• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_AUDIO_RESAMPLER_FIR_GEN_H
18 #define ANDROID_AUDIO_RESAMPLER_FIR_GEN_H
19 
20 #include "utils/Compat.h"
21 
22 namespace android {
23 
24 /*
25  * generates a sine wave at equal steps.
26  *
27  * As most of our functions use sine or cosine at equal steps,
28  * it is very efficient to compute them that way (single multiply and subtract),
29  * rather than invoking the math library sin() or cos() each time.
30  *
31  * SineGen uses Goertzel's Algorithm (as a generator not a filter)
32  * to calculate sine(wstart + n * wstep) or cosine(wstart + n * wstep)
33  * by stepping through 0, 1, ... n.
34  *
35  * e^i(wstart+wstep) = 2cos(wstep) * e^i(wstart) - e^i(wstart-wstep)
36  *
37  * or looking at just the imaginary sine term, as the cosine follows identically:
38  *
39  * sin(wstart+wstep) = 2cos(wstep) * sin(wstart) - sin(wstart-wstep)
40  *
41  * Goertzel's algorithm is more efficient than the angle addition formula,
42  * e^i(wstart+wstep) = e^i(wstart) * e^i(wstep), which takes up to
43  * 4 multiplies and 2 adds (or 3* and 3+) and requires both sine and
44  * cosine generation due to the complex * complex multiply (full rotation).
45  *
46  * See: http://en.wikipedia.org/wiki/Goertzel_algorithm
47  *
48  */
49 
50 class SineGen {
51 public:
52     SineGen(double wstart, double wstep, bool cosine = false) {
53         if (cosine) {
54             mCurrent = cos(wstart);
55             mPrevious = cos(wstart - wstep);
56         } else {
57             mCurrent = sin(wstart);
58             mPrevious = sin(wstart - wstep);
59         }
60         mTwoCos = 2.*cos(wstep);
61     }
SineGen(double expNow,double expPrev,double twoCosStep)62     SineGen(double expNow, double expPrev, double twoCosStep) {
63         mCurrent = expNow;
64         mPrevious = expPrev;
65         mTwoCos = twoCosStep;
66     }
value()67     inline double value() const {
68         return mCurrent;
69     }
advance()70     inline void advance() {
71         double tmp = mCurrent;
72         mCurrent = mCurrent*mTwoCos - mPrevious;
73         mPrevious = tmp;
74     }
valueAdvance()75     inline double valueAdvance() {
76         double tmp = mCurrent;
77         mCurrent = mCurrent*mTwoCos - mPrevious;
78         mPrevious = tmp;
79         return tmp;
80     }
81 
82 private:
83     double mCurrent; // current value of sine/cosine
84     double mPrevious; // previous value of sine/cosine
85     double mTwoCos; // stepping factor
86 };
87 
88 /*
89  * generates a series of sine generators, phase offset by fixed steps.
90  *
91  * This is used to generate polyphase sine generators, one per polyphase
92  * in the filter code below.
93  *
94  * The SineGen returned by value() starts at innerStart = outerStart + n*outerStep;
95  * increments by innerStep.
96  *
97  */
98 
99 class SineGenGen {
100 public:
101     SineGenGen(double outerStart, double outerStep, double innerStep, bool cosine = false)
mSineInnerCur(outerStart,outerStep,cosine)102             : mSineInnerCur(outerStart, outerStep, cosine),
103               mSineInnerPrev(outerStart-innerStep, outerStep, cosine)
104     {
105         mTwoCos = 2.*cos(innerStep);
106     }
value()107     inline SineGen value() {
108         return SineGen(mSineInnerCur.value(), mSineInnerPrev.value(), mTwoCos);
109     }
advance()110     inline void advance() {
111         mSineInnerCur.advance();
112         mSineInnerPrev.advance();
113     }
valueAdvance()114     inline SineGen valueAdvance() {
115         return SineGen(mSineInnerCur.valueAdvance(), mSineInnerPrev.valueAdvance(), mTwoCos);
116     }
117 
118 private:
119     SineGen mSineInnerCur; // generate the inner sine values (stepped by outerStep).
120     SineGen mSineInnerPrev; // generate the inner sine previous values
121                             // (behind by innerStep, stepped by outerStep).
