• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
7 
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips64/assembler-mips64.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 // Give alias names to registers for calling conventions.
16 const Register kReturnRegister0 = {Register::kCode_v0};
17 const Register kReturnRegister1 = {Register::kCode_v1};
18 const Register kJSFunctionRegister = {Register::kCode_a1};
19 const Register kContextRegister = {Register::kCpRegister};
20 const Register kInterpreterAccumulatorRegister = {Register::kCode_v0};
21 const Register kInterpreterRegisterFileRegister = {Register::kCode_a7};
22 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_t0};
23 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_t1};
24 const Register kInterpreterDispatchTableRegister = {Register::kCode_t2};
25 const Register kJavaScriptCallArgCountRegister = {Register::kCode_a0};
26 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_a3};
27 const Register kRuntimeCallFunctionRegister = {Register::kCode_a1};
28 const Register kRuntimeCallArgCountRegister = {Register::kCode_a0};
29 
30 // Forward declaration.
31 class JumpTarget;
32 
33 // Reserved Register Usage Summary.
34 //
35 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
36 //
37 // The programmer should know that the MacroAssembler may clobber these three,
38 // but won't touch other registers except in special cases.
39 //
40 // Per the MIPS ABI, register t9 must be used for indirect function call
41 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
42 // trying to update gp register for position-independent-code. Whenever
43 // MIPS generated code calls C code, it must be via t9 register.
44 
45 
46 // Flags used for LeaveExitFrame function.
47 enum LeaveExitFrameMode {
48   EMIT_RETURN = true,
49   NO_EMIT_RETURN = false
50 };
51 
52 // Flags used for AllocateHeapNumber
53 enum TaggingMode {
54   // Tag the result.
55   TAG_RESULT,
56   // Don't tag
57   DONT_TAG_RESULT
58 };
59 
60 // Flags used for the ObjectToDoubleFPURegister function.
61 enum ObjectToDoubleFlags {
62   // No special flags.
63   NO_OBJECT_TO_DOUBLE_FLAGS = 0,
64   // Object is known to be a non smi.
65   OBJECT_NOT_SMI = 1 << 0,
66   // Don't load NaNs or infinities, branch to the non number case instead.
67   AVOID_NANS_AND_INFINITIES = 1 << 1
68 };
69 
70 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
71 enum BranchDelaySlot {
72   USE_DELAY_SLOT,
73   PROTECT
74 };
75 
76 // Flags used for the li macro-assembler function.
77 enum LiFlags {
78   // If the constant value can be represented in just 16 bits, then
79   // optimize the li to use a single instruction, rather than lui/ori/dsll
80   // sequence.
81   OPTIMIZE_SIZE = 0,
82   // Always use 6 instructions (lui/ori/dsll sequence), even if the constant
83   // could be loaded with just one, so that this value is patchable later.
84   CONSTANT_SIZE = 1,
85   // For address loads only 4 instruction are required. Used to mark
86   // constant load that will be used as address without relocation
87   // information. It ensures predictable code size, so specific sites
88   // in code are patchable.
89   ADDRESS_LOAD  = 2
90 };
91 
92 
93 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
94 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
95 enum PointersToHereCheck {
96   kPointersToHereMaybeInteresting,
97   kPointersToHereAreAlwaysInteresting
98 };
99 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
100 
101 Register GetRegisterThatIsNotOneOf(Register reg1,
102                                    Register reg2 = no_reg,
103                                    Register reg3 = no_reg,
104                                    Register reg4 = no_reg,
105                                    Register reg5 = no_reg,
106                                    Register reg6 = no_reg);
107 
108 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
109                 Register reg4 = no_reg, Register reg5 = no_reg,
110                 Register reg6 = no_reg, Register reg7 = no_reg,
111                 Register reg8 = no_reg, Register reg9 = no_reg,
112                 Register reg10 = no_reg);
113 
114 
115 // -----------------------------------------------------------------------------
116 // Static helper functions.
117 
118 #if defined(V8_TARGET_LITTLE_ENDIAN)
119 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
120 #else
121 #define SmiWordOffset(offset) offset
122 #endif
123 
124 
ContextMemOperand(Register context,int index)125 inline MemOperand ContextMemOperand(Register context, int index) {
126   return MemOperand(context, Context::SlotOffset(index));
127 }
128 
129 
NativeContextMemOperand()130 inline MemOperand NativeContextMemOperand() {
131   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
132 }
133 
134 
135 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)136 inline MemOperand FieldMemOperand(Register object, int offset) {
137   return MemOperand(object, offset - kHeapObjectTag);
138 }
139 
140 
UntagSmiMemOperand(Register rm,int offset)141 inline MemOperand UntagSmiMemOperand(Register rm, int offset) {
142   // Assumes that Smis are shifted by 32 bits.
143   STATIC_ASSERT(kSmiShift == 32);
144   return MemOperand(rm, SmiWordOffset(offset));
145 }
146 
147 
UntagSmiFieldMemOperand(Register rm,int offset)148 inline MemOperand UntagSmiFieldMemOperand(Register rm, int offset) {
149   return UntagSmiMemOperand(rm, offset - kHeapObjectTag);
150 }
151 
152 
153 // Generate a MemOperand for storing arguments 5..N on the stack
154 // when calling CallCFunction().
155 // TODO(plind): Currently ONLY used for O32. Should be fixed for
156 //              n64, and used in RegExp code, and other places
157 //              with more than 8 arguments.
CFunctionArgumentOperand(int index)158 inline MemOperand CFunctionArgumentOperand(int index) {
159   DCHECK(index > kCArgSlotCount);
160   // Argument 5 takes the slot just past the four Arg-slots.
161   int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
162   return MemOperand(sp, offset);
163 }
164 
165 
166 // MacroAssembler implements a collection of frequently used macros.
167 class MacroAssembler: public Assembler {
168  public:
169   MacroAssembler(Isolate* isolate, void* buffer, int size,
170                  CodeObjectRequired create_code_object);
171 
172   // Arguments macros.
173 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
174 #define COND_ARGS cond, r1, r2
175 
176   // Cases when relocation is not needed.
177 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
178   void Name(target_type target, BranchDelaySlot bd = PROTECT); \
179   inline void Name(BranchDelaySlot bd, target_type target) { \
180     Name(target, bd); \
181   } \
182   void Name(target_type target, \
183             COND_TYPED_ARGS, \
184             BranchDelaySlot bd = PROTECT); \
185   inline void Name(BranchDelaySlot bd, \
186                    target_type target, \
187                    COND_TYPED_ARGS) { \
188     Name(target, COND_ARGS, bd); \
189   }
190 
191 #define DECLARE_BRANCH_PROTOTYPES(Name)   \
192   DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
193   DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
194 
195   DECLARE_BRANCH_PROTOTYPES(Branch)
196   DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
197   DECLARE_BRANCH_PROTOTYPES(BranchShort)
198 
199 #undef DECLARE_BRANCH_PROTOTYPES
200 #undef COND_TYPED_ARGS
201 #undef COND_ARGS
202 
203 
204   // Jump, Call, and Ret pseudo instructions implementing inter-working.
205 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
206   const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
207 
208   void Jump(Register target, COND_ARGS);
209   void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
210   void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
211   void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
212   static int CallSize(Register target, COND_ARGS);
213   void Call(Register target, COND_ARGS);
214   static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
215   void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
216   int CallSize(Handle<Code> code,
217                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
218                TypeFeedbackId ast_id = TypeFeedbackId::None(),
219                COND_ARGS);
220   void Call(Handle<Code> code,
221             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
222             TypeFeedbackId ast_id = TypeFeedbackId::None(),
223             COND_ARGS);
224   void Ret(COND_ARGS);
225   inline void Ret(BranchDelaySlot bd, Condition cond = al,
226     Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
227     Ret(cond, rs, rt, bd);
228   }
229 
230   bool IsNear(Label* L, Condition cond, int rs_reg);
231 
232   void Branch(Label* L,
233               Condition cond,
234               Register rs,
235               Heap::RootListIndex index,
236               BranchDelaySlot bdslot = PROTECT);
237 
238 #undef COND_ARGS
239 
240   // Emit code to discard a non-negative number of pointer-sized elements
241   // from the stack, clobbering only the sp register.
242   void Drop(int count,
243             Condition cond = cc_always,
244             Register reg = no_reg,
245             const Operand& op = Operand(no_reg));
246 
247   // Trivial case of DropAndRet that utilizes the delay slot and only emits
248   // 2 instructions.
249   void DropAndRet(int drop);
250 
251   void DropAndRet(int drop,
252                   Condition cond,
253                   Register reg,
254                   const Operand& op);
255 
256   // Swap two registers.  If the scratch register is omitted then a slightly
257   // less efficient form using xor instead of mov is emitted.
