• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "util/BigBuffer.h"
18 #include "Png.h"
19 #include "Source.h"
20 #include "util/Util.h"
21 
22 #include <androidfw/ResourceTypes.h>
23 #include <iostream>
24 #include <png.h>
25 #include <sstream>
26 #include <string>
27 #include <vector>
28 #include <zlib.h>
29 
30 namespace aapt {
31 
32 constexpr bool kDebug = false;
33 constexpr size_t kPngSignatureSize = 8u;
34 
35 struct PngInfo {
~PngInfoaapt::PngInfo36     ~PngInfo() {
37         for (png_bytep row : rows) {
38             if (row != nullptr) {
39                 delete[] row;
40             }
41         }
42 
43         delete[] xDivs;
44         delete[] yDivs;
45     }
46 
serialize9Patchaapt::PngInfo47     void* serialize9Patch() {
48         void* serialized = android::Res_png_9patch::serialize(info9Patch, xDivs, yDivs,
49                                                               colors.data());
50         reinterpret_cast<android::Res_png_9patch*>(serialized)->deviceToFile();
51         return serialized;
52     }
53 
54     uint32_t width = 0;
55     uint32_t height = 0;
56     std::vector<png_bytep> rows;
57 
58     bool is9Patch = false;
59     android::Res_png_9patch info9Patch;
60     int32_t* xDivs = nullptr;
61     int32_t* yDivs = nullptr;
62     std::vector<uint32_t> colors;
63 
64     // Layout padding.
65     bool haveLayoutBounds = false;
66     int32_t layoutBoundsLeft;
67     int32_t layoutBoundsTop;
68     int32_t layoutBoundsRight;
69     int32_t layoutBoundsBottom;
70 
71     // Round rect outline description.
72     int32_t outlineInsetsLeft;
73     int32_t outlineInsetsTop;
74     int32_t outlineInsetsRight;
75     int32_t outlineInsetsBottom;
76     float outlineRadius;
77     uint8_t outlineAlpha;
78 };
79 
readDataFromStream(png_structp readPtr,png_bytep data,png_size_t length)80 static void readDataFromStream(png_structp readPtr, png_bytep data, png_size_t length) {
81     std::istream* input = reinterpret_cast<std::istream*>(png_get_io_ptr(readPtr));
82     if (!input->read(reinterpret_cast<char*>(data), length)) {
83         png_error(readPtr, strerror(errno));
84     }
85 }
86 
writeDataToStream(png_structp writePtr,png_bytep data,png_size_t length)87 static void writeDataToStream(png_structp writePtr, png_bytep data, png_size_t length) {
88     BigBuffer* outBuffer = reinterpret_cast<BigBuffer*>(png_get_io_ptr(writePtr));
89     png_bytep buf = outBuffer->nextBlock<png_byte>(length);
90     memcpy(buf, data, length);
91 }
92 
flushDataToStream(png_structp)93 static void flushDataToStream(png_structp /*writePtr*/) {
94 }
95 
logWarning(png_structp readPtr,png_const_charp warningMessage)96 static void logWarning(png_structp readPtr, png_const_charp warningMessage) {
97     IDiagnostics* diag = reinterpret_cast<IDiagnostics*>(png_get_error_ptr(readPtr));
98     diag->warn(DiagMessage() << warningMessage);
99 }
100 
101 
readPng(IDiagnostics * diag,png_structp readPtr,png_infop infoPtr,PngInfo * outInfo)102 static bool readPng(IDiagnostics* diag, png_structp readPtr, png_infop infoPtr, PngInfo* outInfo) {
103     if (setjmp(png_jmpbuf(readPtr))) {
104         diag->error(DiagMessage() << "failed reading png");
105         return false;
106     }
107 
108     png_set_sig_bytes(readPtr, kPngSignatureSize);
109     png_read_info(readPtr, infoPtr);
110 
111     int colorType, bitDepth, interlaceType, compressionType;
112     png_get_IHDR(readPtr, infoPtr, &outInfo->width, &outInfo->height, &bitDepth, &colorType,
113                  &interlaceType, &compressionType, nullptr);
114 
115     if (colorType == PNG_COLOR_TYPE_PALETTE) {
116         png_set_palette_to_rgb(readPtr);
117     }
118 
119     if (colorType == PNG_COLOR_TYPE_GRAY && bitDepth < 8) {
120         png_set_expand_gray_1_2_4_to_8(readPtr);
121     }
122 
123     if (png_get_valid(readPtr, infoPtr, PNG_INFO_tRNS)) {
124         png_set_tRNS_to_alpha(readPtr);
125     }
126 
127     if (bitDepth == 16) {
128         png_set_strip_16(readPtr);
129     }
130 
131     if (!(colorType & PNG_COLOR_MASK_ALPHA)) {
132         png_set_add_alpha(readPtr, 0xFF, PNG_FILLER_AFTER);
133     }
134 
135     if (colorType == PNG_COLOR_TYPE_GRAY || colorType == PNG_COLOR_TYPE_GRAY_ALPHA) {
136         png_set_gray_to_rgb(readPtr);
137     }
138 
139     png_set_interlace_handling(readPtr);
140     png_read_update_info(readPtr, infoPtr);
141 
142     const uint32_t rowBytes = png_get_rowbytes(readPtr, infoPtr);
143     outInfo->rows.resize(outInfo->height);
144     for (size_t i = 0; i < outInfo->height; i++) {
145         outInfo->rows[i] = new png_byte[rowBytes];
146     }
147 
148     png_read_image(readPtr, outInfo->rows.data());
149     png_read_end(readPtr, infoPtr);
150     return true;
151 }
152 
checkNinePatchSerialization(android::Res_png_9patch * inPatch,void * data)153 static void checkNinePatchSerialization(android::Res_png_9patch* inPatch,  void* data) {
154     size_t patchSize = inPatch->serializedSize();
155     void* newData = malloc(patchSize);
156     memcpy(newData, data, patchSize);
157     android::Res_png_9patch* outPatch = inPatch->deserialize(newData);
158     outPatch->fileToDevice();
159     // deserialization is done in place, so outPatch == newData
160     assert(outPatch == newData);
161     assert(outPatch->numXDivs == inPatch->numXDivs);
162     assert(outPatch->numYDivs == inPatch->numYDivs);
163     assert(outPatch->paddingLeft == inPatch->paddingLeft);
164     assert(outPatch->paddingRight == inPatch->paddingRight);
165     assert(outPatch->paddingTop == inPatch->paddingTop);
166     assert(outPatch->paddingBottom == inPatch->paddingBottom);
167 /*    for (int i = 0; i < outPatch->numXDivs; i++) {
168         assert(outPatch->getXDivs()[i] == inPatch->getXDivs()[i]);
169     }
170     for (int i = 0; i < outPatch->numYDivs; i++) {
171         assert(outPatch->getYDivs()[i] == inPatch->getYDivs()[i]);
172     }
173     for (int i = 0; i < outPatch->numColors; i++) {
174         assert(outPatch->getColors()[i] == inPatch->getColors()[i]);
175     }*/
176     free(newData);
177 }
178 
179 /*static void dump_image(int w, int h, const png_byte* const* rows, int color_type) {
180     int i, j, rr, gg, bb, aa;
181 
182     int bpp;
