• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define TRACE_TAG SYSDEPS
18 
19 #include "sysdeps.h"
20 
21 #include <winsock2.h> /* winsock.h *must* be included before windows.h. */
22 #include <windows.h>
23 
24 #include <errno.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 
28 #include <algorithm>
29 #include <memory>
30 #include <string>
31 #include <unordered_map>
32 #include <vector>
33 
34 #include <cutils/sockets.h>
35 
36 #include <android-base/errors.h>
37 #include <android-base/logging.h>
38 #include <android-base/stringprintf.h>
39 #include <android-base/strings.h>
40 #include <android-base/utf8.h>
41 
42 #include "adb.h"
43 #include "adb_utils.h"
44 
45 extern void fatal(const char *fmt, ...);
46 
47 /* forward declarations */
48 
49 typedef const struct FHClassRec_* FHClass;
50 typedef struct FHRec_* FH;
51 typedef struct EventHookRec_* EventHook;
52 
53 typedef struct FHClassRec_ {
54     void (*_fh_init)(FH);
55     int (*_fh_close)(FH);
56     int (*_fh_lseek)(FH, int, int);
57     int (*_fh_read)(FH, void*, int);
58     int (*_fh_write)(FH, const void*, int);
59 } FHClassRec;
60 
61 static void _fh_file_init(FH);
62 static int _fh_file_close(FH);
63 static int _fh_file_lseek(FH, int, int);
64 static int _fh_file_read(FH, void*, int);
65 static int _fh_file_write(FH, const void*, int);
66 
67 static const FHClassRec _fh_file_class = {
68     _fh_file_init,
69     _fh_file_close,
70     _fh_file_lseek,
71     _fh_file_read,
72     _fh_file_write,
73 };
74 
75 static void _fh_socket_init(FH);
76 static int _fh_socket_close(FH);
77 static int _fh_socket_lseek(FH, int, int);
78 static int _fh_socket_read(FH, void*, int);
79 static int _fh_socket_write(FH, const void*, int);
80 
81 static const FHClassRec _fh_socket_class = {
82     _fh_socket_init,
83     _fh_socket_close,
84     _fh_socket_lseek,
85     _fh_socket_read,
86     _fh_socket_write,
87 };
88 
89 #define assert(cond)                                                                       \
90     do {                                                                                   \
91         if (!(cond)) fatal("assertion failed '%s' on %s:%d\n", #cond, __FILE__, __LINE__); \
92     } while (0)
93 
operator ()(HANDLE h)94 void handle_deleter::operator()(HANDLE h) {
95     // CreateFile() is documented to return INVALID_HANDLE_FILE on error,
96     // implying that NULL is a valid handle, but this is probably impossible.
97     // Other APIs like CreateEvent() are documented to return NULL on error,
98     // implying that INVALID_HANDLE_VALUE is a valid handle, but this is also
99     // probably impossible. Thus, consider both NULL and INVALID_HANDLE_VALUE
100     // as invalid handles. std::unique_ptr won't call a deleter with NULL, so we
101     // only need to check for INVALID_HANDLE_VALUE.
102     if (h != INVALID_HANDLE_VALUE) {
103         if (!CloseHandle(h)) {
104             D("CloseHandle(%p) failed: %s", h,
105               android::base::SystemErrorCodeToString(GetLastError()).c_str());
106         }
107     }
108 }
109 
110 /**************************************************************************/
111 /**************************************************************************/
112 /*****                                                                *****/
113 /*****      replaces libs/cutils/load_file.c                          *****/
114 /*****                                                                *****/
115 /**************************************************************************/
116 /**************************************************************************/
117 
load_file(const char * fn,unsigned * _sz)118 void *load_file(const char *fn, unsigned *_sz)
119 {
120     HANDLE    file;
121     char     *data;
122     DWORD     file_size;
123 
124     std::wstring fn_wide;
125     if (!android::base::UTF8ToWide(fn, &fn_wide))
126         return NULL;
127 
128     file = CreateFileW( fn_wide.c_str(),
129                         GENERIC_READ,
130                         FILE_SHARE_READ,
131                         NULL,
132                         OPEN_EXISTING,
133                         0,
134                         NULL );
135 
136     if (file == INVALID_HANDLE_VALUE)
137         return NULL;
138 
139     file_size = GetFileSize( file, NULL );
140     data      = NULL;
141 
142     if (file_size > 0) {
143         data = (char*) malloc( file_size + 1 );
144         if (data == NULL) {
145             D("load_file: could not allocate %ld bytes", file_size );