122     double mTwoCos; // the inner stepping factor for the returned SineGen.
123 };
124 
sqr(double x)125 static inline double sqr(double x) {
126     return x * x;
127 }
128 
129 /*
130  * rounds a double to the nearest integer for FIR coefficients.
131  *
132  * One variant uses noise shaping, which must keep error history
133  * to work (the err parameter, initialized to 0).
134  * The other variant is a non-noise shaped version for
135  * S32 coefficients (noise shaping doesn't gain much).
136  *
137  * Caution: No bounds saturation is applied, but isn't needed in this case.
138  *
139  * @param x is the value to round.
140  *
141  * @param maxval is the maximum integer scale factor expressed as an int64 (for headroom).
142  * Typically this may be the maximum positive integer+1 (using the fact that double precision
143  * FIR coefficients generated here are never that close to 1.0 to pose an overflow condition).
144  *
145  * @param err is the previous error (actual - rounded) for the previous rounding op.
146  * For 16b coefficients this can improve stopband dB performance by up to 2dB.
147  *
148  * Many variants exist for the noise shaping: http://en.wikipedia.org/wiki/Noise_shaping
149  *
150  */
151 
toint(double x,int64_t maxval,double & err)152 static inline int64_t toint(double x, int64_t maxval, double& err) {
153     double val = x * maxval;
154     double ival = floor(val + 0.5 + err*0.2);
155     err = val - ival;
156     return static_cast<int64_t>(ival);
157 }
158 
toint(double x,int64_t maxval)159 static inline int64_t toint(double x, int64_t maxval) {
160     return static_cast<int64_t>(floor(x * maxval + 0.5));
161 }
162 
163 /*
164  * Modified Bessel function of the first kind
165  * http://en.wikipedia.org/wiki/Bessel_function
166  *
167  * The formulas are taken from Abramowitz and Stegun,
168  * _Handbook of Mathematical Functions_ (links below):
169  *
170  * http://people.math.sfu.ca/~cbm/aands/page_375.htm
171  * http://people.math.sfu.ca/~cbm/aands/page_378.htm
172  *
173  * http://dlmf.nist.gov/10.25
174  * http://dlmf.nist.gov/10.40
175  *
176  * Note we assume x is nonnegative (the function is symmetric,
177  * pass in the absolute value as needed).
178  *
179  * Constants are compile time derived with templates I0Term<> and
180  * I0ATerm<> to the precision of the compiler.  The series can be expanded
181  * to any precision needed, but currently set around 24b precision.
182  *
183  * We use a bit of template math here, constexpr would probably be
184  * more appropriate for a C++11 compiler.
185  *
186  * For the intermediate range 3.75 < x < 15, we use minimax polynomial fit.
187  *
188  */
189 
190 template <int N>
191 struct I0Term {
192     static const CONSTEXPR double value = I0Term<N-1>::value / (4. * N * N);
193 };
194 
195 template <>
196 struct I0Term<0> {
197     static const CONSTEXPR double value = 1.;
198 };
199 
200 template <int N>
201 struct I0ATerm {
202     static const CONSTEXPR double value = I0ATerm<N-1>::value * (2.*N-1.) * (2.*N-1.) / (8. * N);
203 };
204 
205 template <>
206 struct I0ATerm<0> { // 1/sqrt(2*PI);
207     static const CONSTEXPR double value =
208             0.398942280401432677939946059934381868475858631164934657665925;
209 };
210 
211 #if USE_HORNERS_METHOD
212 /* Polynomial evaluation of A + Bx + Cx^2 + Dx^3 + ...
213  * using Horner's Method: http://en.wikipedia.org/wiki/Horner's_method
214  *
215  * This has fewer multiplications than Estrin's method below, but has back to back
216  * floating point dependencies.
217  *
218  * On ARM this appears to work slower, so USE_HORNERS_METHOD is not default enabled.