258   void Swap(Register reg1, Register reg2, Register scratch = no_reg);
259 
260   void Call(Label* target);
261 
Move(Register dst,Smi * smi)262   void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); }
263 
Move(Register dst,Register src)264   inline void Move(Register dst, Register src) {
265     if (!dst.is(src)) {
266       mov(dst, src);
267     }
268   }
269 
Move(FPURegister dst,FPURegister src)270   inline void Move(FPURegister dst, FPURegister src) {
271     if (!dst.is(src)) {
272       mov_d(dst, src);
273     }
274   }
275 
Move(Register dst_low,Register dst_high,FPURegister src)276   inline void Move(Register dst_low, Register dst_high, FPURegister src) {
277     mfc1(dst_low, src);
278     mfhc1(dst_high, src);
279   }
280 
FmoveHigh(Register dst_high,FPURegister src)281   inline void FmoveHigh(Register dst_high, FPURegister src) {
282     mfhc1(dst_high, src);
283   }
284 
FmoveHigh(FPURegister dst,Register src_high)285   inline void FmoveHigh(FPURegister dst, Register src_high) {
286     mthc1(src_high, dst);
287   }
288 
FmoveLow(Register dst_low,FPURegister src)289   inline void FmoveLow(Register dst_low, FPURegister src) {
290     mfc1(dst_low, src);
291   }
292 
293   void FmoveLow(FPURegister dst, Register src_low);
294 
Move(FPURegister dst,Register src_low,Register src_high)295   inline void Move(FPURegister dst, Register src_low, Register src_high) {
296     mtc1(src_low, dst);
297     mthc1(src_high, dst);
298   }
299 
300   void Move(FPURegister dst, float imm);
301   void Move(FPURegister dst, double imm);
302 
303   // Conditional move.
304   void Movz(Register rd, Register rs, Register rt);
305   void Movn(Register rd, Register rs, Register rt);
306   void Movt(Register rd, Register rs, uint16_t cc = 0);
307   void Movf(Register rd, Register rs, uint16_t cc = 0);
308 
309   void Clz(Register rd, Register rs);
310 
311   // Jump unconditionally to given label.
312   // We NEED a nop in the branch delay slot, as it used by v8, for example in
313   // CodeGenerator::ProcessDeferred().
314   // Currently the branch delay slot is filled by the MacroAssembler.
315   // Use rather b(Label) for code generation.
jmp(Label * L)316   void jmp(Label* L) {
317     Branch(L);
318   }
319 
320   void Load(Register dst, const MemOperand& src, Representation r);
321   void Store(Register src, const MemOperand& dst, Representation r);
322 
PushRoot(Heap::RootListIndex index)323   void PushRoot(Heap::RootListIndex index) {
324     LoadRoot(at, index);
325     Push(at);
326   }
327 
328   // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)329   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
330     LoadRoot(at, index);
331     Branch(if_equal, eq, with, Operand(at));
332   }
333 
334   // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)335   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
336                      Label* if_not_equal) {
337     LoadRoot(at, index);
338     Branch(if_not_equal, ne, with, Operand(at));
339   }
340 
341   // Load an object from the root table.
342   void LoadRoot(Register destination,
343                 Heap::RootListIndex index);
344   void LoadRoot(Register destination,
345                 Heap::RootListIndex index,
346                 Condition cond, Register src1, const Operand& src2);
347 
348   // Store an object to the root table.
349   void StoreRoot(Register source,
350                  Heap::RootListIndex index);
351   void StoreRoot(Register source,
352                  Heap::RootListIndex index,
353                  Condition cond, Register src1, const Operand& src2);
354 
355   // ---------------------------------------------------------------------------
356   // GC Support
357 
358   void IncrementalMarkingRecordWriteHelper(Register object,
359                                            Register value,
360                                            Register address);
361 
362   enum RememberedSetFinalAction {
363     kReturnAtEnd,
364     kFallThroughAtEnd
365   };
366 
367 
368   // Record in the remembered set the fact that we have a pointer to new space
369   // at the address pointed to by the addr register.  Only works if addr is not
370   // in new space.
371   void RememberedSetHelper(Register object,  // Used for debug code.
372                            Register addr,
373                            Register scratch,
374                            SaveFPRegsMode save_fp,
375                            RememberedSetFinalAction and_then);
376 
377   void CheckPageFlag(Register object,
378                      Register scratch,
379                      int mask,
380                      Condition cc,
381                      Label* condition_met);
382 
383   // Check if object is in new space.  Jumps if the object is not in new space.
384   // The register scratch can be object itself, but it will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)385   void JumpIfNotInNewSpace(Register object,
386                            Register scratch,
387                            Label* branch) {
388     InNewSpace(object, scratch, ne, branch);
389   }
390 
391   // Check if object is in new space.  Jumps if the object is in new space.
392   // The register scratch can be object itself, but scratch will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)393   void JumpIfInNewSpace(Register object,
394                         Register scratch,
395                         Label* branch) {
396     InNewSpace(object, scratch, eq, branch);
397   }
398 
399   // Check if an object has a given incremental marking color.
400   void HasColor(Register object,
401                 Register scratch0,
402                 Register scratch1,
403                 Label* has_color,
404                 int first_bit,
405                 int second_bit);
406 
407   void JumpIfBlack(Register object,
408                    Register scratch0,
409                    Register scratch1,
410                    Label* on_black);
411 
412   // Checks the color of an object.  If the object is white we jump to the
413   // incremental marker.
414   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
415                    Register scratch3, Label* value_is_white);
416 
417   // Notify the garbage collector that we wrote a pointer into an object.
418   // |object| is the object being stored into, |value| is the object being
419   // stored.  value and scratch registers are clobbered by the operation.
420   // The offset is the offset from the start of the object, not the offset from
421   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
422   void RecordWriteField(
423       Register object,
424       int offset,
425       Register value,
426       Register scratch,
427       RAStatus ra_status,
428       SaveFPRegsMode save_fp,
429       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
430       SmiCheck smi_check = INLINE_SMI_CHECK,
431       PointersToHereCheck pointers_to_here_check_for_value =
432           kPointersToHereMaybeInteresting);
433 
434   // As above, but the offset has the tag presubtracted.  For use with
435   // MemOperand(reg, off).
436   inline void RecordWriteContextSlot(
437       Register context,
438       int offset,
439       Register value,
440       Register scratch,
441       RAStatus ra_status,
442       SaveFPRegsMode save_fp,
443       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
444       SmiCheck smi_check = INLINE_SMI_CHECK,
445       PointersToHereCheck pointers_to_here_check_for_value =
446           kPointersToHereMaybeInteresting) {
447     RecordWriteField(context,
448                      offset + kHeapObjectTag,
449                      value,
450                      scratch,
451                      ra_status,
452                      save_fp,
453                      remembered_set_action,
454                      smi_check,
455                      pointers_to_here_check_for_value);
456   }
457 
458   void RecordWriteForMap(
459       Register object,
460       Register map,
461       Register dst,
462       RAStatus ra_status,
463       SaveFPRegsMode save_fp);
464 
465   // For a given |object| notify the garbage collector that the slot |address|
466   // has been written.  |value| is the object being stored. The value and
467   // address registers are clobbered by the operation.
468   void RecordWrite(
469       Register object,
470       Register address,
471       Register value,
472       RAStatus ra_status,
473       SaveFPRegsMode save_fp,
474       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
475       SmiCheck smi_check = INLINE_SMI_CHECK,
476       PointersToHereCheck pointers_to_here_check_for_value =
477           kPointersToHereMaybeInteresting);
478 
479 
480   // ---------------------------------------------------------------------------
481   // Inline caching support.
482 
483   // Generate code for checking access rights - used for security checks
484   // on access to global objects across environments. The holder register
485   // is left untouched, whereas both scratch registers are clobbered.
486   void CheckAccessGlobalProxy(Register holder_reg,
487                               Register scratch,
488                               Label* miss);
489 
490   void GetNumberHash(Register reg0, Register scratch);
491 
492   void LoadFromNumberDictionary(Label* miss,
493                                 Register elements,
494                                 Register key,
495                                 Register result,
496                                 Register reg0,
497                                 Register reg1,
498                                 Register reg2);
499 
500 
MarkCode(NopMarkerTypes type)501   inline void MarkCode(NopMarkerTypes type) {
502     nop(type);
503   }
504 
505   // Check if the given instruction is a 'type' marker.
506   // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
507   // nop(type)). These instructions are generated to mark special location in
508   // the code, like some special IC code.
IsMarkedCode(Instr instr,int type)509   static inline bool IsMarkedCode(Instr instr, int type) {
510     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
511     return IsNop(instr, type);
512   }
513 
514 
GetCodeMarker(Instr instr)515   static inline int GetCodeMarker(Instr instr) {
516     uint32_t opcode = ((instr & kOpcodeMask));
517     uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
518     uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
519     uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
520 
521     // Return <n> if we have a sll zero_reg, zero_reg, n
522     // else return -1.
