Leave the API exit frame.
5414   __ bind(&leave_exit_frame);
5415 
5416   bool restore_context = context_restore_operand != NULL;
5417   if (restore_context) {
5418     __ ld(cp, *context_restore_operand);
5419   }
5420   if (stack_space_offset != kInvalidStackOffset) {
5421     DCHECK(kCArgsSlotsSize == 0);
5422     __ ld(s0, MemOperand(sp, stack_space_offset));
5423   } else {
5424     __ li(s0, Operand(stack_space));
5425   }
5426   __ LeaveExitFrame(false, s0, !restore_context, NO_EMIT_RETURN,
5427                     stack_space_offset != kInvalidStackOffset);
5428 
5429   // Check if the function scheduled an exception.
5430   __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
5431   __ li(at, Operand(ExternalReference::scheduled_exception_address(isolate)));
5432   __ ld(a5, MemOperand(at));
5433   __ Branch(&promote_scheduled_exception, ne, a4, Operand(a5));
5434 
5435   __ Ret();
5436 
5437   // Re-throw by promoting a scheduled exception.
5438   __ bind(&promote_scheduled_exception);
5439   __ TailCallRuntime(Runtime::kPromoteScheduledException);
5440 
5441   // HandleScope limit has changed. Delete allocated extensions.
5442   __ bind(&delete_allocated_handles);
5443   __ sd(s1, MemOperand(s3, kLimitOffset));
5444   __ mov(s0, v0);
5445   __ mov(a0, v0);
5446   __ PrepareCallCFunction(1, s1);
5447   __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
5448   __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
5449                    1);
5450   __ mov(v0, s0);
5451   __ jmp(&leave_exit_frame);
5452 }
5453 
5454 
CallApiFunctionStubHelper(MacroAssembler * masm,const ParameterCount & argc,bool return_first_arg,bool call_data_undefined)5455 static void CallApiFunctionStubHelper(MacroAssembler* masm,
5456                                       const ParameterCount& argc,
5457                                       bool return_first_arg,
5458                                       bool call_data_undefined) {
5459   // ----------- S t a t e -------------
5460   //  -- a0                  : callee
5461   //  -- a4                  : call_data
5462   //  -- a2                  : holder
5463   //  -- a1                  : api_function_address
5464   //  -- a3                  : number of arguments if argc is a register
5465   //  -- cp                  : context
5466   //  --
5467   //  -- sp[0]               : last argument
5468   //  -- ...
5469   //  -- sp[(argc - 1)* 8]   : first argument
5470   //  -- sp[argc * 8]        : receiver
5471   // -----------------------------------
5472 
5473   Register callee = a0;
5474   Register call_data = a4;
5475   Register holder = a2;
5476   Register api_function_address = a1;
5477   Register context = cp;
5478 
5479   typedef FunctionCallbackArguments FCA;
5480 
5481   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5482   STATIC_ASSERT(FCA::kCalleeIndex == 5);
5483   STATIC_ASSERT(FCA::kDataIndex == 4);
5484   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5485   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5486   STATIC_ASSERT(FCA::kIsolateIndex == 1);
5487   STATIC_ASSERT(FCA::kHolderIndex == 0);
5488   STATIC_ASSERT(FCA::kArgsLength == 7);
5489 
5490   DCHECK(argc.is_immediate() || a3.is(argc.reg()));
5491 
5492   // Save context, callee and call data.
5493   __ Push(context, callee, call_data);
5494   // Load context from callee.
5495   __ ld(context, FieldMemOperand(callee, JSFunction::kContextOffset));
5496 
5497   Register scratch = call_data;
5498   if (!call_data_undefined) {
5499     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
5500   }
5501   // Push return value and default return value.
5502   __ Push(scratch, scratch);
5503   __ li(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
5504   // Push isolate and holder.
5505   __ Push(scratch, holder);
5506 
5507   // Prepare arguments.
5508   __ mov(scratch, sp);
5509 
5510   // Allocate the v8::Arguments structure in the arguments' space since
5511   // it's not controlled by GC.
5512   const int kApiStackSpace = 4;
5513 
5514   FrameScope frame_scope(masm, StackFrame::MANUAL);
5515   __ EnterExitFrame(false, kApiStackSpace);
5516 
5517   DCHECK(!api_function_address.is(a0) && !scratch.is(a0));
5518   // a0 = FunctionCallbackInfo&
5519   // Arguments is after the return address.
5520   __ Daddu(a0, sp, Operand(1 * kPointerSize));
5521   // FunctionCallbackInfo::implicit_args_
5522   __ sd(scratch, MemOperand(a0, 0 * kPointerSize));
5523   if (argc.is_immediate()) {
5524     // FunctionCallbackInfo::values_
5525     __ Daddu(at, scratch,
5526              Operand((FCA::kArgsLength - 1 + argc.immediate()) * kPointerSize));
5527     __ sd(at, MemOperand(a0, 1 * kPointerSize));
5528     // FunctionCallbackInfo::length_ = argc
5529     // Stored as int field, 32-bit integers within struct on stack always left
5530     // justified by n64 ABI.