146             file_size = 0;
147         } else {
148             DWORD  out_bytes;
149 
150             if ( !ReadFile( file, data, file_size, &out_bytes, NULL ) ||
151                  out_bytes != file_size )
152             {
153                 D("load_file: could not read %ld bytes from '%s'", file_size, fn);
154                 free(data);
155                 data      = NULL;
156                 file_size = 0;
157             }
158         }
159     }
160     CloseHandle( file );
161 
162     *_sz = (unsigned) file_size;
163     return  data;
164 }
165 
166 /**************************************************************************/
167 /**************************************************************************/
168 /*****                                                                *****/
169 /*****    common file descriptor handling                             *****/
170 /*****                                                                *****/
171 /**************************************************************************/
172 /**************************************************************************/
173 
174 typedef struct FHRec_
175 {
176     FHClass    clazz;
177     int        used;
178     int        eof;
179     union {
180         HANDLE      handle;
181         SOCKET      socket;
182     } u;
183 
184     int       mask;
185 
186     char  name[32];
187 
188 } FHRec;
189 
190 #define  fh_handle  u.handle
191 #define  fh_socket  u.socket
192 
193 #define  WIN32_FH_BASE    2048
194 #define  WIN32_MAX_FHS    2048
195 
196 static adb_mutex_t   _win32_lock;
197 static  FHRec        _win32_fhs[ WIN32_MAX_FHS ];
198 static  int          _win32_fh_next;  // where to start search for free FHRec
199 
200 static FH
_fh_from_int(int fd,const char * func)201 _fh_from_int( int   fd, const char*   func )
202 {
203     FH  f;
204 
205     fd -= WIN32_FH_BASE;
206 
207     if (fd < 0 || fd >= WIN32_MAX_FHS) {
208         D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
209            func );
210         errno = EBADF;
211         return NULL;
212     }
213 
214     f = &_win32_fhs[fd];
215 
216     if (f->used == 0) {
217         D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
218            func );
219         errno = EBADF;
220         return NULL;
221     }
222 
223     return f;
224 }
225 
226 
227 static int
_fh_to_int(FH f)228 _fh_to_int( FH  f )
229 {
230     if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
231         return (int)(f - _win32_fhs) + WIN32_FH_BASE;
232 
233     return -1;
234 }
235 
236 static FH
_fh_alloc(FHClass clazz)237 _fh_alloc( FHClass  clazz )
238 {
239     FH   f = NULL;
240 
241     adb_mutex_lock( &_win32_lock );
242 
243     for (int i = _win32_fh_next; i < WIN32_MAX_FHS; ++i) {
244         if (_win32_fhs[i].clazz == NULL) {
245             f = &_win32_fhs[i];
246             _win32_fh_next = i + 1;
247             goto Exit;
248         }
249     }
250     D( "_fh_alloc: no more free file descriptors" );
251     errno = EMFILE;   // Too many open files
252 Exit:
253     if (f) {
254         f->clazz   = clazz;
255         f->used    = 1;
256         f->eof     = 0;
257         f->name[0] = '\0';
258         clazz->_fh_init(f);
259     }
260     adb_mutex_unlock( &_win32_lock );
261     return f;
262 }
263 
264 
265 static int
_fh_close(FH f)266 _fh_close( FH   f )
267 {
268     // Use lock so that closing only happens once and so that _fh_alloc can't
269     // allocate a FH that we're in the middle of closing.
270     adb_mutex_lock(&_win32_lock);
271 
272     int offset = f - _win32_fhs;
273     if (_win32_fh_next > offset) {
274         _win32_fh_next = offset;
275     }
276 
277     if (f->used) {
278         f->clazz->_fh_close( f );
279         f->name[0] = '\0';
280         f->eof     = 0;
281         f->used    = 0;
282         f->clazz   = NULL;
283     }
284     adb_mutex_unlock(&_win32_lock);
285     return 0;
286 }
287 
288 // Deleter for unique_fh.
289 class fh_deleter {
290  public:
operator ()(struct FHRec_ * fh)291   void operator()(struct FHRec_* fh) {
292     // We're called from a destructor and destructors should not overwrite
293     // errno because callers may do:
294     //   errno = EBLAH;
295     //   return -1; // calls destructor, which should not overwrite errno
296     const int saved_errno = errno;
297     _fh_close(fh);
298     errno = saved_errno;
299   }
300 };
301 
302 // Like std::unique_ptr, but calls _fh_close() instead of operator delete().