523     bool sllzz = (opcode == SLL &&
524                   rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
525                   rs == static_cast<uint32_t>(ToNumber(zero_reg)));
526     int type =
527         (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
528     DCHECK((type == -1) ||
529            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
530     return type;
531   }
532 
533 
534 
535   // ---------------------------------------------------------------------------
536   // Allocation support.
537 
538   // Allocate an object in new space or old space. The object_size is
539   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
540   // is passed. If the space is exhausted control continues at the gc_required
541   // label. The allocated object is returned in result. If the flag
542   // tag_allocated_object is true the result is tagged as as a heap object.
543   // All registers are clobbered also when control continues at the gc_required
544   // label.
545   void Allocate(int object_size,
546                 Register result,
547                 Register scratch1,
548                 Register scratch2,
549                 Label* gc_required,
550                 AllocationFlags flags);
551 
552   void Allocate(Register object_size, Register result, Register result_end,
553                 Register scratch, Label* gc_required, AllocationFlags flags);
554 
555   void AllocateTwoByteString(Register result,
556                              Register length,
557                              Register scratch1,
558                              Register scratch2,
559                              Register scratch3,
560                              Label* gc_required);
561   void AllocateOneByteString(Register result, Register length,
562                              Register scratch1, Register scratch2,
563                              Register scratch3, Label* gc_required);
564   void AllocateTwoByteConsString(Register result,
565                                  Register length,
566                                  Register scratch1,
567                                  Register scratch2,
568                                  Label* gc_required);
569   void AllocateOneByteConsString(Register result, Register length,
570                                  Register scratch1, Register scratch2,
571                                  Label* gc_required);
572   void AllocateTwoByteSlicedString(Register result,
573                                    Register length,
574                                    Register scratch1,
575                                    Register scratch2,
576                                    Label* gc_required);
577   void AllocateOneByteSlicedString(Register result, Register length,
578                                    Register scratch1, Register scratch2,
579                                    Label* gc_required);
580 
581   // Allocates a heap number or jumps to the gc_required label if the young
582   // space is full and a scavenge is needed. All registers are clobbered also
583   // when control continues at the gc_required label.
584   void AllocateHeapNumber(Register result,
585                           Register scratch1,
586                           Register scratch2,
587                           Register heap_number_map,
588                           Label* gc_required,
589                           TaggingMode tagging_mode = TAG_RESULT,
590                           MutableMode mode = IMMUTABLE);
591 
592   void AllocateHeapNumberWithValue(Register result,
593                                    FPURegister value,
594                                    Register scratch1,
595                                    Register scratch2,
596                                    Label* gc_required);
597 
598   // Allocate and initialize a JSValue wrapper with the specified {constructor}
599   // and {value}.
600   void AllocateJSValue(Register result, Register constructor, Register value,
601                        Register scratch1, Register scratch2,
602                        Label* gc_required);
603 
604   // ---------------------------------------------------------------------------
605   // Instruction macros.
606 
607 #define DEFINE_INSTRUCTION(instr)                                              \
608   void instr(Register rd, Register rs, const Operand& rt);                     \
609   void instr(Register rd, Register rs, Register rt) {                          \
610     instr(rd, rs, Operand(rt));                                                \
611   }                                                                            \
612   void instr(Register rs, Register rt, int32_t j) {                            \
613     instr(rs, rt, Operand(j));                                                 \
614   }
615 
616 #define DEFINE_INSTRUCTION2(instr)                                             \
617   void instr(Register rs, const Operand& rt);                                  \
618   void instr(Register rs, Register rt) {                                       \
619     instr(rs, Operand(rt));                                                    \
620   }                                                                            \
621   void instr(Register rs, int32_t j) {                                         \
622     instr(rs, Operand(j));                                                     \
623   }
624 
625   DEFINE_INSTRUCTION(Addu);
626   DEFINE_INSTRUCTION(Daddu);
627   DEFINE_INSTRUCTION(Div);
628   DEFINE_INSTRUCTION(Divu);
629   DEFINE_INSTRUCTION(Ddivu);
630   DEFINE_INSTRUCTION(Mod);
631   DEFINE_INSTRUCTION(Modu);
632   DEFINE_INSTRUCTION(Ddiv);
633   DEFINE_INSTRUCTION(Subu);
634   DEFINE_INSTRUCTION(Dsubu);
635   DEFINE_INSTRUCTION(Dmod);
636   DEFINE_INSTRUCTION(Dmodu);
637   DEFINE_INSTRUCTION(Mul);
638   DEFINE_INSTRUCTION(Mulh);
639   DEFINE_INSTRUCTION(Mulhu);
640   DEFINE_INSTRUCTION(Dmul);
641   DEFINE_INSTRUCTION(Dmulh);
642   DEFINE_INSTRUCTION2(Mult);
643   DEFINE_INSTRUCTION2(Dmult);
644   DEFINE_INSTRUCTION2(Multu);
645   DEFINE_INSTRUCTION2(Dmultu);
646   DEFINE_INSTRUCTION2(Div);
647   DEFINE_INSTRUCTION2(Ddiv);
648   DEFINE_INSTRUCTION2(Divu);
649   DEFINE_INSTRUCTION2(Ddivu);
650 
651   DEFINE_INSTRUCTION(And);
652   DEFINE_INSTRUCTION(Or);
653   DEFINE_INSTRUCTION(Xor);
654   DEFINE_INSTRUCTION(Nor);
655   DEFINE_INSTRUCTION2(Neg);
656 
657   DEFINE_INSTRUCTION(Slt);
658   DEFINE_INSTRUCTION(Sltu);
659 
660   // MIPS32 R2 instruction macro.
661   DEFINE_INSTRUCTION(Ror);
662   DEFINE_INSTRUCTION(Dror);
663 
664 #undef DEFINE_INSTRUCTION
665 #undef DEFINE_INSTRUCTION2
666 #undef DEFINE_INSTRUCTION3
667 
668   void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
669            Register scratch = at);
670   void Dlsa(Register rd, Register rs, Register rt, uint8_t sa,
671             Register scratch = at);
672 
673   void Pref(int32_t hint, const MemOperand& rs);
674 
675 
676   // ---------------------------------------------------------------------------
677   // Pseudo-instructions.
678 
mov(Register rd,Register rt)679   void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
680 
681   void Ulw(Register rd, const MemOperand& rs);
682   void Usw(Register rd, const MemOperand& rs);
683   void Uld(Register rd, const MemOperand& rs, Register scratch = at);
684   void Usd(Register rd, const MemOperand& rs, Register scratch = at);
685 
686   void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at);
687   void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at);
688 
689   // Load int32 in the rd register.
690   void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
691   inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
692     li(rd, Operand(j), mode);
693   }
694   void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
695 
696   // Push multiple registers on the stack.
697   // Registers are saved in numerical order, with higher numbered registers
698   // saved in higher memory addresses.
699   void MultiPush(RegList regs);
700   void MultiPushReversed(RegList regs);
701 
702   void MultiPushFPU(RegList regs);
703   void MultiPushReversedFPU(RegList regs);
704 
push(Register src)705   void push(Register src) {
706     Daddu(sp, sp, Operand(-kPointerSize));
707     sd(src, MemOperand(sp, 0));
708   }
Push(Register src)709   void Push(Register src) { push(src); }
710 
711   // Push a handle.
712   void Push(Handle<Object> handle);
Push(Smi * smi)713   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
714 
715   // Push two registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)716   void Push(Register src1, Register src2) {
717     Dsubu(sp, sp, Operand(2 * kPointerSize));
718     sd(src1, MemOperand(sp, 1 * kPointerSize));
719     sd(src2, MemOperand(sp, 0 * kPointerSize));
720   }
721 
722   // Push three registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)723   void Push(Register src1, Register src2, Register src3) {
724     Dsubu(sp, sp, Operand(3 * kPointerSize));
725     sd(src1, MemOperand(sp, 2 * kPointerSize));
726     sd(src2, MemOperand(sp, 1 * kPointerSize));
727     sd(src3, MemOperand(sp, 0 * kPointerSize));
728   }
729 
730   // Push four registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)731   void Push(Register src1, Register src2, Register src3, Register src4) {
732     Dsubu(sp, sp, Operand(4 * kPointerSize));
733     sd(src1, MemOperand(sp, 3 * kPointerSize));
734     sd(src2, MemOperand(sp, 2 * kPointerSize));
735     sd(src3, MemOperand(sp, 1 * kPointerSize));
736     sd(src4, MemOperand(sp, 0 * kPointerSize));
737   }
738 
739   // Push five registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)740   void Push(Register src1, Register src2, Register src3, Register src4,
741             Register src5) {
742     Dsubu(sp, sp, Operand(5 * kPointerSize));
743     sd(src1, MemOperand(sp, 4 * kPointerSize));
744     sd(src2, MemOperand(sp, 3 * kPointerSize));
745     sd(src3, MemOperand(sp, 2 * kPointerSize));
746     sd(src4, MemOperand(sp, 1 * kPointerSize));
747     sd(src5, MemOperand(sp, 0 * kPointerSize));
748   }
749 
Push(Register src,Condition cond,Register tst1,Register tst2)750   void Push(Register src, Condition cond, Register tst1, Register tst2) {
751     // Since we don't have conditional execution we use a Branch.
