• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.util;
18 
19 import com.android.ide.common.rendering.api.LayoutLog;
20 import com.android.layoutlib.bridge.Bridge;
21 import com.android.layoutlib.bridge.impl.DelegateManager;
22 import com.android.tools.layoutlib.annotations.LayoutlibDelegate;
23 
24 import android.annotation.NonNull;
25 import android.graphics.Path_Delegate;
26 
27 import java.util.ArrayList;
28 import java.util.Arrays;
29 import java.util.logging.Level;
30 import java.util.logging.Logger;
31 
32 /**
33  * Delegate that provides implementation for native methods in {@link android.util.PathParser}
34  * <p/>
35  * Through the layoutlib_create tool, selected methods of PathParser have been replaced by calls to
36  * methods of the same name in this delegate class.
37  *
38  * Most of the code has been taken from the implementation in
39  * {@code tools/base/sdk-common/src/main/java/com/android/ide/common/vectordrawable/PathParser.java}
40  * revision be6fe89a3b686db5a75e7e692a148699973957f3
41  */
42 public class PathParser_Delegate {
43 
44     private static final Logger LOGGER = Logger.getLogger("PathParser");
45 
46     // ---- Builder delegate manager ----
47     private static final DelegateManager<PathParser_Delegate> sManager =
48             new DelegateManager<PathParser_Delegate>(PathParser_Delegate.class);
49 
50     // ---- delegate data ----
51     @NonNull
52     private PathDataNode[] mPathDataNodes;
53 
getDelegate(long nativePtr)54     public static PathParser_Delegate getDelegate(long nativePtr) {
55         return sManager.getDelegate(nativePtr);
56     }
57 
PathParser_Delegate(@onNull PathDataNode[] nodes)58     private PathParser_Delegate(@NonNull PathDataNode[] nodes) {
59         mPathDataNodes = nodes;
60     }
61 
getPathDataNodes()62     public PathDataNode[] getPathDataNodes() {
63         return mPathDataNodes;
64     }
65 
66     @LayoutlibDelegate
nParseStringForPath(long pathPtr, @NonNull String pathString, int stringLength)67     /*package*/ static void nParseStringForPath(long pathPtr, @NonNull String pathString, int
68             stringLength) {
69         Path_Delegate path_delegate = Path_Delegate.getDelegate(pathPtr);
70         if (path_delegate == null) {
71             return;
72         }
73         assert pathString.length() == stringLength;
74         PathDataNode.nodesToPath(createNodesFromPathData(pathString), path_delegate);
75     }
76 
77     @LayoutlibDelegate
nCreatePathFromPathData(long outPathPtr, long pathData)78     /*package*/ static void nCreatePathFromPathData(long outPathPtr, long pathData) {
79         Path_Delegate path_delegate = Path_Delegate.getDelegate(outPathPtr);
80         PathParser_Delegate source = sManager.getDelegate(outPathPtr);
81         if (source == null || path_delegate == null) {
82             return;
83         }
84         PathDataNode.nodesToPath(source.mPathDataNodes, path_delegate);
85     }
86 
87     @LayoutlibDelegate
nCreateEmptyPathData()88     /*package*/ static long nCreateEmptyPathData() {
89         PathParser_Delegate newDelegate = new PathParser_Delegate(new PathDataNode[0]);
90         return sManager.addNewDelegate(newDelegate);
91     }
92 
93     @LayoutlibDelegate
nCreatePathData(long nativePtr)94     /*package*/ static long nCreatePathData(long nativePtr) {
95         PathParser_Delegate source = sManager.getDelegate(nativePtr);
96         if (source == null) {
97             return 0;
98         }
99         PathParser_Delegate dest = new PathParser_Delegate(deepCopyNodes(source.mPathDataNodes));
100         return sManager.addNewDelegate(dest);
101     }
102 
103     @LayoutlibDelegate
nCreatePathDataFromString(@onNull String pathString, int stringLength)104     /*package*/ static long nCreatePathDataFromString(@NonNull String pathString,
105             int stringLength) {
106         assert pathString.length() == stringLength : "Inconsistent path string length.";
107         PathDataNode[] nodes = createNodesFromPathData(pathString);
108         PathParser_Delegate delegate = new PathParser_Delegate(nodes);