303 typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh;
304 
305 /**************************************************************************/
306 /**************************************************************************/
307 /*****                                                                *****/
308 /*****    file-based descriptor handling                              *****/
309 /*****                                                                *****/
310 /**************************************************************************/
311 /**************************************************************************/
312 
_fh_file_init(FH f)313 static void _fh_file_init( FH  f ) {
314     f->fh_handle = INVALID_HANDLE_VALUE;
315 }
316 
_fh_file_close(FH f)317 static int _fh_file_close( FH  f ) {
318     CloseHandle( f->fh_handle );
319     f->fh_handle = INVALID_HANDLE_VALUE;
320     return 0;
321 }
322 
_fh_file_read(FH f,void * buf,int len)323 static int _fh_file_read( FH  f,  void*  buf, int   len ) {
324     DWORD  read_bytes;
325 
326     if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) {
327         D( "adb_read: could not read %d bytes from %s", len, f->name );
328         errno = EIO;
329         return -1;
330     } else if (read_bytes < (DWORD)len) {
331         f->eof = 1;
332     }
333     return (int)read_bytes;
334 }
335 
_fh_file_write(FH f,const void * buf,int len)336 static int _fh_file_write( FH  f,  const void*  buf, int   len ) {
337     DWORD  wrote_bytes;
338 
339     if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) {
340         D( "adb_file_write: could not write %d bytes from %s", len, f->name );
341         errno = EIO;
342         return -1;
343     } else if (wrote_bytes < (DWORD)len) {
344         f->eof = 1;
345     }
346     return  (int)wrote_bytes;
347 }
348 
_fh_file_lseek(FH f,int pos,int origin)349 static int _fh_file_lseek( FH  f, int  pos, int  origin ) {
350     DWORD  method;
351     DWORD  result;
352 
353     switch (origin)
354     {
355         case SEEK_SET:  method = FILE_BEGIN; break;
356         case SEEK_CUR:  method = FILE_CURRENT; break;
357         case SEEK_END:  method = FILE_END; break;
358         default:
359             errno = EINVAL;
360             return -1;
361     }
362 
363     result = SetFilePointer( f->fh_handle, pos, NULL, method );
364     if (result == INVALID_SET_FILE_POINTER) {
365         errno = EIO;
366         return -1;
367     } else {
368         f->eof = 0;
369     }
370     return (int)result;
371 }
372 
373 
374 /**************************************************************************/
375 /**************************************************************************/
376 /*****                                                                *****/
377 /*****    file-based descriptor handling                              *****/
378 /*****                                                                *****/
379 /**************************************************************************/
380 /**************************************************************************/
381 
adb_open(const char * path,int options)382 int  adb_open(const char*  path, int  options)
383 {
384     FH  f;
385 
386     DWORD  desiredAccess       = 0;
387     DWORD  shareMode           = FILE_SHARE_READ | FILE_SHARE_WRITE;
388 
389     switch (options) {
390         case O_RDONLY:
391             desiredAccess = GENERIC_READ;
392             break;
393         case O_WRONLY:
394             desiredAccess = GENERIC_WRITE;
395             break;
396         case O_RDWR:
397             desiredAccess = GENERIC_READ | GENERIC_WRITE;
398             break;
399         default:
400             D("adb_open: invalid options (0x%0x)", options);
401             errno = EINVAL;
402             return -1;
403     }
404 
405     f = _fh_alloc( &_fh_file_class );
406     if ( !f ) {
407         return -1;
408     }
409 
410     std::wstring path_wide;
411     if (!android::base::UTF8ToWide(path, &path_wide)) {
412         return -1;
413     }
414     f->fh_handle = CreateFileW( path_wide.c_str(), desiredAccess, shareMode,
415                                 NULL, OPEN_EXISTING, 0, NULL );
416 
417     if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
418         const DWORD err = GetLastError();
419         _fh_close(f);
420         D( "adb_open: could not open '%s': ", path );
421         switch (err) {
422             case ERROR_FILE_NOT_FOUND:
423                 D( "file not found" );
424                 errno = ENOENT;
425                 return -1;
426 
427             case ERROR_PATH_NOT_FOUND:
428                 D( "path not found" );
429                 errno = ENOTDIR;
430                 return -1;
431 
432             default:
433                 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
434                 errno = ENOENT;
435                 return -1;
436         }
437     }
438 
439     snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
440     D( "adb_open: '%s' => fd %d", path, _fh_to_int(f) );
441     return _fh_to_int(f);
442 }
443 
444 /* ignore mode on Win32 */
adb_creat(const char * path,int mode)445 int  adb_creat(const char*  path, int  mode)
446 {
447     FH  f;
448 
449     f = _fh_alloc( &_fh_file_class );
450     if ( !f ) {
451         return -1;
452     }
453 
454     std::wstring path_wide;
455     if (!android::base::UTF8ToWide(path, &path_wide)) {
456         return -1;
457     }
458     f->fh_handle = CreateFileW( path_wide.c_str(), GENERIC_WRITE,