219  */
220 
221 inline double Poly2(double A, double B, double x) {
222     return A + x * B;
223 }
224 
225 inline double Poly4(double A, double B, double C, double D, double x) {
226     return A + x * (B + x * (C + x * (D)));
227 }
228 
229 inline double Poly7(double A, double B, double C, double D, double E, double F, double G,
230         double x) {
231     return A + x * (B + x * (C + x * (D + x * (E + x * (F + x * (G))))));
232 }
233 
234 inline double Poly9(double A, double B, double C, double D, double E, double F, double G,
235         double H, double I, double x) {
236     return A + x * (B + x * (C + x * (D + x * (E + x * (F + x * (G + x * (H + x * (I))))))));
237 }
238 
239 #else
240 /* Polynomial evaluation of A + Bx + Cx^2 + Dx^3 + ...
241  * using Estrin's Method: http://en.wikipedia.org/wiki/Estrin's_scheme
242  *
243  * This is typically faster, perhaps gains about 5-10% overall on ARM processors
244  * over Horner's method above.
245  */
246 
247 inline double Poly2(double A, double B, double x) {
248     return A + B * x;
249 }
250 
251 inline double Poly3(double A, double B, double C, double x, double x2) {
252     return Poly2(A, B, x) + C * x2;
253 }
254 
255 inline double Poly3(double A, double B, double C, double x) {
256     return Poly2(A, B, x) + C * x * x;
257 }
258 
259 inline double Poly4(double A, double B, double C, double D, double x, double x2) {
260     return Poly2(A, B, x) + Poly2(C, D, x) * x2; // same as poly2(poly2, poly2, x2);
261 }
262 
263 inline double Poly4(double A, double B, double C, double D, double x) {
264     return Poly4(A, B, C, D, x, x * x);
265 }
266 
267 inline double Poly7(double A, double B, double C, double D, double E, double F, double G,
268         double x) {
269     double x2 = x * x;
270     return Poly4(A, B, C, D, x, x2) + Poly3(E, F, G, x, x2) * (x2 * x2);
271 }
272 
273 inline double Poly8(double A, double B, double C, double D, double E, double F, double G,
274         double H, double x, double x2, double x4) {
275     return Poly4(A, B, C, D, x, x2) + Poly4(E, F, G, H, x, x2) * x4;
276 }
277 
278 inline double Poly9(double A, double B, double C, double D, double E, double F, double G,
279         double H, double I, double x) {
280     double x2 = x * x;
281 #if 1
282     // It does not seem faster to explicitly decompose Poly8 into Poly4, but
283     // could depend on compiler floating point scheduling.
284     double x4 = x2 * x2;
285     return Poly8(A, B, C, D, E, F, G, H, x, x2, x4) + I * (x4 * x4);
286 #else
287     double val = Poly4(A, B, C, D, x, x2);
288     double x4 = x2 * x2;
289     return val + Poly4(E, F, G, H, x, x2) * x4 + I * (x4 * x4);
290 #endif
291 }
292 #endif
293 
294 static inline double I0(double x) {
295     if (x < 3.75) {
296         x *= x;
297         return Poly7(I0Term<0>::value, I0Term<1>::value,
298                 I0Term<2>::value, I0Term<3>::value,
299                 I0Term<4>::value, I0Term<5>::value,
300                 I0Term<6>::value, x); // e < 1.6e-7
301     }
302     if (1) {
303         /*
304          * Series expansion coefs are easy to calculate, but are expanded around 0,
305          * so error is unequal over the interval 0 < x < 3.75, the error being
306          * significantly better near 0.
307          *
308          * A better solution is to use precise minimax polynomial fits.
309          *
310          * We use a slightly more complicated solution for 3.75 < x < 15, based on
311          * the tables in Blair and Edwards, "Stable Rational Minimax Approximations
312          * to the Modified Bessel Functions I0(x) and I1(x)", Chalk Hill Nuclear Laboratory,
313          * AECL-4928.
314          *
315          * http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/06/178/6178667.pdf
316          *
317          * See Table 11 for 0 < x < 15; e < 10^(-7.13).
318          *
319          * Note: Beta cannot exceed 15 (hence Stopband cannot exceed 144dB = 24b).
320          *
321          * This speeds up overall computation by about 40% over using the else clause below,
322          * which requires sqrt and exp.