109         return sManager.addNewDelegate(delegate);
110 
111     }
112 
113     @LayoutlibDelegate
nInterpolatePathData(long outDataPtr, long fromDataPtr, long toDataPtr, float fraction)114     /*package*/ static boolean nInterpolatePathData(long outDataPtr, long fromDataPtr,
115             long toDataPtr, float fraction) {
116         PathParser_Delegate out = sManager.getDelegate(outDataPtr);
117         PathParser_Delegate from = sManager.getDelegate(fromDataPtr);
118         PathParser_Delegate to = sManager.getDelegate(toDataPtr);
119         if (out == null || from == null || to == null) {
120             return false;
121         }
122         int length = from.mPathDataNodes.length;
123         if (length != to.mPathDataNodes.length) {
124             Bridge.getLog().error(LayoutLog.TAG_BROKEN,
125                     "Cannot interpolate path data with different lengths (from " + length + " to " +
126                             to.mPathDataNodes.length + ").", null);
127             return false;
128         }
129         if (out.mPathDataNodes.length != length) {
130             out.mPathDataNodes = new PathDataNode[length];
131         }
132         for (int i = 0; i < length; i++) {
133             if (out.mPathDataNodes[i] == null) {
134                 out.mPathDataNodes[i] = new PathDataNode(from.mPathDataNodes[i]);
135             }
136             out.mPathDataNodes[i].interpolatePathDataNode(from.mPathDataNodes[i],
137                         to.mPathDataNodes[i], fraction);
138         }
139         return true;
140     }
141 
142     @LayoutlibDelegate
nFinalize(long nativePtr)143     /*package*/ static void nFinalize(long nativePtr) {
144         sManager.removeJavaReferenceFor(nativePtr);
145     }
146 
147     @LayoutlibDelegate
nCanMorph(long fromDataPtr, long toDataPtr)148     /*package*/ static boolean nCanMorph(long fromDataPtr, long toDataPtr) {
149         PathParser_Delegate fromPath = PathParser_Delegate.getDelegate(fromDataPtr);
150         PathParser_Delegate toPath = PathParser_Delegate.getDelegate(toDataPtr);
151         if (fromPath == null || toPath == null || fromPath.getPathDataNodes() == null || toPath
152                 .getPathDataNodes() == null) {
153             return true;
154         }
155         return PathParser_Delegate.canMorph(fromPath.getPathDataNodes(), toPath.getPathDataNodes());
156     }
157 
158     @LayoutlibDelegate
nSetPathData(long outDataPtr, long fromDataPtr)159     /*package*/ static void nSetPathData(long outDataPtr, long fromDataPtr) {
160         PathParser_Delegate out = sManager.getDelegate(outDataPtr);
161         PathParser_Delegate from = sManager.getDelegate(fromDataPtr);
162         if (from == null || out == null) {
163             return;
164         }
165         out.mPathDataNodes = deepCopyNodes(from.mPathDataNodes);
166     }
167 
168     /**
169      * @param pathData The string representing a path, the same as "d" string in svg file.
170      *
171      * @return an array of the PathDataNode.
172      */
173     @NonNull
createNodesFromPathData(@onNull String pathData)174     public static PathDataNode[] createNodesFromPathData(@NonNull String pathData) {
175         int start = 0;
176         int end = 1;
177 
178         ArrayList<PathDataNode> list = new ArrayList<PathDataNode>();
179         while (end < pathData.length()) {
180             end = nextStart(pathData, end);
181             String s = pathData.substring(start, end).trim();
182             if (s.length() > 0) {
183                 float[] val = getFloats(s);
184                 addNode(list, s.charAt(0), val);
185             }
186 
187             start = end;
188             end++;
189         }
190         if ((end - start) == 1 && start < pathData.length()) {
191             addNode(list, pathData.charAt(start), new float[0]);
192         }
193         return list.toArray(new PathDataNode[list.size()]);
194     }
195 
196     /**
197      * @param source The array of PathDataNode to be duplicated.
198      *
199      * @return a deep copy of the <code>source</code>.