183     if (color_type == PNG_COLOR_TYPE_PALETTE || color_type == PNG_COLOR_TYPE_GRAY) {
184         bpp = 1;
185     } else if (color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
186         bpp = 2;
187     } else if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) {
188         // We use a padding byte even when there is no alpha
189         bpp = 4;
190     } else {
191         printf("Unknown color type %d.\n", color_type);
192     }
193 
194     for (j = 0; j < h; j++) {
195         const png_byte* row = rows[j];
196         for (i = 0; i < w; i++) {
197             rr = row[0];
198             gg = row[1];
199             bb = row[2];
200             aa = row[3];
201             row += bpp;
202 
203             if (i == 0) {
204                 printf("Row %d:", j);
205             }
206             switch (bpp) {
207             case 1:
208                 printf(" (%d)", rr);
209                 break;
210             case 2:
211                 printf(" (%d %d", rr, gg);
212                 break;
213             case 3:
214                 printf(" (%d %d %d)", rr, gg, bb);
215                 break;
216             case 4:
217                 printf(" (%d %d %d %d)", rr, gg, bb, aa);
218                 break;
219             }
220             if (i == (w - 1)) {
221                 printf("\n");
222             }
223         }
224     }
225 }*/
226 
227 #define MAX(a,b) ((a)>(b)?(a):(b))
228 #define ABS(a)   ((a)<0?-(a):(a))
229 
analyze_image(IDiagnostics * diag,const PngInfo & imageInfo,int grayscaleTolerance,png_colorp rgbPalette,png_bytep alphaPalette,int * paletteEntries,bool * hasTransparency,int * colorType,png_bytepp outRows)230 static void analyze_image(IDiagnostics* diag, const PngInfo& imageInfo, int grayscaleTolerance,
231                           png_colorp rgbPalette, png_bytep alphaPalette,
232                           int *paletteEntries, bool *hasTransparency, int *colorType,
233                           png_bytepp outRows) {
234     int w = imageInfo.width;
235     int h = imageInfo.height;
236     int i, j, rr, gg, bb, aa, idx;
237     uint32_t colors[256], col;
238     int num_colors = 0;
239     int maxGrayDeviation = 0;
240 
241     bool isOpaque = true;
242     bool isPalette = true;
243     bool isGrayscale = true;
244 
245     // Scan the entire image and determine if:
246     // 1. Every pixel has R == G == B (grayscale)
247     // 2. Every pixel has A == 255 (opaque)
248     // 3. There are no more than 256 distinct RGBA colors
249 
250     if (kDebug) {
251         printf("Initial image data:\n");
252         //dump_image(w, h, imageInfo.rows.data(), PNG_COLOR_TYPE_RGB_ALPHA);
253     }
254 
255     for (j = 0; j < h; j++) {
256         const png_byte* row = imageInfo.rows[j];
257         png_bytep out = outRows[j];
258         for (i = 0; i < w; i++) {
259             rr = *row++;
260             gg = *row++;
261             bb = *row++;
262             aa = *row++;
263 
264             int odev = maxGrayDeviation;
265             maxGrayDeviation = MAX(ABS(rr - gg), maxGrayDeviation);
266             maxGrayDeviation = MAX(ABS(gg - bb), maxGrayDeviation);
267             maxGrayDeviation = MAX(ABS(bb - rr), maxGrayDeviation);
268             if (maxGrayDeviation > odev) {
269                 if (kDebug) {
270                     printf("New max dev. = %d at pixel (%d, %d) = (%d %d %d %d)\n",
271                             maxGrayDeviation, i, j, rr, gg, bb, aa);
272                 }
273             }
274 
275             // Check if image is really grayscale
276             if (isGrayscale) {
277                 if (rr != gg || rr != bb) {
278                     if (kDebug) {
279                         printf("Found a non-gray pixel at %d, %d = (%d %d %d %d)\n",
280                                 i, j, rr, gg, bb, aa);
281                     }
282                     isGrayscale = false;
283                 }
284             }
285 
286             // Check if image is really opaque
287             if (isOpaque) {
288                 if (aa != 0xff) {
289                     if (kDebug) {
290                         printf("Found a non-opaque pixel at %d, %d = (%d %d %d %d)\n",
291                                 i, j, rr, gg, bb, aa);
292                     }
293                     isOpaque = false;
294                 }
295             }
296 
297             // Check if image is really <= 256 colors
298             if (isPalette) {
299                 col = (uint32_t) ((rr << 24) | (gg << 16) | (bb << 8) | aa);
300                 bool match = false;
301                 for (idx = 0; idx < num_colors; idx++) {
302                     if (colors[idx] == col) {
303                         match = true;
304                         break;
305                     }
306                 }
307 
308                 // Write the palette index for the pixel to outRows optimistically
309                 // We might overwrite it later if we decide to encode as gray or
310                 // gray + alpha
311                 *out++ = idx;
312                 if (!match) {
313                     if (num_colors == 256) {
314                         if (kDebug) {
315                             printf("Found 257th color at %d, %d\n", i, j);
316                         }
317                         isPalette = false;
318                     } else {
319                         colors[num_colors++] = col;
320                     }
321                 }
322             }
323         }
324     }
325 
326     *paletteEntries = 0;
327     *hasTransparency = !isOpaque;
328     int bpp = isOpaque ? 3 : 4;
329     int paletteSize = w * h + bpp * num_colors;
330 
331     if (kDebug) {
332         printf("isGrayscale = %s\n", isGrayscale ? "true" : "false");
333         printf("isOpaque = %s\n", isOpaque ? "true" : "false");
334         printf("isPalette = %s\n", isPalette ? "true" : "false");
335         printf("Size w/ palette = %d, gray+alpha = %d, rgb(a) = %d\n",
336                 paletteSize, 2 * w * h, bpp * w * h);
337         printf("Max gray deviation = %d, tolerance = %d\n", maxGrayDeviation, grayscaleTolerance);
338     }
339 
340     // Choose the best color type for the image.