323          *
324          */
325 
326         x *= x;
327         double num = Poly9(-0.13544938430e9, -0.33153754512e8,
328                 -0.19406631946e7, -0.48058318783e5,
329                 -0.63269783360e3, -0.49520779070e1,
330                 -0.24970910370e-1, -0.74741159550e-4,
331                 -0.18257612460e-6, x);
332         double y = x - 225.; // reflection around 15 (squared)
333         double den = Poly4(-0.34598737196e8, 0.23852643181e6,
334                 -0.70699387620e3, 0.10000000000e1, y);
335         return num / den;
336 
337 #if IO_EXTENDED_BETA
338         /* Table 42 for x > 15; e < 10^(-8.11).
339          * This is used for Beta>15, but is disabled here as
340          * we never use Beta that high.
341          *
342          * NOTE: This should be enabled only for x > 15.
343          */
344 
345         double y = 1./x;
346         double z = y - (1./15);
347         double num = Poly2(0.415079861746e1, -0.5149092496e1, z);
348         double den = Poly3(0.103150763823e2, -0.14181687413e2,
349                 0.1000000000e1, z);
350         return exp(x) * sqrt(y) * num / den;
351 #endif
352     } else {
353         /*
354          * NOT USED, but reference for large Beta.
355          *
356          * Abramowitz and Stegun asymptotic formula.
357          * works for x > 3.75.
358          */
359         double y = 1./x;
360         return exp(x) * sqrt(y) *
361                 // note: reciprocal squareroot may be easier!
362                 // http://en.wikipedia.org/wiki/Fast_inverse_square_root
363                 Poly9(I0ATerm<0>::value, I0ATerm<1>::value,
364                         I0ATerm<2>::value, I0ATerm<3>::value,
365                         I0ATerm<4>::value, I0ATerm<5>::value,
366                         I0ATerm<6>::value, I0ATerm<7>::value,
367                         I0ATerm<8>::value, y); // (... e) < 1.9e-7
368     }
369 }
370 
371 /* A speed optimized version of the Modified Bessel I0() which incorporates
372  * the sqrt and numerator multiply and denominator divide into the computation.
373  * This speeds up filter computation by about 10-15%.
374  */
375 static inline double I0SqrRat(double x2, double num, double den) {
376     if (x2 < (3.75 * 3.75)) {
377         return Poly7(I0Term<0>::value, I0Term<1>::value,
378                 I0Term<2>::value, I0Term<3>::value,
379                 I0Term<4>::value, I0Term<5>::value,
380                 I0Term<6>::value, x2) * num / den; // e < 1.6e-7
381     }
382     num *= Poly9(-0.13544938430e9, -0.33153754512e8,
383             -0.19406631946e7, -0.48058318783e5,
384             -0.63269783360e3, -0.49520779070e1,
385             -0.24970910370e-1, -0.74741159550e-4,
386             -0.18257612460e-6, x2); // e < 10^(-7.13).
387     double y = x2 - 225.; // reflection around 15 (squared)
388     den *= Poly4(-0.34598737196e8, 0.23852643181e6,
389             -0.70699387620e3, 0.10000000000e1, y);
390     return num / den;
391 }
392 
393 /*
394  * calculates the transition bandwidth for a Kaiser filter
395  *
396  * Formula 3.2.8, Vaidyanathan, _Multirate Systems and Filter Banks_, p. 48
397  * Formula 7.76, Oppenheim and Schafer, _Discrete-time Signal Processing, 3e_, p. 542
398  *
399  * @param halfNumCoef is half the number of coefficients per filter phase.
400  *
401  * @param stopBandAtten is the stop band attenuation desired.
402  *
403  * @return the transition bandwidth in normalized frequency (0 <= f <= 0.5)
404  */
405 static inline double firKaiserTbw(int halfNumCoef, double stopBandAtten) {
406     return (stopBandAtten - 7.95)/((2.*14.36)*halfNumCoef);
407 }
408 
409 /*
410  * calculates the fir transfer response of the overall polyphase filter at w.
411  *
412  * Calculates the DTFT transfer coefficient H(w) for 0 <= w <= PI, utilizing the
413  * fact that h[n] is symmetric (cosines only, no complex arithmetic).
414  *
415  * We use Goertzel's algorithm to accelerate the computation to essentially
416  * a single multiply and 2 adds per filter coefficient h[].
417  *
418  * Be careful be careful to consider that h[n] is the overall polyphase filter,
419  * with L phases, so rescaling H(w)/L is probably what you expect for "unity gain",
420  * as you only use one of the polyphases at a time.