5531     __ li(at, Operand(argc.immediate()));
5532     __ sw(at, MemOperand(a0, 2 * kPointerSize));
5533     // FunctionCallbackInfo::is_construct_call_ = 0
5534     __ sw(zero_reg, MemOperand(a0, 2 * kPointerSize + kIntSize));
5535   } else {
5536     // FunctionCallbackInfo::values_
5537     __ dsll(at, argc.reg(), kPointerSizeLog2);
5538     __ Daddu(at, at, scratch);
5539     __ Daddu(at, at, Operand((FCA::kArgsLength - 1) * kPointerSize));
5540     __ sd(at, MemOperand(a0, 1 * kPointerSize));
5541     // FunctionCallbackInfo::length_ = argc
5542     // Stored as int field, 32-bit integers within struct on stack always left
5543     // justified by n64 ABI.
5544     __ sw(argc.reg(), MemOperand(a0, 2 * kPointerSize));
5545     // FunctionCallbackInfo::is_construct_call_
5546     __ Daddu(argc.reg(), argc.reg(), Operand(FCA::kArgsLength + 1));
5547     __ dsll(at, argc.reg(), kPointerSizeLog2);
5548     __ sw(at, MemOperand(a0, 2 * kPointerSize + kIntSize));
5549   }
5550 
5551   ExternalReference thunk_ref =
5552       ExternalReference::invoke_function_callback(masm->isolate());
5553 
5554   AllowExternalCallThatCantCauseGC scope(masm);
5555   MemOperand context_restore_operand(
5556       fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
5557   // Stores return the first js argument.
5558   int return_value_offset = 0;
5559   if (return_first_arg) {
5560     return_value_offset = 2 + FCA::kArgsLength;
5561   } else {
5562     return_value_offset = 2 + FCA::kReturnValueOffset;
5563   }
5564   MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
5565   int stack_space = 0;
5566   int32_t stack_space_offset = 4 * kPointerSize;
5567   if (argc.is_immediate()) {
5568     stack_space = argc.immediate() + FCA::kArgsLength + 1;
5569     stack_space_offset = kInvalidStackOffset;
5570   }
5571   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
5572                            stack_space_offset, return_value_operand,
5573                            &context_restore_operand);
5574 }
5575 
5576 
Generate(MacroAssembler * masm)5577 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
5578   bool call_data_undefined = this->call_data_undefined();
5579   CallApiFunctionStubHelper(masm, ParameterCount(a3), false,
5580                             call_data_undefined);
5581 }
5582 
5583 
Generate(MacroAssembler * masm)5584 void CallApiAccessorStub::Generate(MacroAssembler* masm) {
5585   bool is_store = this->is_store();
5586   int argc = this->argc();
5587   bool call_data_undefined = this->call_data_undefined();
5588   CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store,
5589                             call_data_undefined);
5590 }
5591 
5592 
Generate(MacroAssembler * masm)5593 void CallApiGetterStub::Generate(MacroAssembler* masm) {
5594   // ----------- S t a t e -------------
5595   //  -- sp[0]                  : name
5596   //  -- sp[4 - kArgsLength*4]  : PropertyCallbackArguments object
5597   //  -- ...
5598   //  -- a2                     : api_function_address
5599   // -----------------------------------
5600 
5601   Register api_function_address = ApiGetterDescriptor::function_address();
5602   DCHECK(api_function_address.is(a2));
5603 
5604   __ mov(a0, sp);  // a0 = Handle<Name>
5605   __ Daddu(a1, a0, Operand(1 * kPointerSize));  // a1 = PCA
5606 
5607   const int kApiStackSpace = 1;
5608   FrameScope frame_scope(masm, StackFrame::MANUAL);
5609   __ EnterExitFrame(false, kApiStackSpace);
5610 
5611   // Create PropertyAccessorInfo instance on the stack above the exit frame with
5612   // a1 (internal::Object** args_) as the data.
5613   __ sd(a1, MemOperand(sp, 1 * kPointerSize));
5614   __ Daddu(a1, sp, Operand(1 * kPointerSize));  // a1 = AccessorInfo&
5615 
5616   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
5617 
5618   ExternalReference thunk_ref =
5619       ExternalReference::invoke_accessor_getter_callback(isolate());
5620   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5621                            kStackUnwindSpace, kInvalidStackOffset,
5622                            MemOperand(fp, 6 * kPointerSize), NULL);
5623 }
5624 
5625 
5626 #undef __
5627 
5628 }  // namespace internal
5629 }  // namespace v8
5630 
5631 #endif  // V8_TARGET_ARCH_MIPS64
5632