341     // 1. Opaque gray - use COLOR_TYPE_GRAY at 1 byte/pixel
342     // 2. Gray + alpha - use COLOR_TYPE_PALETTE if the number of distinct combinations
343     //     is sufficiently small, otherwise use COLOR_TYPE_GRAY_ALPHA
344     // 3. RGB(A) - use COLOR_TYPE_PALETTE if the number of distinct colors is sufficiently
345     //     small, otherwise use COLOR_TYPE_RGB{_ALPHA}
346     if (isGrayscale) {
347         if (isOpaque) {
348             *colorType = PNG_COLOR_TYPE_GRAY; // 1 byte/pixel
349         } else {
350             // Use a simple heuristic to determine whether using a palette will
351             // save space versus using gray + alpha for each pixel.
352             // This doesn't take into account chunk overhead, filtering, LZ
353             // compression, etc.
354             if (isPalette && (paletteSize < 2 * w * h)) {
355                 *colorType = PNG_COLOR_TYPE_PALETTE; // 1 byte/pixel + 4 bytes/color
356             } else {
357                 *colorType = PNG_COLOR_TYPE_GRAY_ALPHA; // 2 bytes per pixel
358             }
359         }
360     } else if (isPalette && (paletteSize < bpp * w * h)) {
361         *colorType = PNG_COLOR_TYPE_PALETTE;
362     } else {
363         if (maxGrayDeviation <= grayscaleTolerance) {
364             diag->note(DiagMessage()
365                        << "forcing image to gray (max deviation = "
366                        << maxGrayDeviation << ")");
367             *colorType = isOpaque ? PNG_COLOR_TYPE_GRAY : PNG_COLOR_TYPE_GRAY_ALPHA;
368         } else {
369             *colorType = isOpaque ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA;
370         }
371     }
372 
373     // Perform postprocessing of the image or palette data based on the final
374     // color type chosen
375 
376     if (*colorType == PNG_COLOR_TYPE_PALETTE) {
377         // Create separate RGB and Alpha palettes and set the number of colors
378         *paletteEntries = num_colors;
379 
380         // Create the RGB and alpha palettes
381         for (int idx = 0; idx < num_colors; idx++) {
382             col = colors[idx];
383             rgbPalette[idx].red   = (png_byte) ((col >> 24) & 0xff);
384             rgbPalette[idx].green = (png_byte) ((col >> 16) & 0xff);
385             rgbPalette[idx].blue  = (png_byte) ((col >>  8) & 0xff);
386             alphaPalette[idx]     = (png_byte)  (col        & 0xff);
387         }
388     } else if (*colorType == PNG_COLOR_TYPE_GRAY || *colorType == PNG_COLOR_TYPE_GRAY_ALPHA) {
389         // If the image is gray or gray + alpha, compact the pixels into outRows
390         for (j = 0; j < h; j++) {
391             const png_byte* row = imageInfo.rows[j];
392             png_bytep out = outRows[j];
393             for (i = 0; i < w; i++) {
394                 rr = *row++;
395                 gg = *row++;
396                 bb = *row++;
397                 aa = *row++;
398 
399                 if (isGrayscale) {
400                     *out++ = rr;
401                 } else {
402                     *out++ = (png_byte) (rr * 0.2126f + gg * 0.7152f + bb * 0.0722f);
403                 }
404                 if (!isOpaque) {
405                     *out++ = aa;
406                 }
407            }
408         }
409     }
410 }
411 
writePng(IDiagnostics * diag,png_structp writePtr,png_infop infoPtr,PngInfo * info,int grayScaleTolerance)412 static bool writePng(IDiagnostics* diag, png_structp writePtr, png_infop infoPtr, PngInfo* info,
413                      int grayScaleTolerance) {
414     if (setjmp(png_jmpbuf(writePtr))) {
415         diag->error(DiagMessage() << "failed to write png");
416         return false;
417     }
418 
419     uint32_t width, height;
420     int colorType, bitDepth, interlaceType, compressionType;
421 
422     png_unknown_chunk unknowns[3];
423     unknowns[0].data = nullptr;
424     unknowns[1].data = nullptr;
425     unknowns[2].data = nullptr;
426 
427     png_bytepp outRows = (png_bytepp) malloc((int) info->height * sizeof(png_bytep));
428     if (outRows == (png_bytepp) 0) {
429         printf("Can't allocate output buffer!\n");
430         exit(1);
431     }
432     for (uint32_t i = 0; i < info->height; i++) {
433         outRows[i] = (png_bytep) malloc(2 * (int) info->width);
434         if (outRows[i] == (png_bytep) 0) {
435             printf("Can't allocate output buffer!\n");
436             exit(1);
437         }
438     }
439 
440     png_set_compression_level(writePtr, Z_BEST_COMPRESSION);
441 
442     if (kDebug) {
443         diag->note(DiagMessage()
444                    << "writing image: w = " << info->width
445                    << ", h = " << info->height);
446     }
447 
448     png_color rgbPalette[256];
449     png_byte alphaPalette[256];
450     bool hasTransparency;
451     int paletteEntries;
452 
453     analyze_image(diag, *info, grayScaleTolerance, rgbPalette, alphaPalette,
454                   &paletteEntries, &hasTransparency, &colorType, outRows);
455 
456     // If the image is a 9-patch, we need to preserve it as a ARGB file to make
457     // sure the pixels will not be pre-dithered/clamped until we decide they are
458     if (info->is9Patch && (colorType == PNG_COLOR_TYPE_RGB ||
459             colorType == PNG_COLOR_TYPE_GRAY || colorType == PNG_COLOR_TYPE_PALETTE)) {
460         colorType = PNG_COLOR_TYPE_RGB_ALPHA;
461     }
462 
463     if (kDebug) {
464         switch (colorType) {
465         case PNG_COLOR_TYPE_PALETTE:
466             diag->note(DiagMessage()
467                        << "has " << paletteEntries
468                        << " colors" << (hasTransparency ? " (with alpha)" : "")
469                        << ", using PNG_COLOR_TYPE_PALLETTE");
470             break;
471         case PNG_COLOR_TYPE_GRAY:
472             diag->note(DiagMessage() << "is opaque gray, using PNG_COLOR_TYPE_GRAY");
473             break;
474         case PNG_COLOR_TYPE_GRAY_ALPHA:
475             diag->note(DiagMessage() << "is gray + alpha, using PNG_COLOR_TYPE_GRAY_ALPHA");
476             break;
477         case PNG_COLOR_TYPE_RGB:
478             diag->note(DiagMessage() << "is opaque RGB, using PNG_COLOR_TYPE_RGB");
479             break;
480         case PNG_COLOR_TYPE_RGB_ALPHA:
481             diag->note(DiagMessage() << "is RGB + alpha, using PNG_COLOR_TYPE_RGB_ALPHA");
482             break;
483         }
484     }
485 
486     png_set_IHDR(writePtr, infoPtr, info->width, info->height, 8, colorType,
487                  PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