200      */
201     @NonNull
deepCopyNodes(@onNull PathDataNode[] source)202     public static PathDataNode[] deepCopyNodes(@NonNull PathDataNode[] source) {
203         PathDataNode[] copy = new PathDataNode[source.length];
204         for (int i = 0; i < source.length; i++) {
205             copy[i] = new PathDataNode(source[i]);
206         }
207         return copy;
208     }
209 
210     /**
211      * @param nodesFrom The source path represented in an array of PathDataNode
212      * @param nodesTo The target path represented in an array of PathDataNode
213      * @return whether the <code>nodesFrom</code> can morph into <code>nodesTo</code>
214      */
canMorph(PathDataNode[] nodesFrom, PathDataNode[] nodesTo)215     public static boolean canMorph(PathDataNode[] nodesFrom, PathDataNode[] nodesTo) {
216         if (nodesFrom == null || nodesTo == null) {
217             return false;
218         }
219 
220         if (nodesFrom.length != nodesTo.length) {
221             return false;
222         }
223 
224         for (int i = 0; i < nodesFrom.length; i ++) {
225             if (nodesFrom[i].mType != nodesTo[i].mType
226                     || nodesFrom[i].mParams.length != nodesTo[i].mParams.length) {
227                 return false;
228             }
229         }
230         return true;
231     }
232 
233     /**
234      * Update the target's data to match the source.
235      * Before calling this, make sure canMorph(target, source) is true.
236      *
237      * @param target The target path represented in an array of PathDataNode
238      * @param source The source path represented in an array of PathDataNode
239      */
updateNodes(PathDataNode[] target, PathDataNode[] source)240     public static void updateNodes(PathDataNode[] target, PathDataNode[] source) {
241         for (int i = 0; i < source.length; i ++) {
242             target[i].mType = source[i].mType;
243             for (int j = 0; j < source[i].mParams.length; j ++) {
244                 target[i].mParams[j] = source[i].mParams[j];
245             }
246         }
247     }
248 
nextStart(@onNull String s, int end)249     private static int nextStart(@NonNull String s, int end) {
250         char c;
251 
252         while (end < s.length()) {
253             c = s.charAt(end);
254             // Note that 'e' or 'E' are not valid path commands, but could be
255             // used for floating point numbers' scientific notation.
256             // Therefore, when searching for next command, we should ignore 'e'
257             // and 'E'.
258             if ((((c - 'A') * (c - 'Z') <= 0) || ((c - 'a') * (c - 'z') <= 0))
259                     && c != 'e' && c != 'E') {
260                 return end;
261             }
262             end++;
263         }
264         return end;
265     }
266 
267     /**
268      * Calculate the position of the next comma or space or negative sign
269      *
270      * @param s the string to search
271      * @param start the position to start searching
272      * @param result the result of the extraction, including the position of the the starting
273      * position of next number, whether it is ending with a '-'.
274      */
extract(@onNull String s, int start, @NonNull ExtractFloatResult result)275     private static void extract(@NonNull String s, int start, @NonNull ExtractFloatResult result) {
276         // Now looking for ' ', ',', '.' or '-' from the start.
277         int currentIndex = start;
278         boolean foundSeparator = false;
279         result.mEndWithNegOrDot = false;
280         boolean secondDot = false;
281         boolean isExponential = false;
282         for (; currentIndex < s.length(); currentIndex++) {
283             boolean isPrevExponential = isExponential;
284             isExponential = false;
285             char currentChar = s.charAt(currentIndex);
286             switch (currentChar) {
287                 case ' ':
288                 case ',':
289                     foundSeparator = true;
290                     break;
291                 case '-':
292                     // The negative sign following a 'e' or 'E' is not a separator.
293                     if (currentIndex != start && !isPrevExponential) {
294                         foundSeparator = true;
295                         result.mEndWithNegOrDot = true;
296                     }
297                     break;
298                 case '.':
299                     if (!secondDot) {
300                         secondDot = true;
301                     } else {
302                         // This is the second dot, and it is considered as a separator.
303                         foundSeparator = true;
304                         result.mEndWithNegOrDot = true;
305                     }
306                     break;
307                 case 'e':
308                 case 'E':
309                     isExponential = true;
310                     break;
311             }
312             if (foundSeparator) {
313                 break;
314             }
315         }
316         // When there is nothing found, then we put the end position to the end
317         // of the string.
318         result.mEndPosition = currentIndex;
319     }
320 
321     /**
322      * Parse the floats in the string. This is an optimized version of
323      * parseFloat(s.split(",|\\s"));
324      *
325      * @param s the string containing a command and list of floats
326      *
327      * @return array of floats
328      */
329     @NonNull
getFloats(@onNull String s)330     private static float[] getFloats(@NonNull String s) {
331         if (s.charAt(0) == 'z' || s.charAt(0) == 'Z') {
332             return new float[0];
333         }
334         try {
335             float[] results = new float[s.length()];
336             int count = 0;
337             int startPosition = 1;
338             int endPosition;
339 
340             ExtractFloatResult result = new ExtractFloatResult();
341             int totalLength = s.length();
342 
343             // The startPosition should always be the first character of the
344             // current number, and endPosition is the character after the current
345             // number.