421  */
422 template <typename T>
423 static inline double firTransfer(const T* coef, int L, int halfNumCoef, double w) {
424     double accum = static_cast<double>(coef[0])*0.5;  // "center coefficient" from first bank
425     coef += halfNumCoef;    // skip first filterbank (picked up by the last filterbank).
426 #if SLOW_FIRTRANSFER
427     /* Original code for reference.  This is equivalent to the code below, but slower. */
428     for (int i=1 ; i<=L ; ++i) {
429         for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) {
430             accum += cos(ix*w)*static_cast<double>(*coef++);
431         }
432     }
433 #else
434     /*
435      * Our overall filter is stored striped by polyphases, not a contiguous h[n].
436      * We could fetch coefficients in a non-contiguous fashion
437      * but that will not scale to vector processing.
438      *
439      * We apply Goertzel's algorithm directly to each polyphase filter bank instead of
440      * using cosine generation/multiplication, thereby saving one multiply per inner loop.
441      *
442      * See: http://en.wikipedia.org/wiki/Goertzel_algorithm
443      * Also: Oppenheim and Schafer, _Discrete Time Signal Processing, 3e_, p. 720.
444      *
445      * We use the basic recursion to incorporate the cosine steps into real sequence x[n]:
446      * s[n] = x[n] + (2cosw)*s[n-1] + s[n-2]
447      *
448      * y[n] = s[n] - e^(iw)s[n-1]
449      *      = sum_{k=-\infty}^{n} x[k]e^(-iw(n-k))
450      *      = e^(-iwn) sum_{k=0}^{n} x[k]e^(iwk)
451      *
452      * The summation contains the frequency steps we want multiplied by the source
453      * (similar to a DTFT).
454      *
455      * Using symmetry, and just the real part (be careful, this must happen
456      * after any internal complex multiplications), the polyphase filterbank
457      * transfer function is:
458      *
459      * Hpp[n, w, w_0] = sum_{k=0}^{n} x[k] * cos(wk + w_0)
460      *                = Re{ e^(iwn + iw_0) y[n]}
461      *                = cos(wn+w_0) * s[n] - cos(w(n+1)+w_0) * s[n-1]
462      *
463      * using the fact that s[n] of real x[n] is real.
464      *
465      */
466     double dcos = 2. * cos(L*w);
467     int start = ((halfNumCoef)*L + 1);
468     SineGen cc((start - L) * w, w, true); // cosine
469     SineGen cp(start * w, w, true); // cosine
470     for (int i=1 ; i<=L ; ++i) {
471         double sc = 0;
472         double sp = 0;
473         for (int j=0 ; j<halfNumCoef ; ++j) {
474             double tmp = sc;
475             sc  = static_cast<double>(*coef++) + dcos*sc - sp;
476             sp = tmp;
477         }
478         // If we are awfully clever, we can apply Goertzel's algorithm
479         // again on the sc and sp sequences returned here.
480         accum += cc.valueAdvance() * sc - cp.valueAdvance() * sp;
481     }
482 #endif
483     return accum*2.;
484 }
485 
486 /*
487  * evaluates the minimum and maximum |H(f)| bound in a band region.
488  *
489  * This is usually done with equally spaced increments in the target band in question.
490  * The passband is often very small, and sampled that way. The stopband is often much
491  * larger.
492  *
493  * We use the fact that the overall polyphase filter has an additional bank at the end
494  * for interpolation; hence it is overspecified for the H(f) computation.  Thus the
495  * first polyphase is never actually checked, excepting its first term.
496  *
497  * In this code we use the firTransfer() evaluator above, which uses Goertzel's
498  * algorithm to calculate the transfer function at each point.
499  *
500  * TODO: An alternative with equal spacing is the FFT/DFT.  An alternative with unequal
501  * spacing is a chirp transform.
502  *
503  * @param coef is the designed polyphase filter banks
504  *
505  * @param L is the number of phases (for interpolation)
506  *
507  * @param halfNumCoef should be half the number of coefficients for a single
508  * polyphase.
509  *
510  * @param fstart is the normalized frequency start.
511  *
512  * @param fend is the normalized frequency end.