488 
489     if (colorType == PNG_COLOR_TYPE_PALETTE) {
490         png_set_PLTE(writePtr, infoPtr, rgbPalette, paletteEntries);
491         if (hasTransparency) {
492             png_set_tRNS(writePtr, infoPtr, alphaPalette, paletteEntries, (png_color_16p) 0);
493         }
494         png_set_filter(writePtr, 0, PNG_NO_FILTERS);
495     } else {
496         png_set_filter(writePtr, 0, PNG_ALL_FILTERS);
497     }
498 
499     if (info->is9Patch) {
500         int chunkCount = 2 + (info->haveLayoutBounds ? 1 : 0);
501         int pIndex = info->haveLayoutBounds ? 2 : 1;
502         int bIndex = 1;
503         int oIndex = 0;
504 
505         // Chunks ordered thusly because older platforms depend on the base 9 patch data being last
506         png_bytep chunkNames = info->haveLayoutBounds
507                 ? (png_bytep)"npOl\0npLb\0npTc\0"
508                 : (png_bytep)"npOl\0npTc";
509 
510         // base 9 patch data
511         if (kDebug) {
512             diag->note(DiagMessage() << "adding 9-patch info..");
513         }
514         strcpy((char*)unknowns[pIndex].name, "npTc");
515         unknowns[pIndex].data = (png_byte*) info->serialize9Patch();
516         unknowns[pIndex].size = info->info9Patch.serializedSize();
517         // TODO: remove the check below when everything works
518         checkNinePatchSerialization(&info->info9Patch, unknowns[pIndex].data);
519 
520         // automatically generated 9 patch outline data
521         int chunkSize = sizeof(png_uint_32) * 6;
522         strcpy((char*)unknowns[oIndex].name, "npOl");
523         unknowns[oIndex].data = (png_byte*) calloc(chunkSize, 1);
524         png_byte outputData[chunkSize];
525         memcpy(&outputData, &info->outlineInsetsLeft, 4 * sizeof(png_uint_32));
526         ((float*) outputData)[4] = info->outlineRadius;
527         ((png_uint_32*) outputData)[5] = info->outlineAlpha;
528         memcpy(unknowns[oIndex].data, &outputData, chunkSize);
529         unknowns[oIndex].size = chunkSize;
530 
531         // optional optical inset / layout bounds data
532         if (info->haveLayoutBounds) {
533             int chunkSize = sizeof(png_uint_32) * 4;
534             strcpy((char*)unknowns[bIndex].name, "npLb");
535             unknowns[bIndex].data = (png_byte*) calloc(chunkSize, 1);
536             memcpy(unknowns[bIndex].data, &info->layoutBoundsLeft, chunkSize);
537             unknowns[bIndex].size = chunkSize;
538         }
539 
540         for (int i = 0; i < chunkCount; i++) {
541             unknowns[i].location = PNG_HAVE_PLTE;
542         }
543         png_set_keep_unknown_chunks(writePtr, PNG_HANDLE_CHUNK_ALWAYS,
544                                     chunkNames, chunkCount);
545         png_set_unknown_chunks(writePtr, infoPtr, unknowns, chunkCount);
546 
547 #if PNG_LIBPNG_VER < 10600
548         // Deal with unknown chunk location bug in 1.5.x and earlier.
549         png_set_unknown_chunk_location(writePtr, infoPtr, 0, PNG_HAVE_PLTE);
550         if (info->haveLayoutBounds) {
551             png_set_unknown_chunk_location(writePtr, infoPtr, 1, PNG_HAVE_PLTE);
552         }
553 #endif
554     }
555 
556     png_write_info(writePtr, infoPtr);
557 
558     png_bytepp rows;
559     if (colorType == PNG_COLOR_TYPE_RGB || colorType == PNG_COLOR_TYPE_RGB_ALPHA) {
560         if (colorType == PNG_COLOR_TYPE_RGB) {
561             png_set_filler(writePtr, 0, PNG_FILLER_AFTER);
562         }
563         rows = info->rows.data();
564     } else {
565         rows = outRows;
566     }
567     png_write_image(writePtr, rows);
568 
569     if (kDebug) {
570         printf("Final image data:\n");
571         //dump_image(info->width, info->height, rows, colorType);
572     }
573 
574     png_write_end(writePtr, infoPtr);
575 
576     for (uint32_t i = 0; i < info->height; i++) {
577         free(outRows[i]);
578     }
579     free(outRows);
580     free(unknowns[0].data);
581     free(unknowns[1].data);
582     free(unknowns[2].data);
583 
584     png_get_IHDR(writePtr, infoPtr, &width, &height, &bitDepth, &colorType, &interlaceType,
585                  &compressionType, nullptr);
586 
587     if (kDebug) {
588         diag->note(DiagMessage()
589                    << "image written: w = " << width << ", h = " << height
590                    << ", d = " << bitDepth << ", colors = " << colorType
591                    << ", inter = " << interlaceType << ", comp = " << compressionType);
592     }
593     return true;
594 }
595 
596 constexpr uint32_t kColorWhite = 0xffffffffu;
597 constexpr uint32_t kColorTick = 0xff000000u;
598 constexpr uint32_t kColorLayoutBoundsTick = 0xff0000ffu;
599 
600 enum class TickType {
601     kNone,
602     kTick,
603     kLayoutBounds,
604     kBoth
605 };
606 
tickType(png_bytep p,bool transparent,const char ** outError)607 static TickType tickType(png_bytep p, bool transparent, const char** outError) {
608     png_uint_32 color = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
609 
610     if (transparent) {
611         if (p[3] == 0) {
612             return TickType::kNone;
613         }
614         if (color == kColorLayoutBoundsTick) {
615             return TickType::kLayoutBounds;
616         }
617         if (color == kColorTick) {
618             return TickType::kTick;
619         }
620 
621         // Error cases
622         if (p[3] != 0xff) {
623             *outError = "Frame pixels must be either solid or transparent "
624                         "(not intermediate alphas)";
625             return TickType::kNone;
626         }
627 
628         if (p[0] != 0 || p[1] != 0 || p[2] != 0) {
629             *outError = "Ticks in transparent frame must be black or red";
630         }
631         return TickType::kTick;
632     }
633 
634     if (p[3] != 0xFF) {
635         *outError = "White frame must be a solid color (no alpha)";
636     }
637     if (color == kColorWhite) {
638         return TickType::kNone;
639     }
640     if (color == kColorTick) {
641         return TickType::kTick;
642     }
643     if (color == kColorLayoutBoundsTick) {
644         return TickType::kLayoutBounds;
645     }
646 
647     if (p[0] != 0 || p[1] != 0 || p[2] != 0) {
648         *outError = "Ticks in white frame must be black or red";
649         return TickType::kNone;
650     }
651     return TickType::kTick;
652 }
653 
654 enum class TickState {
655     kStart,
656     kInside1,
657     kOutside1
658 };
659 