346             while (startPosition < totalLength) {
347                 extract(s, startPosition, result);
348                 endPosition = result.mEndPosition;
349 
350                 if (startPosition < endPosition) {
351                     results[count++] = Float.parseFloat(
352                             s.substring(startPosition, endPosition));
353                 }
354 
355                 if (result.mEndWithNegOrDot) {
356                     // Keep the '-' or '.' sign with next number.
357                     startPosition = endPosition;
358                 } else {
359                     startPosition = endPosition + 1;
360                 }
361             }
362             return Arrays.copyOf(results, count);
363         } catch (NumberFormatException e) {
364             throw new RuntimeException("error in parsing \"" + s + "\"", e);
365         }
366     }
367 
368 
addNode(@onNull ArrayList<PathDataNode> list, char cmd, @NonNull float[] val)369     private static void addNode(@NonNull ArrayList<PathDataNode> list, char cmd,
370             @NonNull float[] val) {
371         list.add(new PathDataNode(cmd, val));
372     }
373 
374     private static class ExtractFloatResult {
375         // We need to return the position of the next separator and whether the
376         // next float starts with a '-' or a '.'.
377         private int mEndPosition;
378         private boolean mEndWithNegOrDot;
379     }
380 
381     /**
382      * Each PathDataNode represents one command in the "d" attribute of the svg file. An array of
383      * PathDataNode can represent the whole "d" attribute.
384      */
385     public static class PathDataNode {
386         private char mType;
387         @NonNull
388         private float[] mParams;
389 
PathDataNode(char type, @NonNull float[] params)390         private PathDataNode(char type, @NonNull float[] params) {
391             mType = type;
392             mParams = params;
393         }
394 
getType()395         public char getType() {
396             return mType;
397         }
398 
399         @NonNull
getParams()400         public float[] getParams() {
401             return mParams;
402         }
403 
PathDataNode(@onNull PathDataNode n)404         private PathDataNode(@NonNull PathDataNode n) {
405             mType = n.mType;
406             mParams = Arrays.copyOf(n.mParams, n.mParams.length);
407         }
408 
409         /**
410          * Convert an array of PathDataNode to Path. Reset the passed path as needed before
411          * calling this method.
412          *
413          * @param node The source array of PathDataNode.
414          * @param path The target Path object.
415          */
nodesToPath(@onNull PathDataNode[] node, @NonNull Path_Delegate path)416         public static void nodesToPath(@NonNull PathDataNode[] node, @NonNull Path_Delegate path) {
417             float[] current = new float[6];
418             char previousCommand = 'm';
419             //noinspection ForLoopReplaceableByForEach
420             for (int i = 0; i < node.length; i++) {
421                 addCommand(path, current, previousCommand, node[i].mType, node[i].mParams);
422                 previousCommand = node[i].mType;
423             }
424         }
425 
426         /**
427          * The current PathDataNode will be interpolated between the <code>nodeFrom</code> and
428          * <code>nodeTo</code> according to the <code>fraction</code>.
429          *
430          * @param nodeFrom The start value as a PathDataNode.
431          * @param nodeTo The end value as a PathDataNode
432          * @param fraction The fraction to interpolate.
433          */
interpolatePathDataNode(@onNull PathDataNode nodeFrom, @NonNull PathDataNode nodeTo, float fraction)434         private void interpolatePathDataNode(@NonNull PathDataNode nodeFrom,
435                 @NonNull PathDataNode nodeTo, float fraction) {
436             for (int i = 0; i < nodeFrom.mParams.length; i++) {
437                 mParams[i] = nodeFrom.mParams[i] * (1 - fraction)
438                         + nodeTo.mParams[i] * fraction;
439             }
440         }
441 
442         @SuppressWarnings("PointlessArithmeticExpression")
addCommand(@onNull Path_Delegate path, float[] current, char previousCmd, char cmd, @NonNull float[] val)443         private static void addCommand(@NonNull Path_Delegate path, float[] current,
444                 char previousCmd, char cmd, @NonNull float[] val) {
445 
446             int incr = 2;
447             float currentX = current[0];
448             float currentY = current[1];
449             float ctrlPointX = current[2];
450             float ctrlPointY = current[3];
451             float currentSegmentStartX = current[4];
452             float currentSegmentStartY = current[5];
453             float reflectiveCtrlPointX;
454             float reflectiveCtrlPointY;
455 
456             switch (cmd) {
457                 case 'z':
458                 case 'Z':
459                     path.close();
460                     // Path is closed here, but we need to move the pen to the
461                     // closed position. So we cache the segment's starting position,
462                     // and restore it here.