513  *
514  * @param steps is the number of steps to take (sampling) between frequency start and end
515  *
516  * @param firMin returns the minimum transfer |H(f)| found
517  *
518  * @param firMax returns the maximum transfer |H(f)| found
519  *
520  * 0 <= f <= 0.5.
521  * This is used to test passband and stopband performance.
522  */
523 template <typename T>
524 static void testFir(const T* coef, int L, int halfNumCoef,
525         double fstart, double fend, int steps, double &firMin, double &firMax) {
526     double wstart = fstart*(2.*M_PI);
527     double wend = fend*(2.*M_PI);
528     double wstep = (wend - wstart)/steps;
529     double fmax, fmin;
530     double trf = firTransfer(coef, L, halfNumCoef, wstart);
531     if (trf<0) {
532         trf = -trf;
533     }
534     fmin = fmax = trf;
535     wstart += wstep;
536     for (int i=1; i<steps; ++i) {
537         trf = firTransfer(coef, L, halfNumCoef, wstart);
538         if (trf<0) {
539             trf = -trf;
540         }
541         if (trf>fmax) {
542             fmax = trf;
543         }
544         else if (trf<fmin) {
545             fmin = trf;
546         }
547         wstart += wstep;
548     }
549     // renormalize - this is only needed for integer filter types
550     double norm = 1./((1ULL<<(sizeof(T)*8-1))*L);
551 
552     firMin = fmin * norm;
553     firMax = fmax * norm;
554 }
555 
556 /*
557  * evaluates the |H(f)| lowpass band characteristics.
558  *
559  * This function tests the lowpass characteristics for the overall polyphase filter,
560  * and is used to verify the design.  For this case, fp should be set to the
561  * passband normalized frequency from 0 to 0.5 for the overall filter (thus it
562  * is the designed polyphase bank value / L).  Likewise for fs.
563  *
564  * @param coef is the designed polyphase filter banks
565  *
566  * @param L is the number of phases (for interpolation)
567  *
568  * @param halfNumCoef should be half the number of coefficients for a single
569  * polyphase.
570  *
571  * @param fp is the passband normalized frequency, 0 < fp < fs < 0.5.
572  *
573  * @param fs is the stopband normalized frequency, 0 < fp < fs < 0.5.
574  *
575  * @param passSteps is the number of passband sampling steps.
576  *
577  * @param stopSteps is the number of stopband sampling steps.
578  *
579  * @param passMin is the minimum value in the passband
580  *
581  * @param passMax is the maximum value in the passband (useful for scaling).  This should
582  * be less than 1., to avoid sine wave test overflow.
583  *
584  * @param passRipple is the passband ripple.  Typically this should be less than 0.1 for
585  * an audio filter.  Generally speaker/headphone device characteristics will dominate
586  * the passband term.
587  *
588  * @param stopMax is the maximum value in the stopband.
589  *
590  * @param stopRipple is the stopband ripple, also known as stopband attenuation.
591  * Typically this should be greater than ~80dB for low quality, and greater than
592  * ~100dB for full 16b quality, otherwise aliasing may become noticeable.
593  *
594  */
595 template <typename T>
596 static void testFir(const T* coef, int L, int halfNumCoef,
597         double fp, double fs, int passSteps, int stopSteps,
598         double &passMin, double &passMax, double &passRipple,
599         double &stopMax, double &stopRipple) {
600     double fmin, fmax;
601     testFir(coef, L, halfNumCoef, 0., fp, passSteps, fmin, fmax);
602     double d1 = (fmax - fmin)/2.;
603     passMin = fmin;
604     passMax = fmax;
605     passRipple = -20.*log10(1. - d1); // passband ripple
606     testFir(coef, L, halfNumCoef, fs, 0.5, stopSteps, fmin, fmax);
607     // fmin is really not important for the stopband.
608     stopMax = fmax;
609     stopRipple = -20.*log10(fmax); // stopband ripple/attenuation
610 }
611 
612 /*
613  * Calculates the overall polyphase filter based on a windowed sinc function.
614  *
615  * The windowed sinc is an odd length symmetric filter of exactly L*halfNumCoef*2+1
616  * taps for the entire kernel.  This is then decomposed into L+1 polyphase filterbanks.