getHorizontalTicks(png_bytep row,int width,bool transparent,bool required,int32_t * outLeft,int32_t * outRight,const char ** outError,uint8_t * outDivs,bool multipleAllowed)660 static bool getHorizontalTicks(png_bytep row, int width, bool transparent, bool required,
661                                int32_t* outLeft, int32_t* outRight, const char** outError,
662                                uint8_t* outDivs, bool multipleAllowed) {
663     *outLeft = *outRight = -1;
664     TickState state = TickState::kStart;
665     bool found = false;
666 
667     for (int i = 1; i < width - 1; i++) {
668         if (tickType(row+i*4, transparent, outError) == TickType::kTick) {
669             if (state == TickState::kStart ||
670                 (state == TickState::kOutside1 && multipleAllowed)) {
671                 *outLeft = i-1;
672                 *outRight = width-2;
673                 found = true;
674                 if (outDivs != NULL) {
675                     *outDivs += 2;
676                 }
677                 state = TickState::kInside1;
678             } else if (state == TickState::kOutside1) {
679                 *outError = "Can't have more than one marked region along edge";
680                 *outLeft = i;
681                 return false;
682             }
683         } else if (!*outError) {
684             if (state == TickState::kInside1) {
685                 // We're done with this div.  Move on to the next.
686                 *outRight = i-1;
687                 outRight += 2;
688                 outLeft += 2;
689                 state = TickState::kOutside1;
690             }
691         } else {
692             *outLeft = i;
693             return false;
694         }
695     }
696 
697     if (required && !found) {
698         *outError = "No marked region found along edge";
699         *outLeft = -1;
700         return false;
701     }
702     return true;
703 }
704 
getVerticalTicks(png_bytepp rows,int offset,int height,bool transparent,bool required,int32_t * outTop,int32_t * outBottom,const char ** outError,uint8_t * outDivs,bool multipleAllowed)705 static bool getVerticalTicks(png_bytepp rows, int offset, int height, bool transparent,
706                              bool required, int32_t* outTop, int32_t* outBottom,
707                              const char** outError, uint8_t* outDivs, bool multipleAllowed) {
708     *outTop = *outBottom = -1;
709     TickState state = TickState::kStart;
710     bool found = false;
711 
712     for (int i = 1; i < height - 1; i++) {
713         if (tickType(rows[i]+offset, transparent, outError) == TickType::kTick) {
714             if (state == TickState::kStart ||
715                 (state == TickState::kOutside1 && multipleAllowed)) {
716                 *outTop = i-1;
717                 *outBottom = height-2;
718                 found = true;
719                 if (outDivs != NULL) {
720                     *outDivs += 2;
721                 }
722                 state = TickState::kInside1;
723             } else if (state == TickState::kOutside1) {
724                 *outError = "Can't have more than one marked region along edge";
725                 *outTop = i;
726                 return false;
727             }
728         } else if (!*outError) {
729             if (state == TickState::kInside1) {
730                 // We're done with this div.  Move on to the next.
731                 *outBottom = i-1;
732                 outTop += 2;
733                 outBottom += 2;
734                 state = TickState::kOutside1;
735             }
736         } else {
737             *outTop = i;
738             return false;
739         }
740     }
741 
742     if (required && !found) {
743         *outError = "No marked region found along edge";
744         *outTop = -1;
745         return false;
746     }
747     return true;
748 }
749 
getHorizontalLayoutBoundsTicks(png_bytep row,int width,bool transparent,bool,int32_t * outLeft,int32_t * outRight,const char ** outError)750 static bool getHorizontalLayoutBoundsTicks(png_bytep row, int width, bool transparent,
751                                            bool /* required */, int32_t* outLeft,
752                                            int32_t* outRight, const char** outError) {
753     *outLeft = *outRight = 0;
754 
755     // Look for left tick
756     if (tickType(row + 4, transparent, outError) == TickType::kLayoutBounds) {
757         // Starting with a layout padding tick
758         int i = 1;
759         while (i < width - 1) {
760             (*outLeft)++;
761             i++;
762             if (tickType(row + i * 4, transparent, outError) != TickType::kLayoutBounds) {
763                 break;
764             }
765         }
766     }
767 
768     // Look for right tick
769     if (tickType(row + (width - 2) * 4, transparent, outError) == TickType::kLayoutBounds) {
770         // Ending with a layout padding tick
771         int i = width - 2;
772         while (i > 1) {
773             (*outRight)++;
774             i--;
775             if (tickType(row+i*4, transparent, outError) != TickType::kLayoutBounds) {
776                 break;
777             }
778         }
779     }
780     return true;
781 }
782 
getVerticalLayoutBoundsTicks(png_bytepp rows,int offset,int height,bool transparent,bool,int32_t * outTop,int32_t * outBottom,const char ** outError)783 static bool getVerticalLayoutBoundsTicks(png_bytepp rows, int offset, int height, bool transparent,
784                                          bool /* required */, int32_t* outTop, int32_t* outBottom,
785                                          const char** outError) {
786     *outTop = *outBottom = 0;
787 
788     // Look for top tick
789     if (tickType(rows[1] + offset, transparent, outError) == TickType::kLayoutBounds) {
790         // Starting with a layout padding tick
791         int i = 1;
792         while (i < height - 1) {
793             (*outTop)++;
794             i++;
795             if (tickType(rows[i] + offset, transparent, outError) != TickType::kLayoutBounds) {
796                 break;
797             }
798         }
799     }
800 
801     // Look for bottom tick
802     if (tickType(rows[height - 2] + offset, transparent, outError) == TickType::kLayoutBounds) {
803         // Ending with a layout padding tick
804         int i = height - 2;
805         while (i > 1) {
806             (*outBottom)++;
807             i--;
808             if (tickType(rows[i] + offset, transparent, outError) != TickType::kLayoutBounds) {
809                 break;
810             }
811         }
812     }
813     return true;
814 }
815 