463                     currentX = currentSegmentStartX;
464                     currentY = currentSegmentStartY;
465                     ctrlPointX = currentSegmentStartX;
466                     ctrlPointY = currentSegmentStartY;
467                     path.moveTo(currentX, currentY);
468                     break;
469                 case 'm':
470                 case 'M':
471                 case 'l':
472                 case 'L':
473                 case 't':
474                 case 'T':
475                     incr = 2;
476                     break;
477                 case 'h':
478                 case 'H':
479                 case 'v':
480                 case 'V':
481                     incr = 1;
482                     break;
483                 case 'c':
484                 case 'C':
485                     incr = 6;
486                     break;
487                 case 's':
488                 case 'S':
489                 case 'q':
490                 case 'Q':
491                     incr = 4;
492                     break;
493                 case 'a':
494                 case 'A':
495                     incr = 7;
496                     break;
497             }
498 
499             for (int k = 0; k < val.length; k += incr) {
500                 switch (cmd) {
501                     case 'm': // moveto - Start a new sub-path (relative)
502                         currentX += val[k + 0];
503                         currentY += val[k + 1];
504 
505                         if (k > 0) {
506                             // According to the spec, if a moveto is followed by multiple
507                             // pairs of coordinates, the subsequent pairs are treated as
508                             // implicit lineto commands.
509                             path.rLineTo(val[k + 0], val[k + 1]);
510                         } else {
511                             path.rMoveTo(val[k + 0], val[k + 1]);
512                             currentSegmentStartX = currentX;
513                             currentSegmentStartY = currentY;
514                         }
515                         break;
516                     case 'M': // moveto - Start a new sub-path
517                         currentX = val[k + 0];
518                         currentY = val[k + 1];
519 
520                         if (k > 0) {
521                             // According to the spec, if a moveto is followed by multiple
522                             // pairs of coordinates, the subsequent pairs are treated as
523                             // implicit lineto commands.
524                             path.lineTo(val[k + 0], val[k + 1]);
525                         } else {
526                             path.moveTo(val[k + 0], val[k + 1]);
527                             currentSegmentStartX = currentX;
528                             currentSegmentStartY = currentY;
529                         }
530                         break;
531                     case 'l': // lineto - Draw a line from the current point (relative)
532                         path.rLineTo(val[k + 0], val[k + 1]);
533                         currentX += val[k + 0];
534                         currentY += val[k + 1];
535                         break;
536                     case 'L': // lineto - Draw a line from the current point
537                         path.lineTo(val[k + 0], val[k + 1]);
538                         currentX = val[k + 0];
539                         currentY = val[k + 1];
540                         break;
541                     case 'h': // horizontal lineto - Draws a horizontal line (relative)
542                         path.rLineTo(val[k + 0], 0);
543                         currentX += val[k + 0];
544                         break;
545                     case 'H': // horizontal lineto - Draws a horizontal line
546                         path.lineTo(val[k + 0], currentY);
547                         currentX = val[k + 0];
548                         break;
549                     case 'v': // vertical lineto - Draws a vertical line from the current point (r)
550                         path.rLineTo(0, val[k + 0]);
551                         currentY += val[k + 0];
552                         break;
553                     case 'V': // vertical lineto - Draws a vertical line from the current point
554                         path.lineTo(currentX, val[k + 0]);
555                         currentY = val[k + 0];
556                         break;
557                     case 'c': // curveto - Draws a cubic Bézier curve (relative)
558                         path.rCubicTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3],
559                                 val[k + 4], val[k + 5]);
560 
561                         ctrlPointX = currentX + val[k + 2];
562                         ctrlPointY = currentY + val[k + 3];
563                         currentX += val[k + 4];
564                         currentY += val[k + 5];
565 
566                         break;
567                     case 'C': // curveto - Draws a cubic Bézier curve
568                         path.cubicTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3],
569                                 val[k + 4], val[k + 5]);
570                         currentX = val[k + 4];
571                         currentY = val[k + 5];
572                         ctrlPointX = val[k + 2];
573                         ctrlPointY = val[k + 3];
574                         break;