752     Branch(3, cond, tst1, Operand(tst2));
753     Dsubu(sp, sp, Operand(kPointerSize));
754     sd(src, MemOperand(sp, 0));
755   }
756 
757   void PushRegisterAsTwoSmis(Register src, Register scratch = at);
758   void PopRegisterAsTwoSmis(Register dst, Register scratch = at);
759 
760   // Pops multiple values from the stack and load them in the
761   // registers specified in regs. Pop order is the opposite as in MultiPush.
762   void MultiPop(RegList regs);
763   void MultiPopReversed(RegList regs);
764 
765   void MultiPopFPU(RegList regs);
766   void MultiPopReversedFPU(RegList regs);
767 
pop(Register dst)768   void pop(Register dst) {
769     ld(dst, MemOperand(sp, 0));
770     Daddu(sp, sp, Operand(kPointerSize));
771   }
Pop(Register dst)772   void Pop(Register dst) { pop(dst); }
773 
774   // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)775   void Pop(Register src1, Register src2) {
776     DCHECK(!src1.is(src2));
777     ld(src2, MemOperand(sp, 0 * kPointerSize));
778     ld(src1, MemOperand(sp, 1 * kPointerSize));
779     Daddu(sp, sp, 2 * kPointerSize);
780   }
781 
782   // Pop three registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)783   void Pop(Register src1, Register src2, Register src3) {
784     ld(src3, MemOperand(sp, 0 * kPointerSize));
785     ld(src2, MemOperand(sp, 1 * kPointerSize));
786     ld(src1, MemOperand(sp, 2 * kPointerSize));
787     Daddu(sp, sp, 3 * kPointerSize);
788   }
789 
790   void Pop(uint32_t count = 1) {
791     Daddu(sp, sp, Operand(count * kPointerSize));
792   }
793 
794   // Push and pop the registers that can hold pointers, as defined by the
795   // RegList constant kSafepointSavedRegisters.
796   void PushSafepointRegisters();
797   void PopSafepointRegisters();
798   // Store value in register src in the safepoint stack slot for
799   // register dst.
800   void StoreToSafepointRegisterSlot(Register src, Register dst);
801   // Load the value of the src register from its safepoint stack slot
802   // into register dst.
803   void LoadFromSafepointRegisterSlot(Register dst, Register src);
804 
805   // MIPS64 R2 instruction macro.
806   void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
807   void Dins(Register rt, Register rs, uint16_t pos, uint16_t size);
808   void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
809   void Dext(Register rt, Register rs, uint16_t pos, uint16_t size);
810   void Dextm(Register rt, Register rs, uint16_t pos, uint16_t size);
811   void Dextu(Register rt, Register rs, uint16_t pos, uint16_t size);
812 
813   // ---------------------------------------------------------------------------
814   // FPU macros. These do not handle special cases like NaN or +- inf.
815 
816   // Convert unsigned word to double.
817   void Cvt_d_uw(FPURegister fd, FPURegister fs);
818   void Cvt_d_uw(FPURegister fd, Register rs);
819 
820   // Convert unsigned long to double.
821   void Cvt_d_ul(FPURegister fd, FPURegister fs);
822   void Cvt_d_ul(FPURegister fd, Register rs);
823 
824   // Convert unsigned long to float.
825   void Cvt_s_ul(FPURegister fd, FPURegister fs);
826   void Cvt_s_ul(FPURegister fd, Register rs);
827 
828   // Convert double to unsigned long.
829   void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);
830 
831   void Trunc_l_d(FPURegister fd, FPURegister fs);
832   void Round_l_d(FPURegister fd, FPURegister fs);
833   void Floor_l_d(FPURegister fd, FPURegister fs);
834   void Ceil_l_d(FPURegister fd, FPURegister fs);
835 
836   // Convert double to unsigned word.
837   void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
838   void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
839 
840   // Convert double to unsigned long.
841   void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch,
842                   Register result = no_reg);
843   void Trunc_ul_d(FPURegister fd, Register rs, FPURegister scratch,
844                   Register result = no_reg);
845 
846   // Convert single to unsigned long.
847   void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch,
848                   Register result = no_reg);
849   void Trunc_ul_s(FPURegister fd, Register rs, FPURegister scratch,
850                   Register result = no_reg);
851 
852   void Trunc_w_d(FPURegister fd, FPURegister fs);
853   void Round_w_d(FPURegister fd, FPURegister fs);
854   void Floor_w_d(FPURegister fd, FPURegister fs);
855   void Ceil_w_d(FPURegister fd, FPURegister fs);
856 
857   void Madd_d(FPURegister fd,
858               FPURegister fr,
859               FPURegister fs,
860               FPURegister ft,
861               FPURegister scratch);
862 
863   // Wrapper functions for the different cmp/branch types.
864   inline void BranchF32(Label* target, Label* nan, Condition cc,
865                         FPURegister cmp1, FPURegister cmp2,
866                         BranchDelaySlot bd = PROTECT) {
867     BranchFCommon(S, target, nan, cc, cmp1, cmp2, bd);
868   }
869 
870   inline void BranchF64(Label* target, Label* nan, Condition cc,
871                         FPURegister cmp1, FPURegister cmp2,
872                         BranchDelaySlot bd = PROTECT) {
873     BranchFCommon(D, target, nan, cc, cmp1, cmp2, bd);
874   }
875 
876   // Alternate (inline) version for better readability with USE_DELAY_SLOT.
BranchF64(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)877   inline void BranchF64(BranchDelaySlot bd, Label* target, Label* nan,
878                         Condition cc, FPURegister cmp1, FPURegister cmp2) {
879     BranchF64(target, nan, cc, cmp1, cmp2, bd);
880   }
881 
BranchF32(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)882   inline void BranchF32(BranchDelaySlot bd, Label* target, Label* nan,
883                         Condition cc, FPURegister cmp1, FPURegister cmp2) {
884     BranchF32(target, nan, cc, cmp1, cmp2, bd);
885   }
886 
887   // Alias functions for backward compatibility.
888   inline void BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1,
889                       FPURegister cmp2, BranchDelaySlot bd = PROTECT) {
890     BranchF64(target, nan, cc, cmp1, cmp2, bd);
891   }
892 
BranchF(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)893   inline void BranchF(BranchDelaySlot bd, Label* target, Label* nan,
894                       Condition cc, FPURegister cmp1, FPURegister cmp2) {
895     BranchF64(bd, target, nan, cc, cmp1, cmp2);
896   }
897 
898   // Truncates a double using a specific rounding mode, and writes the value
899   // to the result register.
900   // The except_flag will contain any exceptions caused by the instruction.
901   // If check_inexact is kDontCheckForInexactConversion, then the inexact
902   // exception is masked.
903   void EmitFPUTruncate(FPURoundingMode rounding_mode,
904                        Register result,
905                        DoubleRegister double_input,
906                        Register scratch,
907                        DoubleRegister double_scratch,
908                        Register except_flag,
909                        CheckForInexactConversion check_inexact
910                            = kDontCheckForInexactConversion);
911 
912   // Performs a truncating conversion of a floating point number as used by
913   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
914   // succeeds, otherwise falls through if result is saturated. On return
915   // 'result' either holds answer, or is clobbered on fall through.
916   //
917   // Only public for the test code in test-code-stubs-arm.cc.
918   void TryInlineTruncateDoubleToI(Register result,
919                                   DoubleRegister input,
920                                   Label* done);
921 
922   // Performs a truncating conversion of a floating point number as used by
923   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
924   // Exits with 'result' holding the answer.
925   void TruncateDoubleToI(Register result, DoubleRegister double_input);
926 
927   // Performs a truncating conversion of a heap number as used by
928   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
929   // must be different registers. Exits with 'result' holding the answer.
930   void TruncateHeapNumberToI(Register result, Register object);
931 
932   // Converts the smi or heap number in object to an int32 using the rules
933   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
934   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
935   // different registers.
936   void TruncateNumberToI(Register object,
937                          Register result,
938                          Register heap_number_map,
939                          Register scratch,
940                          Label* not_int32);
941 
942   // Loads the number from object into dst register.
943   // If |object| is neither smi nor heap number, |not_number| is jumped to
944   // with |object| still intact.
945   void LoadNumber(Register object,
946                   FPURegister dst,
947                   Register heap_number_map,
948                   Register scratch,
949                   Label* not_number);
950 
951   // Loads the number from object into double_dst in the double format.
952   // Control will jump to not_int32 if the value cannot be exactly represented
953   // by a 32-bit integer.
954   // Floating point value in the 32-bit integer range that are not exact integer
955   // won't be loaded.