617  * The last filterbank is used for interpolation purposes (and is mostly composed
618  * of the first bank shifted by one sample), and is unnecessary if one does
619  * not do interpolation.
620  *
621  * We use the last filterbank for some transfer function calculation purposes,
622  * so it needs to be generated anyways.
623  *
624  * @param coef is the caller allocated space for coefficients.  This should be
625  * exactly (L+1)*halfNumCoef in size.
626  *
627  * @param L is the number of phases (for interpolation)
628  *
629  * @param halfNumCoef should be half the number of coefficients for a single
630  * polyphase.
631  *
632  * @param stopBandAtten is the stopband value, should be >50dB.
633  *
634  * @param fcr is cutoff frequency/sampling rate (<0.5).  At this point, the energy
635  * should be 6dB less. (fcr is where the amplitude drops by half).  Use the
636  * firKaiserTbw() to calculate the transition bandwidth.  fcr is the midpoint
637  * between the stop band and the pass band (fstop+fpass)/2.
638  *
639  * @param atten is the attenuation (generally slightly less than 1).
640  */
641 
642 template <typename T>
643 static inline void firKaiserGen(T* coef, int L, int halfNumCoef,
644         double stopBandAtten, double fcr, double atten) {
645     //
646     // Formula 3.2.5, 3.2.7, Vaidyanathan, _Multirate Systems and Filter Banks_, p. 48
647     // Formula 7.75, Oppenheim and Schafer, _Discrete-time Signal Processing, 3e_, p. 542
648     //
649     // See also: http://melodi.ee.washington.edu/courses/ee518/notes/lec17.pdf
650     //
651     // Kaiser window and beta parameter
652     //
653     //         | 0.1102*(A - 8.7)                         A > 50
654     //  beta = | 0.5842*(A - 21)^0.4 + 0.07886*(A - 21)   21 <= A <= 50
655     //         | 0.                                       A < 21
656     //
657     // with A is the desired stop-band attenuation in dBFS
658     //
659     //    30 dB    2.210
660     //    40 dB    3.384
661     //    50 dB    4.538
662     //    60 dB    5.658
663     //    70 dB    6.764
664     //    80 dB    7.865
665     //    90 dB    8.960
666     //   100 dB   10.056
667 
668     const int N = L * halfNumCoef; // non-negative half
669     const double beta = 0.1102 * (stopBandAtten - 8.7); // >= 50dB always
670     const double xstep = (2. * M_PI) * fcr / L;
671     const double xfrac = 1. / N;
672     const double yscale = atten * L / (I0(beta) * M_PI);
673     const double sqrbeta = sqr(beta);
674 
675     // We use sine generators, which computes sines on regular step intervals.
676     // This speeds up overall computation about 40% from computing the sine directly.
677 
678     SineGenGen sgg(0., xstep, L*xstep); // generates sine generators (one per polyphase)
679 
680     for (int i=0 ; i<=L ; ++i) { // generate an extra set of coefs for interpolation
681 
682         // computation for a single polyphase of the overall filter.
683         SineGen sg = sgg.valueAdvance(); // current sine generator for "j" inner loop.
684         double err = 0; // for noise shaping on int16_t coefficients (over each polyphase)
685 
686         for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) {
687             double y;
688             if (CC_LIKELY(ix)) {
689                 double x = static_cast<double>(ix);
690 
691                 // sine generator: sg.valueAdvance() returns sin(ix*xstep);
692                 // y = I0(beta * sqrt(1.0 - sqr(x * xfrac))) * yscale * sg.valueAdvance() / x;
693                 y = I0SqrRat(sqrbeta * (1.0 - sqr(x * xfrac)), yscale * sg.valueAdvance(), x);
694             } else {
695                 y = 2. * atten * fcr; // center of filter, sinc(0) = 1.
696                 sg.advance();
697             }
698 
699             if (is_same<T, int16_t>::value) { // int16_t needs noise shaping
700                 *coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1), err));
701             } else if (is_same<T, int32_t>::value) {
702                 *coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1)));
703             } else { // assumed float or double
704                 *coef++ = static_cast<T>(y);
705             }
706         }
707     }
708 }
709 
710 } // namespace android
711 
712 #endif /*ANDROID_AUDIO_RESAMPLER_FIR_GEN_H*/
713