575                     case 's': // smooth curveto - Draws a cubic Bézier curve (reflective cp)
576                         reflectiveCtrlPointX = 0;
577                         reflectiveCtrlPointY = 0;
578                         if (previousCmd == 'c' || previousCmd == 's'
579                                 || previousCmd == 'C' || previousCmd == 'S') {
580                             reflectiveCtrlPointX = currentX - ctrlPointX;
581                             reflectiveCtrlPointY = currentY - ctrlPointY;
582                         }
583                         path.rCubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
584                                 val[k + 0], val[k + 1],
585                                 val[k + 2], val[k + 3]);
586 
587                         ctrlPointX = currentX + val[k + 0];
588                         ctrlPointY = currentY + val[k + 1];
589                         currentX += val[k + 2];
590                         currentY += val[k + 3];
591                         break;
592                     case 'S': // shorthand/smooth curveto Draws a cubic Bézier curve(reflective cp)
593                         reflectiveCtrlPointX = currentX;
594                         reflectiveCtrlPointY = currentY;
595                         if (previousCmd == 'c' || previousCmd == 's'
596                                 || previousCmd == 'C' || previousCmd == 'S') {
597                             reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
598                             reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
599                         }
600                         path.cubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
601                                 val[k + 0], val[k + 1], val[k + 2], val[k + 3]);
602                         ctrlPointX = val[k + 0];
603                         ctrlPointY = val[k + 1];
604                         currentX = val[k + 2];
605                         currentY = val[k + 3];
606                         break;
607                     case 'q': // Draws a quadratic Bézier (relative)
608                         path.rQuadTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3]);
609                         ctrlPointX = currentX + val[k + 0];
610                         ctrlPointY = currentY + val[k + 1];
611                         currentX += val[k + 2];
612                         currentY += val[k + 3];
613                         break;
614                     case 'Q': // Draws a quadratic Bézier
615                         path.quadTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3]);
616                         ctrlPointX = val[k + 0];
617                         ctrlPointY = val[k + 1];
618                         currentX = val[k + 2];
619                         currentY = val[k + 3];
620                         break;
621                     case 't': // Draws a quadratic Bézier curve(reflective control point)(relative)
622                         reflectiveCtrlPointX = 0;
623                         reflectiveCtrlPointY = 0;
624                         if (previousCmd == 'q' || previousCmd == 't'
625                                 || previousCmd == 'Q' || previousCmd == 'T') {
626                             reflectiveCtrlPointX = currentX - ctrlPointX;
627                             reflectiveCtrlPointY = currentY - ctrlPointY;
628                         }
629                         path.rQuadTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
630                                 val[k + 0], val[k + 1]);
631                         ctrlPointX = currentX + reflectiveCtrlPointX;
632                         ctrlPointY = currentY + reflectiveCtrlPointY;
633                         currentX += val[k + 0];
634                         currentY += val[k + 1];
635                         break;
636                     case 'T': // Draws a quadratic Bézier curve (reflective control point)
637                         reflectiveCtrlPointX = currentX;
638                         reflectiveCtrlPointY = currentY;
639                         if (previousCmd == 'q' || previousCmd == 't'
640                                 || previousCmd == 'Q' || previousCmd == 'T') {
641                             reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
642                             reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
643                         }
644                         path.quadTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
645                                 val[k + 0], val[k + 1]);
646                         ctrlPointX = reflectiveCtrlPointX;
647                         ctrlPointY = reflectiveCtrlPointY;
648                         currentX = val[k + 0];
649                         currentY = val[k + 1];
650                         break;
651                     case 'a': // Draws an elliptical arc
652                         // (rx ry x-axis-rotation large-arc-flag sweep-flag x y)
653                         drawArc(path,
654                                 currentX,
655                                 currentY,
656                                 val[k + 5] + currentX,
657                                 val[k + 6] + currentY,
658                                 val[k + 0],
659                                 val[k + 1],
660                                 val[k + 2],
661                                 val[k + 3] != 0,
662                                 val[k + 4] != 0);
663                         currentX += val[k + 5];