956   void LoadNumberAsInt32Double(Register object,
957                                DoubleRegister double_dst,
958                                Register heap_number_map,
959                                Register scratch1,
960                                Register scratch2,
961                                FPURegister double_scratch,
962                                Label* not_int32);
963 
964   // Loads the number from object into dst as a 32-bit integer.
965   // Control will jump to not_int32 if the object cannot be exactly represented
966   // by a 32-bit integer.
967   // Floating point value in the 32-bit integer range that are not exact integer
968   // won't be converted.
969   void LoadNumberAsInt32(Register object,
970                          Register dst,
971                          Register heap_number_map,
972                          Register scratch1,
973                          Register scratch2,
974                          FPURegister double_scratch0,
975                          FPURegister double_scratch1,
976                          Label* not_int32);
977 
978   // Enter exit frame.
979   // argc - argument count to be dropped by LeaveExitFrame.
980   // save_doubles - saves FPU registers on stack, currently disabled.
981   // stack_space - extra stack space.
982   void EnterExitFrame(bool save_doubles,
983                       int stack_space = 0);
984 
985   // Leave the current exit frame.
986   void LeaveExitFrame(bool save_doubles, Register arg_count,
987                       bool restore_context, bool do_return = NO_EMIT_RETURN,
988                       bool argument_count_is_length = false);
989 
990   // Get the actual activation frame alignment for target environment.
991   static int ActivationFrameAlignment();
992 
993   // Make sure the stack is aligned. Only emits code in debug mode.
994   void AssertStackIsAligned();
995 
996   void LoadContext(Register dst, int context_chain_length);
997 
998   // Load the global object from the current context.
LoadGlobalObject(Register dst)999   void LoadGlobalObject(Register dst) {
1000     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
1001   }
1002 
1003   // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)1004   void LoadGlobalProxy(Register dst) {
1005     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1006   }
1007 
1008   // Conditionally load the cached Array transitioned map of type
1009   // transitioned_kind from the native context if the map in register
1010   // map_in_out is the cached Array map in the native context of
1011   // expected_kind.
1012   void LoadTransitionedArrayMapConditional(
1013       ElementsKind expected_kind,
1014       ElementsKind transitioned_kind,
1015       Register map_in_out,
1016       Register scratch,
1017       Label* no_map_match);
1018 
1019   void LoadNativeContextSlot(int index, Register dst);
1020 
1021   // Load the initial map from the global function. The registers
1022   // function and map can be the same, function is then overwritten.
1023   void LoadGlobalFunctionInitialMap(Register function,
1024                                     Register map,
1025                                     Register scratch);
1026 
InitializeRootRegister()1027   void InitializeRootRegister() {
1028     ExternalReference roots_array_start =
1029         ExternalReference::roots_array_start(isolate());
1030     li(kRootRegister, Operand(roots_array_start));
1031   }
1032 
1033   // -------------------------------------------------------------------------
1034   // JavaScript invokes.
1035 
1036   // Invoke the JavaScript function code by either calling or jumping.
1037   void InvokeFunctionCode(Register function, Register new_target,
1038                           const ParameterCount& expected,
1039                           const ParameterCount& actual, InvokeFlag flag,
1040                           const CallWrapper& call_wrapper);
1041 
1042   void FloodFunctionIfStepping(Register fun, Register new_target,
1043                                const ParameterCount& expected,
1044                                const ParameterCount& actual);
1045 
1046   // Invoke the JavaScript function in the given register. Changes the
1047   // current context to the context in the function before invoking.
1048   void InvokeFunction(Register function,
1049                       Register new_target,
1050                       const ParameterCount& actual,
1051                       InvokeFlag flag,
1052                       const CallWrapper& call_wrapper);
1053 
1054   void InvokeFunction(Register function,
1055                       const ParameterCount& expected,
1056                       const ParameterCount& actual,
1057                       InvokeFlag flag,
1058                       const CallWrapper& call_wrapper);
1059 
1060   void InvokeFunction(Handle<JSFunction> function,
1061                       const ParameterCount& expected,
1062                       const ParameterCount& actual,
1063                       InvokeFlag flag,
1064                       const CallWrapper& call_wrapper);
1065 
1066 
1067   void IsObjectJSStringType(Register object,
1068                             Register scratch,
1069                             Label* fail);
1070 
1071   void IsObjectNameType(Register object,
1072                         Register scratch,
1073                         Label* fail);
1074 
1075   // -------------------------------------------------------------------------
1076   // Debugger Support.
1077 
1078   void DebugBreak();
1079 
1080   // -------------------------------------------------------------------------
1081   // Exception handling.
1082 
1083   // Push a new stack handler and link into stack handler chain.
1084   void PushStackHandler();
1085 
1086   // Unlink the stack handler on top of the stack from the stack handler chain.
1087   // Must preserve the result register.
1088   void PopStackHandler();
1089 
1090   // Copies a number of bytes from src to dst. All registers are clobbered. On
1091   // exit src and dst will point to the place just after where the last byte was
1092   // read or written and length will be zero.
1093   void CopyBytes(Register src,
1094                  Register dst,
1095                  Register length,
1096                  Register scratch);
1097 
1098   // Initialize fields with filler values.  Fields starting at |current_address|
1099   // not including |end_address| are overwritten with the value in |filler|.  At
1100   // the end the loop, |current_address| takes the value of |end_address|.
1101   void InitializeFieldsWithFiller(Register current_address,
1102                                   Register end_address, Register filler);
1103 
1104   // -------------------------------------------------------------------------
1105   // Support functions.
1106 
1107   // Machine code version of Map::GetConstructor().
1108   // |temp| holds |result|'s map when done, and |temp2| its instance type.
1109   void GetMapConstructor(Register result, Register map, Register temp,
1110                          Register temp2);
1111 
1112   // Try to get function prototype of a function and puts the value in
1113   // the result register. Checks that the function really is a
1114   // function and jumps to the miss label if the fast checks fail. The
1115   // function register will be untouched; the other registers may be
1116   // clobbered.
1117   void TryGetFunctionPrototype(Register function, Register result,
1118                                Register scratch, Label* miss);
1119 
1120   void GetObjectType(Register function,
1121                      Register map,
1122                      Register type_reg);
1123 
1124   // Check if a map for a JSObject indicates that the object has fast elements.
1125   // Jump to the specified label if it does not.
1126   void CheckFastElements(Register map,
1127                          Register scratch,
1128                          Label* fail);
1129 
1130   // Check if a map for a JSObject indicates that the object can have both smi
1131   // and HeapObject elements.  Jump to the specified label if it does not.
1132   void CheckFastObjectElements(Register map,
1133                                Register scratch,
1134                                Label* fail);
1135 
1136   // Check if a map for a JSObject indicates that the object has fast smi only
1137   // elements.  Jump to the specified label if it does not.
1138   void CheckFastSmiElements(Register map,
1139                             Register scratch,
1140                             Label* fail);
1141 
1142   // Check to see if maybe_number can be stored as a double in
1143   // FastDoubleElements. If it can, store it at the index specified by key in
1144   // the FastDoubleElements array elements. Otherwise jump to fail.
1145   void StoreNumberToDoubleElements(Register value_reg,
1146                                    Register key_reg,
1147                                    Register elements_reg,
1148                                    Register scratch1,
1149                                    Register scratch2,
1150                                    Label* fail,
1151                                    int elements_offset = 0);
1152 
1153   // Compare an object's map with the specified map and its transitioned
1154   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1155   // "branch_to" if the result of the comparison is "cond". If multiple map
1156   // compares are required, the compare sequences branches to early_success.
1157   void CompareMapAndBranch(Register obj,
1158                            Register scratch,
1159                            Handle<Map> map,
1160                            Label* early_success,
1161                            Condition cond,
1162                            Label* branch_to);
1163 
1164   // As above, but the map of the object is already loaded into the register
1165   // which is preserved by the code generated.
1166   void CompareMapAndBranch(Register obj_map,
1167                            Handle<Map> map,
1168                            Label* early_success,
1169                            Condition cond,
1170                            Label* branch_to);
1171 
1172   // Check if the map of an object is equal to a specified map and branch to
1173   // label if not. Skip the smi check if not required (object is known to be a
1174   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1175   // against maps that are ElementsKind transition maps of the specificed map.
1176   void CheckMap(Register obj,
1177                 Register scratch,
1178                 Handle<Map> map,
1179                 Label* fail,
1180                 SmiCheckType smi_check_type);
1181 
1182 
1183   void CheckMap(Register obj,
1184                 Register scratch,
1185                 Heap::RootListIndex index,
1186                 Label* fail,
1187                 SmiCheckType smi_check_type);
1188 
1189   // Check if the map of an object is equal to a specified weak map and branch
1190   // to a specified target if equal. Skip the smi check if not required
1191   // (object is known to be a heap object)
1192   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1193                        Handle<WeakCell> cell, Handle<Code> success,
1194                        SmiCheckType smi_check_type);
1195 
1196   // If the value is a NaN, canonicalize the value else, do nothing.