findMaxOpacity(png_bytepp rows,int startX,int startY,int endX,int endY,int dX,int dY,int * outInset)816 static void findMaxOpacity(png_bytepp rows, int startX, int startY, int endX, int endY,
817                            int dX, int dY, int* outInset) {
818     uint8_t maxOpacity = 0;
819     int inset = 0;
820     *outInset = 0;
821     for (int x = startX, y = startY; x != endX && y != endY; x += dX, y += dY, inset++) {
822         png_byte* color = rows[y] + x * 4;
823         uint8_t opacity = color[3];
824         if (opacity > maxOpacity) {
825             maxOpacity = opacity;
826             *outInset = inset;
827         }
828         if (opacity == 0xff) return;
829     }
830 }
831 
maxAlphaOverRow(png_bytep row,int startX,int endX)832 static uint8_t maxAlphaOverRow(png_bytep row, int startX, int endX) {
833     uint8_t maxAlpha = 0;
834     for (int x = startX; x < endX; x++) {
835         uint8_t alpha = (row + x * 4)[3];
836         if (alpha > maxAlpha) maxAlpha = alpha;
837     }
838     return maxAlpha;
839 }
840 
maxAlphaOverCol(png_bytepp rows,int offsetX,int startY,int endY)841 static uint8_t maxAlphaOverCol(png_bytepp rows, int offsetX, int startY, int endY) {
842     uint8_t maxAlpha = 0;
843     for (int y = startY; y < endY; y++) {
844         uint8_t alpha = (rows[y] + offsetX * 4)[3];
845         if (alpha > maxAlpha) maxAlpha = alpha;
846     }
847     return maxAlpha;
848 }
849 
getOutline(PngInfo * image)850 static void getOutline(PngInfo* image) {
851     int midX = image->width / 2;
852     int midY = image->height / 2;
853     int endX = image->width - 2;
854     int endY = image->height - 2;
855 
856     // find left and right extent of nine patch content on center row
857     if (image->width > 4) {
858         findMaxOpacity(image->rows.data(), 1, midY, midX, -1, 1, 0, &image->outlineInsetsLeft);
859         findMaxOpacity(image->rows.data(), endX, midY, midX, -1, -1, 0,
860                        &image->outlineInsetsRight);
861     } else {
862         image->outlineInsetsLeft = 0;
863         image->outlineInsetsRight = 0;
864     }
865 
866     // find top and bottom extent of nine patch content on center column
867     if (image->height > 4) {
868         findMaxOpacity(image->rows.data(), midX, 1, -1, midY, 0, 1, &image->outlineInsetsTop);
869         findMaxOpacity(image->rows.data(), midX, endY, -1, midY, 0, -1,
870                        &image->outlineInsetsBottom);
871     } else {
872         image->outlineInsetsTop = 0;
873         image->outlineInsetsBottom = 0;
874     }
875 
876     int innerStartX = 1 + image->outlineInsetsLeft;
877     int innerStartY = 1 + image->outlineInsetsTop;
878     int innerEndX = endX - image->outlineInsetsRight;
879     int innerEndY = endY - image->outlineInsetsBottom;
880     int innerMidX = (innerEndX + innerStartX) / 2;
881     int innerMidY = (innerEndY + innerStartY) / 2;
882 
883     // assuming the image is a round rect, compute the radius by marching
884     // diagonally from the top left corner towards the center
885     image->outlineAlpha = std::max(
886             maxAlphaOverRow(image->rows[innerMidY], innerStartX, innerEndX),
887             maxAlphaOverCol(image->rows.data(), innerMidX, innerStartY, innerStartY));
888 
889     int diagonalInset = 0;
890     findMaxOpacity(image->rows.data(), innerStartX, innerStartY, innerMidX, innerMidY, 1, 1,
891                    &diagonalInset);
892 
893     /* Determine source radius based upon inset:
894      *     sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r
895      *     sqrt(2) * r = sqrt(2) * i + r
896      *     (sqrt(2) - 1) * r = sqrt(2) * i
897      *     r = sqrt(2) / (sqrt(2) - 1) * i
898      */
899     image->outlineRadius = 3.4142f * diagonalInset;
900 
901     if (kDebug) {
902         printf("outline insets %d %d %d %d, rad %f, alpha %x\n",
903                 image->outlineInsetsLeft,
904                 image->outlineInsetsTop,
905                 image->outlineInsetsRight,
906                 image->outlineInsetsBottom,
907                 image->outlineRadius,
908                 image->outlineAlpha);
909     }
910 }
911 
getColor(png_bytepp rows,int left,int top,int right,int bottom)912 static uint32_t getColor(png_bytepp rows, int left, int top, int right, int bottom) {
913     png_bytep color = rows[top] + left*4;
914 
915     if (left > right || top > bottom) {
916         return android::Res_png_9patch::TRANSPARENT_COLOR;
917     }
918 
919     while (top <= bottom) {
920         for (int i = left; i <= right; i++) {
921             png_bytep p = rows[top]+i*4;
922             if (color[3] == 0) {
923                 if (p[3] != 0) {
924                     return android::Res_png_9patch::NO_COLOR;
925                 }
926             } else if (p[0] != color[0] || p[1] != color[1] ||
927                     p[2] != color[2] || p[3] != color[3]) {
928                 return android::Res_png_9patch::NO_COLOR;
929             }
930         }
931         top++;
932     }
933 
934     if (color[3] == 0) {
935         return android::Res_png_9patch::TRANSPARENT_COLOR;
936     }
937     return (color[3]<<24) | (color[0]<<16) | (color[1]<<8) | color[2];
938 }
939 
do9Patch(PngInfo * image,std::string * outError)940 static bool do9Patch(PngInfo* image, std::string* outError) {
941     image->is9Patch = true;
942 
943     int W = image->width;
944     int H = image->height;
945     int i, j;
946 
947     const int maxSizeXDivs = W * sizeof(int32_t);
948     const int maxSizeYDivs = H * sizeof(int32_t);
949     int32_t* xDivs = image->xDivs = new int32_t[W];
950     int32_t* yDivs = image->yDivs = new int32_t[H];
951     uint8_t numXDivs = 0;
952     uint8_t numYDivs = 0;
953 
954     int8_t numColors;
955     int numRows;
956     int numCols;
957     int top;
958     int left;
959     int right;
960     int bottom;
961     memset(xDivs, -1, maxSizeXDivs);
962     memset(yDivs, -1, maxSizeYDivs);
963     image->info9Patch.paddingLeft = image->info9Patch.paddingRight = -1;
964     image->info9Patch.paddingTop = image->info9Patch.paddingBottom = -1;
965     image->layoutBoundsLeft = image->layoutBoundsRight = 0;
966     image->layoutBoundsTop = image->layoutBoundsBottom = 0;
967 
968     png_bytep p = image->rows[0];
969     bool transparent = p[3] == 0;
970     bool hasColor = false;
971 
972     const char* errorMsg = nullptr;
973     int errorPixel = -1;
974     const char* errorEdge = nullptr;
975 
976     int colorIndex = 0;
977     std::vector<png_bytep> newRows;
978 
979     // Validate size...