664                         currentY += val[k + 6];
665                         ctrlPointX = currentX;
666                         ctrlPointY = currentY;
667                         break;
668                     case 'A': // Draws an elliptical arc
669                         drawArc(path,
670                                 currentX,
671                                 currentY,
672                                 val[k + 5],
673                                 val[k + 6],
674                                 val[k + 0],
675                                 val[k + 1],
676                                 val[k + 2],
677                                 val[k + 3] != 0,
678                                 val[k + 4] != 0);
679                         currentX = val[k + 5];
680                         currentY = val[k + 6];
681                         ctrlPointX = currentX;
682                         ctrlPointY = currentY;
683                         break;
684                 }
685                 previousCmd = cmd;
686             }
687             current[0] = currentX;
688             current[1] = currentY;
689             current[2] = ctrlPointX;
690             current[3] = ctrlPointY;
691             current[4] = currentSegmentStartX;
692             current[5] = currentSegmentStartY;
693         }
694 
drawArc(@onNull Path_Delegate p, float x0, float y0, float x1, float y1, float a, float b, float theta, boolean isMoreThanHalf, boolean isPositiveArc)695         private static void drawArc(@NonNull Path_Delegate p, float x0, float y0, float x1,
696                 float y1, float a, float b, float theta, boolean isMoreThanHalf,
697                 boolean isPositiveArc) {
698 
699             LOGGER.log(Level.FINE, "(" + x0 + "," + y0 + ")-(" + x1 + "," + y1
700                     + ") {" + a + " " + b + "}");
701         /* Convert rotation angle from degrees to radians */
702             double thetaD = theta * Math.PI / 180.0f;
703         /* Pre-compute rotation matrix entries */
704             double cosTheta = Math.cos(thetaD);
705             double sinTheta = Math.sin(thetaD);
706         /* Transform (x0, y0) and (x1, y1) into unit space */
707         /* using (inverse) rotation, followed by (inverse) scale */
708             double x0p = (x0 * cosTheta + y0 * sinTheta) / a;
709             double y0p = (-x0 * sinTheta + y0 * cosTheta) / b;
710             double x1p = (x1 * cosTheta + y1 * sinTheta) / a;
711             double y1p = (-x1 * sinTheta + y1 * cosTheta) / b;
712             LOGGER.log(Level.FINE, "unit space (" + x0p + "," + y0p + ")-(" + x1p
713                     + "," + y1p + ")");
714         /* Compute differences and averages */
715             double dx = x0p - x1p;
716             double dy = y0p - y1p;
717             double xm = (x0p + x1p) / 2;
718             double ym = (y0p + y1p) / 2;
719         /* Solve for intersecting unit circles */
720             double dsq = dx * dx + dy * dy;
721             if (dsq == 0.0) {
722                 LOGGER.log(Level.FINE, " Points are coincident");
723                 return; /* Points are coincident */
724             }
725             double disc = 1.0 / dsq - 1.0 / 4.0;
726             if (disc < 0.0) {
727                 LOGGER.log(Level.FINE, "Points are too far apart " + dsq);
728                 float adjust = (float) (Math.sqrt(dsq) / 1.99999);
729                 drawArc(p, x0, y0, x1, y1, a * adjust, b * adjust, theta,
730                         isMoreThanHalf, isPositiveArc);
731                 return; /* Points are too far apart */
732             }
733             double s = Math.sqrt(disc);
734             double sdx = s * dx;
735             double sdy = s * dy;
736             double cx;
737             double cy;
738             if (isMoreThanHalf == isPositiveArc) {
739                 cx = xm - sdy;
740                 cy = ym + sdx;
741             } else {
742                 cx = xm + sdy;
743                 cy = ym - sdx;
744             }
745 
746             double eta0 = Math.atan2((y0p - cy), (x0p - cx));
747             LOGGER.log(Level.FINE, "eta0 = Math.atan2( " + (y0p - cy) + " , "
748                     + (x0p - cx) + ") = " + Math.toDegrees(eta0));
749 
750             double eta1 = Math.atan2((y1p - cy), (x1p - cx));
751             LOGGER.log(Level.FINE, "eta1 = Math.atan2( " + (y1p - cy) + " , "
752                     + (x1p - cx) + ") = " + Math.toDegrees(eta1));
753             double sweep = (eta1 - eta0);
754             if (isPositiveArc != (sweep >= 0)) {
755                 if (sweep > 0) {
756                     sweep -= 2 * Math.PI;
757                 } else {
758                     sweep += 2 * Math.PI;
759                 }
760             }
761 
762             cx *= a;
763             cy *= b;
764             double tcx = cx;
765             cx = cx * cosTheta - cy * sinTheta;
766             cy = tcx * sinTheta + cy * cosTheta;
767             LOGGER.log(
768                     Level.FINE,
769                     "cx, cy, a, b, x0, y0, thetaD, eta0, sweep = " + cx + " , "
770                             + cy + " , " + a + " , " + b + " , " + x0 + " , " + y0
771                             + " , " + Math.toDegrees(thetaD) + " , "
772                             + Math.toDegrees(eta0) + " , " + Math.toDegrees(sweep));
773 
774             arcToBezier(p, cx, cy, a, b, x0, y0, thetaD, eta0, sweep);
775         }
776 
777         /**
778          * Converts an arc to cubic Bezier segments and records them in p.