1197   void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
1198 
1199 
1200   // Get value of the weak cell.
1201   void GetWeakValue(Register value, Handle<WeakCell> cell);
1202 
1203   // Load the value of the weak cell in the value register. Branch to the
1204   // given miss label is the weak cell was cleared.
1205   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1206 
1207   // Load and check the instance type of an object for being a string.
1208   // Loads the type into the second argument register.
1209   // Returns a condition that will be enabled if the object was a string.
IsObjectStringType(Register obj,Register type,Register result)1210   Condition IsObjectStringType(Register obj,
1211                                Register type,
1212                                Register result) {
1213     ld(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1214     lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1215     And(type, type, Operand(kIsNotStringMask));
1216     DCHECK_EQ(0u, kStringTag);
1217     return eq;
1218   }
1219 
1220 
1221   // Picks out an array index from the hash field.
1222   // Register use:
1223   //   hash - holds the index's hash. Clobbered.
1224   //   index - holds the overwritten index on exit.
1225   void IndexFromHash(Register hash, Register index);
1226 
1227   // Get the number of least significant bits from a register.
1228   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1229   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1230 
1231   // Load the value of a number object into a FPU double register. If the
1232   // object is not a number a jump to the label not_number is performed
1233   // and the FPU double register is unchanged.
1234   void ObjectToDoubleFPURegister(
1235       Register object,
1236       FPURegister value,
1237       Register scratch1,
1238       Register scratch2,
1239       Register heap_number_map,
1240       Label* not_number,
1241       ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1242 
1243   // Load the value of a smi object into a FPU double register. The register
1244   // scratch1 can be the same register as smi in which case smi will hold the
1245   // untagged value afterwards.
1246   void SmiToDoubleFPURegister(Register smi,
1247                               FPURegister value,
1248                               Register scratch1);
1249 
1250   // -------------------------------------------------------------------------
1251   // Overflow handling functions.
1252   // Usage: first call the appropriate arithmetic function, then call one of the
1253   // jump functions with the overflow_dst register as the second parameter.
1254 
1255   void AdduAndCheckForOverflow(Register dst,
1256                                Register left,
1257                                Register right,
1258                                Register overflow_dst,
1259                                Register scratch = at);
1260 
1261   void AdduAndCheckForOverflow(Register dst, Register left,
1262                                const Operand& right, Register overflow_dst,
1263                                Register scratch);
1264 
1265   void SubuAndCheckForOverflow(Register dst,
1266                                Register left,
1267                                Register right,
1268                                Register overflow_dst,
1269                                Register scratch = at);
1270 
1271   void SubuAndCheckForOverflow(Register dst, Register left,
1272                                const Operand& right, Register overflow_dst,
1273                                Register scratch);
1274 
1275   void DadduAndCheckForOverflow(Register dst, Register left, Register right,
1276                                 Register overflow_dst, Register scratch = at);
1277 
1278   void DadduAndCheckForOverflow(Register dst, Register left,
1279                                 const Operand& right, Register overflow_dst,
1280                                 Register scratch);
1281 
1282   inline void DaddBranchOvf(Register dst, Register left, const Operand& right,
1283                             Label* overflow_label, Register scratch = at) {
1284     DaddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1285   }
1286 
1287   inline void DaddBranchNoOvf(Register dst, Register left, const Operand& right,
1288                               Label* no_overflow_label, Register scratch = at) {
1289     DaddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1290   }
1291 
1292   void DaddBranchOvf(Register dst, Register left, const Operand& right,
1293                      Label* overflow_label, Label* no_overflow_label,
1294                      Register scratch = at);
1295 
1296   void DaddBranchOvf(Register dst, Register left, Register right,
1297                      Label* overflow_label, Label* no_overflow_label,
1298                      Register scratch = at);
1299 
1300   void DsubuAndCheckForOverflow(Register dst, Register left, Register right,
1301                                 Register overflow_dst, Register scratch = at);
1302 
1303   void DsubuAndCheckForOverflow(Register dst, Register left,
1304                                 const Operand& right, Register overflow_dst,
1305                                 Register scratch);
1306 
1307   inline void DsubBranchOvf(Register dst, Register left, const Operand& right,
1308                             Label* overflow_label, Register scratch = at) {
1309     DsubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1310   }
1311 
1312   inline void DsubBranchNoOvf(Register dst, Register left, const Operand& right,
1313                               Label* no_overflow_label, Register scratch = at) {
1314     DsubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1315   }
1316 
1317   void DsubBranchOvf(Register dst, Register left, const Operand& right,
1318                      Label* overflow_label, Label* no_overflow_label,
1319                      Register scratch = at);
1320 
1321   void DsubBranchOvf(Register dst, Register left, Register right,
1322                      Label* overflow_label, Label* no_overflow_label,
1323                      Register scratch = at);
1324 
1325   void BranchOnOverflow(Label* label,
1326                         Register overflow_check,
1327                         BranchDelaySlot bd = PROTECT) {
1328     Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1329   }
1330 
1331   void BranchOnNoOverflow(Label* label,
1332                           Register overflow_check,
1333                           BranchDelaySlot bd = PROTECT) {
1334     Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1335   }
1336 
1337   void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1338     Ret(lt, overflow_check, Operand(zero_reg), bd);
1339   }
1340 
1341   void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1342     Ret(ge, overflow_check, Operand(zero_reg), bd);
1343   }
1344 
1345   // -------------------------------------------------------------------------
1346   // Runtime calls.
1347 
1348   // See comments at the beginning of CEntryStub::Generate.
PrepareCEntryArgs(int num_args)1349   inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
1350 
PrepareCEntryFunction(const ExternalReference & ref)1351   inline void PrepareCEntryFunction(const ExternalReference& ref) {
1352     li(a1, Operand(ref));
1353   }
1354 
1355 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1356 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1357 
1358   // Call a code stub.
1359   void CallStub(CodeStub* stub,
1360                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1361                 COND_ARGS);
1362 
1363   // Tail call a code stub (jump).
1364   void TailCallStub(CodeStub* stub, COND_ARGS);
1365 
1366 #undef COND_ARGS
1367 
1368   void CallJSExitStub(CodeStub* stub);
1369 
1370   // Call a runtime routine.
1371   void CallRuntime(const Runtime::Function* f, int num_arguments,
1372                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1373                    BranchDelaySlot bd = PROTECT);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)1374   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1375     const Runtime::Function* function = Runtime::FunctionForId(fid);
1376     CallRuntime(function, function->nargs, kSaveFPRegs);
1377   }
1378 
1379   // Convenience function: Same as above, but takes the fid instead.
1380   void CallRuntime(Runtime::FunctionId fid,
1381                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1382                    BranchDelaySlot bd = PROTECT) {
1383     const Runtime::Function* function = Runtime::FunctionForId(fid);
1384     CallRuntime(function, function->nargs, save_doubles, bd);
1385   }
1386 
1387   // Convenience function: Same as above, but takes the fid instead.
1388   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1389                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1390                    BranchDelaySlot bd = PROTECT) {
1391     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles, bd);
1392   }
1393 
1394   // Convenience function: call an external reference.
1395   void CallExternalReference(const ExternalReference& ext,
1396                              int num_arguments,
1397                              BranchDelaySlot bd = PROTECT);
1398 
1399   // Convenience function: tail call a runtime routine (jump).
1400   void TailCallRuntime(Runtime::FunctionId fid);
1401 
1402   int CalculateStackPassedWords(int num_reg_arguments,
1403                                 int num_double_arguments);
1404 
1405   // Before calling a C-function from generated code, align arguments on stack
1406   // and add space for the four mips argument slots.
1407   // After aligning the frame, non-register arguments must be stored on the
1408   // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1409   // The argument count assumes all arguments are word sized.
1410   // Some compilers/platforms require the stack to be aligned when calling
1411   // C++ code.
1412   // Needs a scratch register to do some arithmetic. This register will be
1413   // trashed.
1414   void PrepareCallCFunction(int num_reg_arguments,
1415                             int num_double_registers,
1416                             Register scratch);
1417   void PrepareCallCFunction(int num_reg_arguments,
1418                             Register scratch);
1419 
1420   // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1421   // Arguments 5..n are stored to stack using following:
1422   //  sw(a4, CFunctionArgumentOperand(5));
1423 
1424   // Calls a C function and cleans up the space for arguments allocated
1425   // by PrepareCallCFunction. The called function is not allowed to trigger a
1426   // garbage collection, since that might move the code and invalidate the
1427   // return address (unless this is somehow accounted for by the called
1428   // function).