980     if (W < 3 || H < 3) {
981         errorMsg = "Image must be at least 3x3 (1x1 without frame) pixels";
982         goto getout;
983     }
984 
985     // Validate frame...
986     if (!transparent &&
987             (p[0] != 0xFF || p[1] != 0xFF || p[2] != 0xFF || p[3] != 0xFF)) {
988         errorMsg = "Must have one-pixel frame that is either transparent or white";
989         goto getout;
990     }
991 
992     // Find left and right of sizing areas...
993     if (!getHorizontalTicks(p, W, transparent, true, &xDivs[0], &xDivs[1], &errorMsg, &numXDivs,
994                             true)) {
995         errorPixel = xDivs[0];
996         errorEdge = "top";
997         goto getout;
998     }
999 
1000     // Find top and bottom of sizing areas...
1001     if (!getVerticalTicks(image->rows.data(), 0, H, transparent, true, &yDivs[0], &yDivs[1],
1002                           &errorMsg, &numYDivs, true)) {
1003         errorPixel = yDivs[0];
1004         errorEdge = "left";
1005         goto getout;
1006     }
1007 
1008     // Copy patch size data into image...
1009     image->info9Patch.numXDivs = numXDivs;
1010     image->info9Patch.numYDivs = numYDivs;
1011 
1012     // Find left and right of padding area...
1013     if (!getHorizontalTicks(image->rows[H-1], W, transparent, false,
1014                             &image->info9Patch.paddingLeft, &image->info9Patch.paddingRight,
1015                             &errorMsg, nullptr, false)) {
1016         errorPixel = image->info9Patch.paddingLeft;
1017         errorEdge = "bottom";
1018         goto getout;
1019     }
1020 
1021     // Find top and bottom of padding area...
1022     if (!getVerticalTicks(image->rows.data(), (W-1)*4, H, transparent, false,
1023                           &image->info9Patch.paddingTop, &image->info9Patch.paddingBottom,
1024                           &errorMsg, nullptr, false)) {
1025         errorPixel = image->info9Patch.paddingTop;
1026         errorEdge = "right";
1027         goto getout;
1028     }
1029 
1030     // Find left and right of layout padding...
1031     getHorizontalLayoutBoundsTicks(image->rows[H-1], W, transparent, false,
1032                                    &image->layoutBoundsLeft, &image->layoutBoundsRight, &errorMsg);
1033 
1034     getVerticalLayoutBoundsTicks(image->rows.data(), (W-1)*4, H, transparent, false,
1035                                  &image->layoutBoundsTop, &image->layoutBoundsBottom, &errorMsg);
1036 
1037     image->haveLayoutBounds = image->layoutBoundsLeft != 0
1038                                || image->layoutBoundsRight != 0
1039                                || image->layoutBoundsTop != 0
1040                                || image->layoutBoundsBottom != 0;
1041 
1042     if (image->haveLayoutBounds) {
1043         if (kDebug) {
1044             printf("layoutBounds=%d %d %d %d\n", image->layoutBoundsLeft, image->layoutBoundsTop,
1045                     image->layoutBoundsRight, image->layoutBoundsBottom);
1046         }
1047     }
1048 
1049     // use opacity of pixels to estimate the round rect outline
1050     getOutline(image);
1051 
1052     // If padding is not yet specified, take values from size.
1053     if (image->info9Patch.paddingLeft < 0) {
1054         image->info9Patch.paddingLeft = xDivs[0];
1055         image->info9Patch.paddingRight = W - 2 - xDivs[1];
1056     } else {
1057         // Adjust value to be correct!
1058         image->info9Patch.paddingRight = W - 2 - image->info9Patch.paddingRight;
1059     }
1060     if (image->info9Patch.paddingTop < 0) {
1061         image->info9Patch.paddingTop = yDivs[0];
1062         image->info9Patch.paddingBottom = H - 2 - yDivs[1];
1063     } else {
1064         // Adjust value to be correct!
1065         image->info9Patch.paddingBottom = H - 2 - image->info9Patch.paddingBottom;
1066     }
1067 
1068 /*    if (kDebug) {
1069         printf("Size ticks for %s: x0=%d, x1=%d, y0=%d, y1=%d\n", imageName,
1070                 xDivs[0], xDivs[1],
1071                 yDivs[0], yDivs[1]);
1072         printf("padding ticks for %s: l=%d, r=%d, t=%d, b=%d\n", imageName,
1073                 image->info9Patch.paddingLeft, image->info9Patch.paddingRight,
1074                 image->info9Patch.paddingTop, image->info9Patch.paddingBottom);
1075     }*/
1076 
1077     // Remove frame from image.
1078     newRows.resize(H - 2);
1079     for (i = 0; i < H - 2; i++) {
1080         newRows[i] = image->rows[i + 1];
1081         memmove(newRows[i], newRows[i] + 4, (W - 2) * 4);
1082     }
1083     image->rows.swap(newRows);
1084 
1085     image->width -= 2;
1086     W = image->width;
1087     image->height -= 2;
1088     H = image->height;
1089 
1090     // Figure out the number of rows and columns in the N-patch
1091     numCols = numXDivs + 1;
1092     if (xDivs[0] == 0) {  // Column 1 is strechable
1093         numCols--;
1094     }
1095     if (xDivs[numXDivs - 1] == W) {
1096         numCols--;
1097     }
1098     numRows = numYDivs + 1;
1099     if (yDivs[0] == 0) {  // Row 1 is strechable
1100         numRows--;
1101     }
1102     if (yDivs[numYDivs - 1] == H) {
1103         numRows--;
1104     }
1105 
1106     // Make sure the amount of rows and columns will fit in the number of
1107     // colors we can use in the 9-patch format.