779          *
780          * @param p The target for the cubic Bezier segments
781          * @param cx The x coordinate center of the ellipse
782          * @param cy The y coordinate center of the ellipse
783          * @param a The radius of the ellipse in the horizontal direction
784          * @param b The radius of the ellipse in the vertical direction
785          * @param e1x E(eta1) x coordinate of the starting point of the arc
786          * @param e1y E(eta2) y coordinate of the starting point of the arc
787          * @param theta The angle that the ellipse bounding rectangle makes with the horizontal
788          * plane
789          * @param start The start angle of the arc on the ellipse
790          * @param sweep The angle (positive or negative) of the sweep of the arc on the ellipse
791          */
arcToBezier(@onNull Path_Delegate p, double cx, double cy, double a, double b, double e1x, double e1y, double theta, double start, double sweep)792         private static void arcToBezier(@NonNull Path_Delegate p, double cx, double cy, double a,
793                 double b, double e1x, double e1y, double theta, double start,
794                 double sweep) {
795             // Taken from equations at:
796             // http://spaceroots.org/documents/ellipse/node8.html
797             // and http://www.spaceroots.org/documents/ellipse/node22.html
798             // Maximum of 45 degrees per cubic Bezier segment
799             int numSegments = (int) Math.ceil(Math.abs(sweep * 4 / Math.PI));
800 
801 
802             double eta1 = start;
803             double cosTheta = Math.cos(theta);
804             double sinTheta = Math.sin(theta);
805             double cosEta1 = Math.cos(eta1);
806             double sinEta1 = Math.sin(eta1);
807             double ep1x = (-a * cosTheta * sinEta1) - (b * sinTheta * cosEta1);
808             double ep1y = (-a * sinTheta * sinEta1) + (b * cosTheta * cosEta1);
809 
810             double anglePerSegment = sweep / numSegments;
811             for (int i = 0; i < numSegments; i++) {
812                 double eta2 = eta1 + anglePerSegment;
813                 double sinEta2 = Math.sin(eta2);
814                 double cosEta2 = Math.cos(eta2);
815                 double e2x = cx + (a * cosTheta * cosEta2)
816                         - (b * sinTheta * sinEta2);
817                 double e2y = cy + (a * sinTheta * cosEta2)
818                         + (b * cosTheta * sinEta2);
819                 double ep2x = -a * cosTheta * sinEta2 - b * sinTheta * cosEta2;
820                 double ep2y = -a * sinTheta * sinEta2 + b * cosTheta * cosEta2;
821                 double tanDiff2 = Math.tan((eta2 - eta1) / 2);
822                 double alpha = Math.sin(eta2 - eta1)
823                         * (Math.sqrt(4 + (3 * tanDiff2 * tanDiff2)) - 1) / 3;
824                 double q1x = e1x + alpha * ep1x;
825                 double q1y = e1y + alpha * ep1y;
826                 double q2x = e2x - alpha * ep2x;
827                 double q2y = e2y - alpha * ep2y;
828 
829                 p.cubicTo((float) q1x,
830                         (float) q1y,
831                         (float) q2x,
832                         (float) q2y,
833                         (float) e2x,
834                         (float) e2y);
835                 eta1 = eta2;
836                 e1x = e2x;
837                 e1y = e2y;
838                 ep1x = ep2x;
839                 ep1y = ep2y;
840             }
841         }
842     }
843 }
844