1429   void CallCFunction(ExternalReference function, int num_arguments);
1430   void CallCFunction(Register function, int num_arguments);
1431   void CallCFunction(ExternalReference function,
1432                      int num_reg_arguments,
1433                      int num_double_arguments);
1434   void CallCFunction(Register function,
1435                      int num_reg_arguments,
1436                      int num_double_arguments);
1437   void MovFromFloatResult(DoubleRegister dst);
1438   void MovFromFloatParameter(DoubleRegister dst);
1439 
1440   // There are two ways of passing double arguments on MIPS, depending on
1441   // whether soft or hard floating point ABI is used. These functions
1442   // abstract parameter passing for the three different ways we call
1443   // C functions from generated code.
1444   void MovToFloatParameter(DoubleRegister src);
1445   void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1446   void MovToFloatResult(DoubleRegister src);
1447 
1448   // Jump to the builtin routine.
1449   void JumpToExternalReference(const ExternalReference& builtin,
1450                                BranchDelaySlot bd = PROTECT);
1451 
1452   // Invoke specified builtin JavaScript function.
1453   void InvokeBuiltin(int native_context_index, InvokeFlag flag,
1454                      const CallWrapper& call_wrapper = NullCallWrapper());
1455 
1456   struct Unresolved {
1457     int pc;
1458     uint32_t flags;  // See Bootstrapper::FixupFlags decoders/encoders.
1459     const char* name;
1460   };
1461 
CodeObject()1462   Handle<Object> CodeObject() {
1463     DCHECK(!code_object_.is_null());
1464     return code_object_;
1465   }
1466 
1467   // Emit code for a truncating division by a constant. The dividend register is
1468   // unchanged and at gets clobbered. Dividend and result must be different.
1469   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1470 
1471   // -------------------------------------------------------------------------
1472   // StatsCounter support.
1473 
1474   void SetCounter(StatsCounter* counter, int value,
1475                   Register scratch1, Register scratch2);
1476   void IncrementCounter(StatsCounter* counter, int value,
1477                         Register scratch1, Register scratch2);
1478   void DecrementCounter(StatsCounter* counter, int value,
1479                         Register scratch1, Register scratch2);
1480 
1481 
1482   // -------------------------------------------------------------------------
1483   // Debugging.
1484 
1485   // Calls Abort(msg) if the condition cc is not satisfied.
1486   // Use --debug_code to enable.
1487   void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1488   void AssertFastElements(Register elements);
1489 
1490   // Like Assert(), but always enabled.
1491   void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1492 
1493   // Print a message to stdout and abort execution.
1494   void Abort(BailoutReason msg);
1495 
1496   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1497   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1498   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1499   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1500   bool has_frame() { return has_frame_; }
1501   inline bool AllowThisStubCall(CodeStub* stub);
1502 
1503   // ---------------------------------------------------------------------------
1504   // Number utilities.
1505 
1506   // Check whether the value of reg is a power of two and not zero. If not
1507   // control continues at the label not_power_of_two. If reg is a power of two
1508   // the register scratch contains the value of (reg - 1) when control falls
1509   // through.
1510   void JumpIfNotPowerOfTwoOrZero(Register reg,
1511                                  Register scratch,
1512                                  Label* not_power_of_two_or_zero);
1513 
1514   // -------------------------------------------------------------------------
1515   // Smi utilities.
1516 
1517   // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1518   void SmiTagCheckOverflow(Register reg, Register overflow);
1519   void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1520 
SmiTag(Register dst,Register src)1521   void SmiTag(Register dst, Register src) {
1522     STATIC_ASSERT(kSmiTag == 0);
1523     if (SmiValuesAre32Bits()) {
1524       STATIC_ASSERT(kSmiShift == 32);
1525       dsll32(dst, src, 0);
1526     } else {
1527       Addu(dst, src, src);
1528     }
1529   }
1530 
SmiTag(Register reg)1531   void SmiTag(Register reg) {
1532     SmiTag(reg, reg);
1533   }
1534 
1535   // Try to convert int32 to smi. If the value is to large, preserve
1536   // the original value and jump to not_a_smi. Destroys scratch and
1537   // sets flags.
TrySmiTag(Register reg,Register scratch,Label * not_a_smi)1538   void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1539     TrySmiTag(reg, reg, scratch, not_a_smi);
1540   }
1541 
TrySmiTag(Register dst,Register src,Register scratch,Label * not_a_smi)1542   void TrySmiTag(Register dst,
1543                  Register src,
1544                  Register scratch,
1545                  Label* not_a_smi) {
1546     if (SmiValuesAre32Bits()) {
1547       SmiTag(dst, src);
1548     } else {
1549       SmiTagCheckOverflow(at, src, scratch);
1550       BranchOnOverflow(not_a_smi, scratch);
1551       mov(dst, at);
1552     }
1553   }
1554 
SmiUntag(Register dst,Register src)1555   void SmiUntag(Register dst, Register src) {
1556     if (SmiValuesAre32Bits()) {
1557       STATIC_ASSERT(kSmiShift == 32);
1558       dsra32(dst, src, 0);
1559     } else {
1560       sra(dst, src, kSmiTagSize);
1561     }
1562   }
1563 
SmiUntag(Register reg)1564   void SmiUntag(Register reg) {
1565     SmiUntag(reg, reg);
1566   }
1567 
1568   // Left-shifted from int32 equivalent of Smi.
SmiScale(Register dst,Register src,int scale)1569   void SmiScale(Register dst, Register src, int scale) {
1570     if (SmiValuesAre32Bits()) {
1571       // The int portion is upper 32-bits of 64-bit word.
1572       dsra(dst, src, kSmiShift - scale);
1573     } else {
1574       DCHECK(scale >= kSmiTagSize);
1575       sll(dst, src, scale - kSmiTagSize);
1576     }
1577   }
1578 
1579   // Combine load with untagging or scaling.
1580   void SmiLoadUntag(Register dst, MemOperand src);
1581 
1582   void SmiLoadScale(Register dst, MemOperand src, int scale);
1583 
1584   // Returns 2 values: the Smi and a scaled version of the int within the Smi.
1585   void SmiLoadWithScale(Register d_smi,
1586                         Register d_scaled,
1587                         MemOperand src,
1588                         int scale);
1589 
1590   // Returns 2 values: the untagged Smi (int32) and scaled version of that int.
1591   void SmiLoadUntagWithScale(Register d_int,
1592                              Register d_scaled,
1593                              MemOperand src,
1594                              int scale);
1595 
1596 
1597   // Test if the register contains a smi.
SmiTst(Register value,Register scratch)1598   inline void SmiTst(Register value, Register scratch) {
1599     And(scratch, value, Operand(kSmiTagMask));
1600   }
NonNegativeSmiTst(Register value,Register scratch)1601   inline void NonNegativeSmiTst(Register value, Register scratch) {
1602     And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1603   }
1604 
1605   // Untag the source value into destination and jump if source is a smi.
1606   // Source and destination can be the same register.
1607   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1608 
1609   // Untag the source value into destination and jump if source is not a smi.
1610   // Source and destination can be the same register.
1611   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1612 
1613   // Jump the register contains a smi.
1614   void JumpIfSmi(Register value,
1615                  Label* smi_label,
1616                  Register scratch = at,
1617                  BranchDelaySlot bd = PROTECT);
1618 
1619   // Jump if the register contains a non-smi.
1620   void JumpIfNotSmi(Register value,
1621                     Label* not_smi_label,
1622                     Register scratch = at,
1623                     BranchDelaySlot bd = PROTECT);
1624 
1625   // Jump if either of the registers contain a non-smi.
1626   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1627   // Jump if either of the registers contain a smi.
1628   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1629 
1630   // Abort execution if argument is a smi, enabled via --debug-code.
1631   void AssertNotSmi(Register object);
1632   void AssertSmi(Register object);
1633 
1634   // Abort execution if argument is not a string, enabled via --debug-code.
1635   void AssertString(Register object);
1636 
1637   // Abort execution if argument is not a name, enabled via --debug-code.
1638   void AssertName(Register object);
1639 
1640   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1641   void AssertFunction(Register object);
1642 
1643   // Abort execution if argument is not a JSBoundFunction,
1644   // enabled via --debug-code.
1645   void AssertBoundFunction(Register object);
1646 
1647   // Abort execution if argument is not undefined or an AllocationSite, enabled
1648   // via --debug-code.
1649   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1650 
1651   // Abort execution if reg is not the root value with the given index,
1652   // enabled via --debug-code.
1653   void AssertIsRoot(Register reg, Heap::RootListIndex index);
1654 
1655   // ---------------------------------------------------------------------------
1656   // HeapNumber utilities.
1657 
1658   void JumpIfNotHeapNumber(Register object,
1659                            Register heap_number_map,
1660                            Register scratch,
1661                            Label* on_not_heap_number);
1662 
1663   // -------------------------------------------------------------------------
1664   // String utilities.
1665 
1666   // Checks if both instance types are sequential one-byte strings and jumps to
1667   // label if either is not.
1668   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1669       Register first_object_instance_type, Register second_object_instance_type,
1670       Register scratch1, Register scratch2, Label* failure);
1671 
1672   // Check if instance type is sequential one-byte string and jump to label if
1673   // it is not.