1108     if (numRows * numCols > 0x7F) {
1109         errorMsg = "Too many rows and columns in 9-patch perimeter";
1110         goto getout;
1111     }
1112 
1113     numColors = numRows * numCols;
1114     image->info9Patch.numColors = numColors;
1115     image->colors.resize(numColors);
1116 
1117     // Fill in color information for each patch.
1118 
1119     uint32_t c;
1120     top = 0;
1121 
1122     // The first row always starts with the top being at y=0 and the bottom
1123     // being either yDivs[1] (if yDivs[0]=0) of yDivs[0].  In the former case
1124     // the first row is stretchable along the Y axis, otherwise it is fixed.
1125     // The last row always ends with the bottom being bitmap.height and the top
1126     // being either yDivs[numYDivs-2] (if yDivs[numYDivs-1]=bitmap.height) or
1127     // yDivs[numYDivs-1]. In the former case the last row is stretchable along
1128     // the Y axis, otherwise it is fixed.
1129     //
1130     // The first and last columns are similarly treated with respect to the X
1131     // axis.
1132     //
1133     // The above is to help explain some of the special casing that goes on the
1134     // code below.
1135 
1136     // The initial yDiv and whether the first row is considered stretchable or
1137     // not depends on whether yDiv[0] was zero or not.
1138     for (j = (yDivs[0] == 0 ? 1 : 0); j <= numYDivs && top < H; j++) {
1139         if (j == numYDivs) {
1140             bottom = H;
1141         } else {
1142             bottom = yDivs[j];
1143         }
1144         left = 0;
1145         // The initial xDiv and whether the first column is considered
1146         // stretchable or not depends on whether xDiv[0] was zero or not.
1147         for (i = xDivs[0] == 0 ? 1 : 0; i <= numXDivs && left < W; i++) {
1148             if (i == numXDivs) {
1149                 right = W;
1150             } else {
1151                 right = xDivs[i];
1152             }
1153             c = getColor(image->rows.data(), left, top, right - 1, bottom - 1);
1154             image->colors[colorIndex++] = c;
1155             if (kDebug) {
1156                 if (c != android::Res_png_9patch::NO_COLOR) {
1157                     hasColor = true;
1158                 }
1159             }
1160             left = right;
1161         }
1162         top = bottom;
1163     }
1164 
1165     assert(colorIndex == numColors);
1166 
1167     if (kDebug && hasColor) {
1168         for (i = 0; i < numColors; i++) {
1169             if (i == 0) printf("Colors:\n");
1170             printf(" #%08x", image->colors[i]);
1171             if (i == numColors - 1) printf("\n");
1172         }
1173     }
1174 getout:
1175     if (errorMsg) {
1176         std::stringstream err;
1177         err << "9-patch malformed: " << errorMsg;
1178         if (errorEdge) {
1179             err << "." << std::endl;
1180             if (errorPixel >= 0) {
1181                 err << "Found at pixel #" << errorPixel << " along " << errorEdge << " edge";
1182             } else {
1183                 err << "Found along " << errorEdge << " edge";
1184             }
1185         }
1186         *outError = err.str();
1187         return false;
1188     }
1189     return true;
1190 }
1191 
1192 
process(const Source & source,std::istream * input,BigBuffer * outBuffer,const PngOptions & options)1193 bool Png::process(const Source& source, std::istream* input, BigBuffer* outBuffer,
1194                   const PngOptions& options) {
1195     png_byte signature[kPngSignatureSize];
1196 
1197     // Read the PNG signature first.
1198     if (!input->read(reinterpret_cast<char*>(signature), kPngSignatureSize)) {
1199         mDiag->error(DiagMessage() << strerror(errno));
1200         return false;
1201     }
1202 
1203     // If the PNG signature doesn't match, bail early.
1204     if (png_sig_cmp(signature, 0, kPngSignatureSize) != 0) {
1205         mDiag->error(DiagMessage() << "not a valid png file");
1206         return false;
1207     }
1208 
1209     bool result = false;
1210     png_structp readPtr = nullptr;
1211     png_infop infoPtr = nullptr;
1212     png_structp writePtr = nullptr;
1213     png_infop writeInfoPtr = nullptr;
1214     PngInfo pngInfo = {};
1215 
1216     readPtr = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, nullptr, nullptr);
1217     if (!readPtr) {
1218         mDiag->error(DiagMessage() << "failed to allocate read ptr");
1219         goto bail;
1220     }
1221 
1222     infoPtr = png_create_info_struct(readPtr);
1223     if (!infoPtr) {
1224         mDiag->error(DiagMessage() << "failed to allocate info ptr");
1225         goto bail;
1226     }
1227 
1228     png_set_error_fn(readPtr, reinterpret_cast<png_voidp>(mDiag), nullptr, logWarning);
1229 
1230     // Set the read function to read from std::istream.
1231     png_set_read_fn(readPtr, (png_voidp) input, readDataFromStream);
1232 
1233     if (!readPng(mDiag, readPtr, infoPtr, &pngInfo)) {
1234         goto bail;
1235     }
1236 
1237     if (util::stringEndsWith<char>(source.path, ".9.png")) {
1238         std::string errorMsg;
1239         if (!do9Patch(&pngInfo, &errorMsg)) {
1240             mDiag->error(DiagMessage() << errorMsg);
1241             goto bail;
1242         }
1243     }
1244 
1245     writePtr = png_create_write_struct(PNG_LIBPNG_VER_STRING, 0, nullptr, nullptr);
1246     if (!writePtr) {
1247         mDiag->error(DiagMessage() << "failed to allocate write ptr");
1248         goto bail;
1249     }
1250 
1251     writeInfoPtr = png_create_info_struct(writePtr);
1252     if (!writeInfoPtr) {
1253         mDiag->error(DiagMessage() << "failed to allocate write info ptr");
1254         goto bail;
1255     }
1256 
1257     png_set_error_fn(writePtr, nullptr, nullptr, logWarning);
1258 
1259     // Set the write function to write to std::ostream.
1260     png_set_write_fn(writePtr, (png_voidp)outBuffer, writeDataToStream, flushDataToStream);
1261 
1262     if (!writePng(mDiag, writePtr, writeInfoPtr, &pngInfo, options.grayScaleTolerance)) {
1263         goto bail;
1264     }
1265 
1266     result = true;
1267 bail:
1268     if (readPtr) {
1269         png_destroy_read_struct(&readPtr, &infoPtr, nullptr);
1270     }
1271 
1272     if (writePtr) {
1273         png_destroy_write_struct(&writePtr, &writeInfoPtr);
1274     }
1275     return result;
1276 }
1277 
1278 } // namespace aapt
1279