• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <math.h>
18 
19 #include "Blur.h"
20 #include "MathUtils.h"
21 
22 namespace android {
23 namespace uirenderer {
24 
25 // This constant approximates the scaling done in the software path's
26 // "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)).
27 static const float BLUR_SIGMA_SCALE = 0.57735f;
28 
convertRadiusToSigma(float radius)29 float Blur::convertRadiusToSigma(float radius) {
30     return radius > 0 ? BLUR_SIGMA_SCALE * radius + 0.5f : 0.0f;
31 }
32 
convertSigmaToRadius(float sigma)33 float Blur::convertSigmaToRadius(float sigma) {
34     return sigma > 0.5f ? (sigma - 0.5f) / BLUR_SIGMA_SCALE : 0.0f;
35 }
36 
37 // if the original radius was on an integer boundary and the resulting radius
38 // is within the conversion error tolerance then we attempt to snap to the
39 // original integer boundary.
convertRadiusToInt(float radius)40 uint32_t Blur::convertRadiusToInt(float radius) {
41     const float radiusCeil  = ceilf(radius);
42     if (MathUtils::areEqual(radiusCeil, radius)) {
43         return radiusCeil;
44     }
45     return radius;
46 }
47 
48 /**
49  * HWUI has used a slightly different equation than Skia to generate the value
50  * for sigma and to preserve compatibility we have kept that logic.
51  *
52  * Based on some experimental radius and sigma values we approximate the
53  * equation sigma = f(radius) as sigma = radius * 0.3  + 0.6.  The larger the
54  * radius gets, the more our gaussian blur will resemble a box blur since with
55  * large sigma the gaussian curve begins to lose its shape.
56  */
legacyConvertRadiusToSigma(float radius)57 static float legacyConvertRadiusToSigma(float radius) {
58     return radius > 0 ? 0.3f * radius + 0.6f : 0.0f;
59 }
60 
generateGaussianWeights(float * weights,float radius)61 void Blur::generateGaussianWeights(float* weights, float radius) {
62     int32_t intRadius = convertRadiusToInt(radius);
63 
64     // Compute gaussian weights for the blur
65     // e is the euler's number
66     static float e = 2.718281828459045f;
67     static float pi = 3.1415926535897932f;
68     // g(x) = ( 1 / sqrt( 2 * pi ) * sigma) * e ^ ( -x^2 / 2 * sigma^2 )
69     // x is of the form [-radius .. 0 .. radius]
70     // and sigma varies with radius.
71     float sigma = legacyConvertRadiusToSigma(radius);
72 
73     // Now compute the coefficints
74     // We will store some redundant values to save some math during
75     // the blur calculations
76     // precompute some values
77     float coeff1 = 1.0f / (sqrt(2.0f * pi) * sigma);
78     float coeff2 = - 1.0f / (2.0f * sigma * sigma);
79 
80     float normalizeFactor = 0.0f;
81     for (int32_t r = -intRadius; r <= intRadius; r ++) {
82         float floatR = (float) r;
83         weights[r + intRadius] = coeff1 * pow(e, floatR * floatR * coeff2);
84         normalizeFactor += weights[r + intRadius];
85     }
86 
87     //Now we need to normalize the weights because all our coefficients need to add up to one
88     normalizeFactor = 1.0f / normalizeFactor;
89     for (int32_t r = -intRadius; r <= intRadius; r ++) {
90         weights[r + intRadius] *= normalizeFactor;
91     }
92 }
93 
horizontal(float * weights,int32_t radius,const uint8_t * source,uint8_t * dest,int32_t width,int32_t height)94 void Blur::horizontal(float* weights, int32_t radius,
95         const uint8_t* source, uint8_t* dest, int32_t width, int32_t height) {
96     float blurredPixel = 0.0f;
97     float currentPixel = 0.0f;
98 
99     for (int32_t y = 0; y < height; y ++) {
100 
101         const uint8_t* input = source + y * width;
102         uint8_t* output = dest + y * width;
103 
104         for (int32_t x = 0; x < width; x ++) {
105             blurredPixel = 0.0f;
106             const float* gPtr = weights;
107             // Optimization for non-border pixels
108             if (x > radius && x < (width - radius)) {
109                 const uint8_t *i = input + (x - radius);
110                 for (int r = -radius; r <= radius; r ++) {
111                     currentPixel = (float) (*i);
112                     blurredPixel += currentPixel * gPtr[0];
113                     gPtr++;
114                     i++;
115                 }
116             } else {
117                 for (int32_t r = -radius; r <= radius; r ++) {
118                     // Stepping left and right away from the pixel
119                     int validW = x + r;
120                     if (validW < 0) {
121                         validW = 0;
122                     }
123                     if (validW > width - 1) {
124                         validW = width - 1;
125                     }
126 
127                     currentPixel = (float) input[validW];
128                     blurredPixel += currentPixel * gPtr[0];
129                     gPtr++;
130                 }
131             }
132             *output = (uint8_t)blurredPixel;
133             output ++;
134         }
135     }
136 }
137 
vertical(float * weights,int32_t radius,const uint8_t * source,uint8_t * dest,int32_t width,int32_t height)138 void Blur::vertical(float* weights, int32_t radius,
139         const uint8_t* source, uint8_t* dest, int32_t width, int32_t height) {
140     float blurredPixel = 0.0f;
141     float currentPixel = 0.0f;
142 
143     for (int32_t y = 0; y < height; y ++) {
144         uint8_t* output = dest + y * width;
145 
146         for (int32_t x = 0; x < width; x ++) {
147             blurredPixel = 0.0f;
148             const float* gPtr = weights;
149             const uint8_t* input = source + x;
150             // Optimization for non-border pixels
151             if (y > radius && y < (height - radius)) {
152                 const uint8_t *i = input + ((y - radius) * width);
153                 for (int32_t r = -radius; r <= radius; r ++) {
154                     currentPixel = (float) (*i);
155                     blurredPixel += currentPixel * gPtr[0];
156                     gPtr++;
157                     i += width;
158                 }
159             } else {
160                 for (int32_t r = -radius; r <= radius; r ++) {
161                     int validH = y + r;
162                     // Clamp to zero and width
163                     if (validH < 0) {
164                         validH = 0;
165                     }
166                     if (validH > height - 1) {
167                         validH = height - 1;
168                     }
169 
170                     const uint8_t *i = input + validH * width;
171                     currentPixel = (float) (*i);
172                     blurredPixel += currentPixel * gPtr[0];
173                     gPtr++;
174                 }
175             }
176             *output = (uint8_t) blurredPixel;
177             output++;
178         }
179     }
180 }
181 
182 }; // namespace uirenderer
183 }; // namespace android
184