1674   void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1675                                                 Label* failure);
1676 
1677   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1678 
1679   void EmitSeqStringSetCharCheck(Register string,
1680                                  Register index,
1681                                  Register value,
1682                                  Register scratch,
1683                                  uint32_t encoding_mask);
1684 
1685   // Checks if both objects are sequential one-byte strings and jumps to label
1686   // if either is not. Assumes that neither object is a smi.
1687   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
1688                                                     Register second,
1689                                                     Register scratch1,
1690                                                     Register scratch2,
1691                                                     Label* failure);
1692 
1693   // Checks if both objects are sequential one-byte strings and jumps to label
1694   // if either is not.
1695   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1696                                              Register scratch1,
1697                                              Register scratch2,
1698                                              Label* not_flat_one_byte_strings);
1699 
1700   void ClampUint8(Register output_reg, Register input_reg);
1701 
1702   void ClampDoubleToUint8(Register result_reg,
1703                           DoubleRegister input_reg,
1704                           DoubleRegister temp_double_reg);
1705 
1706 
1707   void LoadInstanceDescriptors(Register map, Register descriptors);
1708   void EnumLength(Register dst, Register map);
1709   void NumberOfOwnDescriptors(Register dst, Register map);
1710   void LoadAccessor(Register dst, Register holder, int accessor_index,
1711                     AccessorComponent accessor);
1712 
1713   template<typename Field>
DecodeField(Register dst,Register src)1714   void DecodeField(Register dst, Register src) {
1715     Ext(dst, src, Field::kShift, Field::kSize);
1716   }
1717 
1718   template<typename Field>
DecodeField(Register reg)1719   void DecodeField(Register reg) {
1720     DecodeField<Field>(reg, reg);
1721   }
1722 
1723   template<typename Field>
DecodeFieldToSmi(Register dst,Register src)1724   void DecodeFieldToSmi(Register dst, Register src) {
1725     static const int shift = Field::kShift;
1726     static const int mask = Field::kMask >> shift;
1727     dsrl(dst, src, shift);
1728     And(dst, dst, Operand(mask));
1729     dsll32(dst, dst, 0);
1730   }
1731 
1732   template<typename Field>
DecodeFieldToSmi(Register reg)1733   void DecodeFieldToSmi(Register reg) {
1734     DecodeField<Field>(reg, reg);
1735   }
1736   // Generates function and stub prologue code.
1737   void StubPrologue();
1738   void Prologue(bool code_pre_aging);
1739 
1740   // Load the type feedback vector from a JavaScript frame.
1741   void EmitLoadTypeFeedbackVector(Register vector);
1742 
1743   // Activation support.
1744   void EnterFrame(StackFrame::Type type);
1745   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1746   void LeaveFrame(StackFrame::Type type);
1747 
1748   // Expects object in a0 and returns map with validated enum cache
1749   // in a0.  Assumes that any other register can be used as a scratch.
1750   void CheckEnumCache(Register null_value, Label* call_runtime);
1751 
1752   // AllocationMemento support. Arrays may have an associated
1753   // AllocationMemento object that can be checked for in order to pretransition
1754   // to another type.
1755   // On entry, receiver_reg should point to the array object.
1756   // scratch_reg gets clobbered.
1757   // If allocation info is present, jump to allocation_memento_present.
1758   void TestJSArrayForAllocationMemento(
1759       Register receiver_reg,
1760       Register scratch_reg,
1761       Label* no_memento_found,
1762       Condition cond = al,
1763       Label* allocation_memento_present = NULL);
1764 
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)1765   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1766                                          Register scratch_reg,
1767                                          Label* memento_found) {
1768     Label no_memento_found;
1769     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1770                                     &no_memento_found, eq, memento_found);
1771     bind(&no_memento_found);
1772   }
1773 
1774   // Jumps to found label if a prototype map has dictionary elements.
1775   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1776                                         Register scratch1, Label* found);
1777 
IsDoubleZeroRegSet()1778   bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
1779 
1780  private:
1781   void CallCFunctionHelper(Register function,
1782                            int num_reg_arguments,
1783                            int num_double_arguments);
1784 
1785   inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
1786   inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
1787   void BranchShortHelperR6(int32_t offset, Label* L);
1788   void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
1789   bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
1790                            Register rs, const Operand& rt);
1791   bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
1792                          const Operand& rt, BranchDelaySlot bdslot);
1793   bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
1794                         const Operand& rt, BranchDelaySlot bdslot);
1795 
1796   void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
1797   void BranchAndLinkShortHelper(int16_t offset, Label* L,
1798                                 BranchDelaySlot bdslot);
1799   void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
1800   void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1801   bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
1802                                   Register rs, const Operand& rt);
1803   bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
1804                                 Register rs, const Operand& rt,
1805                                 BranchDelaySlot bdslot);
1806   bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
1807                                Register rs, const Operand& rt,
1808                                BranchDelaySlot bdslot);
1809   void BranchLong(Label* L, BranchDelaySlot bdslot);
1810   void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
1811   void Jr(Label* L, BranchDelaySlot bdslot);
1812   void Jalr(Label* L, BranchDelaySlot bdslot);
1813 
1814   // Common implementation of BranchF functions for the different formats.
1815   void BranchFCommon(SecondaryField sizeField, Label* target, Label* nan,
1816                      Condition cc, FPURegister cmp1, FPURegister cmp2,
1817                      BranchDelaySlot bd = PROTECT);
1818 
1819   void BranchShortF(SecondaryField sizeField, Label* target, Condition cc,
1820                     FPURegister cmp1, FPURegister cmp2,
1821                     BranchDelaySlot bd = PROTECT);
1822 
1823 
1824   // Helper functions for generating invokes.
1825   void InvokePrologue(const ParameterCount& expected,
1826                       const ParameterCount& actual,
1827                       Label* done,
1828                       bool* definitely_mismatches,
1829                       InvokeFlag flag,
1830                       const CallWrapper& call_wrapper);
1831 
1832   void InitializeNewString(Register string,
1833                            Register length,
1834                            Heap::RootListIndex map_index,
1835                            Register scratch1,
1836                            Register scratch2);
1837 
1838   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1839   void InNewSpace(Register object,
1840                   Register scratch,
1841                   Condition cond,  // eq for new space, ne otherwise.
1842                   Label* branch);
1843 
1844   // Helper for finding the mark bits for an address.  Afterwards, the
1845   // bitmap register points at the word with the mark bits and the mask
1846   // the position of the first bit.  Leaves addr_reg unchanged.
1847   inline void GetMarkBits(Register addr_reg,
1848                           Register bitmap_reg,
1849                           Register mask_reg);
1850 
1851   // Compute memory operands for safepoint stack slots.
1852   static int SafepointRegisterStackIndex(int reg_code);
1853   MemOperand SafepointRegisterSlot(Register reg);
1854   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1855 
1856   bool generating_stub_;
1857   bool has_frame_;
1858   bool has_double_zero_reg_set_;
1859   // This handle will be patched with the code object on installation.
1860   Handle<Object> code_object_;
1861 
1862   // Needs access to SafepointRegisterStackIndex for compiled frame
1863   // traversal.
1864   friend class StandardFrame;
1865 };
1866 
1867 
1868 // The code patcher is used to patch (typically) small parts of code e.g. for
1869 // debugging and other types of instrumentation. When using the code patcher
1870 // the exact number of bytes specified must be emitted. It is not legal to emit
1871 // relocation information. If any of these constraints are violated it causes
1872 // an assertion to fail.
1873 class CodePatcher {
1874  public:
1875   enum FlushICache {
1876     FLUSH,
1877     DONT_FLUSH
1878   };
1879 
1880   CodePatcher(Isolate* isolate, byte* address, int instructions,
1881               FlushICache flush_cache = FLUSH);
1882   ~CodePatcher();
1883 
1884   // Macro assembler to emit code.
masm()1885   MacroAssembler* masm() { return &masm_; }
1886 
1887   // Emit an instruction directly.
1888   void Emit(Instr instr);
1889 
1890   // Emit an address directly.
1891   void Emit(Address addr);
1892 
1893   // Change the condition part of an instruction leaving the rest of the current
1894   // instruction unchanged.
1895   void ChangeBranchCondition(Instr current_instr, uint32_t new_opcode);
1896 
1897  private:
1898   byte* address_;  // The address of the code being patched.
1899   int size_;  // Number of bytes of the expected patch size.
1900   MacroAssembler masm_;  // Macro assembler used to generate the code.
1901   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1902 };
1903 
1904 
1905 
1906 #ifdef GENERATED_CODE_COVERAGE
1907 #define CODE_COVERAGE_STRINGIFY(x) #x
1908 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1909 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1910 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
1911 #else
1912 #define ACCESS_MASM(masm) masm->
1913 #endif
1914 
1915 }  // namespace internal
1916 }  // namespace v8
1917 
1918 #endif  // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
1919