459                                 FILE_SHARE_READ | FILE_SHARE_WRITE,
460                                 NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL,
461                                 NULL );
462 
463     if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
464         const DWORD err = GetLastError();
465         _fh_close(f);
466         D( "adb_creat: could not open '%s': ", path );
467         switch (err) {
468             case ERROR_FILE_NOT_FOUND:
469                 D( "file not found" );
470                 errno = ENOENT;
471                 return -1;
472 
473             case ERROR_PATH_NOT_FOUND:
474                 D( "path not found" );
475                 errno = ENOTDIR;
476                 return -1;
477 
478             default:
479                 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
480                 errno = ENOENT;
481                 return -1;
482         }
483     }
484     snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
485     D( "adb_creat: '%s' => fd %d", path, _fh_to_int(f) );
486     return _fh_to_int(f);
487 }
488 
489 
adb_read(int fd,void * buf,int len)490 int  adb_read(int  fd, void* buf, int len)
491 {
492     FH     f = _fh_from_int(fd, __func__);
493 
494     if (f == NULL) {
495         return -1;
496     }
497 
498     return f->clazz->_fh_read( f, buf, len );
499 }
500 
501 
adb_write(int fd,const void * buf,int len)502 int  adb_write(int  fd, const void*  buf, int  len)
503 {
504     FH     f = _fh_from_int(fd, __func__);
505 
506     if (f == NULL) {
507         return -1;
508     }
509 
510     return f->clazz->_fh_write(f, buf, len);
511 }
512 
513 
adb_lseek(int fd,int pos,int where)514 int  adb_lseek(int  fd, int  pos, int  where)
515 {
516     FH     f = _fh_from_int(fd, __func__);
517 
518     if (!f) {
519         return -1;
520     }
521 
522     return f->clazz->_fh_lseek(f, pos, where);
523 }
524 
525 
adb_close(int fd)526 int  adb_close(int  fd)
527 {
528     FH   f = _fh_from_int(fd, __func__);
529 
530     if (!f) {
531         return -1;
532     }
533 
534     D( "adb_close: %s", f->name);
535     _fh_close(f);
536     return 0;
537 }
538 
539 // Overrides strerror() to handle error codes not supported by the Windows C
540 // Runtime (MSVCRT.DLL).
adb_strerror(int err)541 char* adb_strerror(int err) {
542     // sysdeps.h defines strerror to adb_strerror, but in this function, we
543     // want to call the real C Runtime strerror().
544 #pragma push_macro("strerror")
545 #undef strerror
546     const int saved_err = errno;      // Save because we overwrite it later.
547 
548     // Lookup the string for an unknown error.
549     char* errmsg = strerror(-1);
550     const std::string unknown_error = (errmsg == nullptr) ? "" : errmsg;
551 
552     // Lookup the string for this error to see if the C Runtime has it.
553     errmsg = strerror(err);
554     if (errmsg != nullptr && unknown_error != errmsg) {
555         // The CRT returned an error message and it is different than the error
556         // message for an unknown error, so it is probably valid, so use it.
557     } else {
558         // Check if we have a string for this error code.
559         const char* custom_msg = nullptr;
560         switch (err) {
561 #pragma push_macro("ERR")
562 #undef ERR
563 #define ERR(errnum, desc) case errnum: custom_msg = desc; break
564             // These error strings are from AOSP bionic/libc/include/sys/_errdefs.h.
565             // Note that these cannot be longer than 94 characters because we
566             // pass this to _strerror() which has that requirement.
567             ERR(ECONNRESET,    "Connection reset by peer");
568             ERR(EHOSTUNREACH,  "No route to host");
569             ERR(ENETDOWN,      "Network is down");
570             ERR(ENETRESET,     "Network dropped connection because of reset");
571             ERR(ENOBUFS,       "No buffer space available");
572             ERR(ENOPROTOOPT,   "Protocol not available");
573             ERR(ENOTCONN,      "Transport endpoint is not connected");
574             ERR(ENOTSOCK,      "Socket operation on non-socket");
575             ERR(EOPNOTSUPP,    "Operation not supported on transport endpoint");
576 #pragma pop_macro("ERR")
577         }
578 
579         if (custom_msg != nullptr) {
580             // Use _strerror() to write our string into the writable per-thread
581             // buffer used by strerror()/_strerror(). _strerror() appends the
582             // msg for the current value of errno, so set errno to a consistent
583             // value for every call so that our code-path is always the same.
584             errno = 0;
585             errmsg = _strerror(custom_msg);
586             const size_t custom_msg_len = strlen(custom_msg);
587             // Just in case _strerror() returned a read-only string, check if
588             // the returned string starts with our custom message because that
589             // implies that the string is not read-only.
590             if ((errmsg != nullptr) &&
591                 !strncmp(custom_msg, errmsg, custom_msg_len)) {
592                 // _strerror() puts other text after our custom message, so
593                 // remove that by terminating after our message.
594                 errmsg[custom_msg_len] = '\0';
595             } else {
596                 // For some reason nullptr was returned or a pointer to a
597                 // read-only string was returned, so fallback to whatever
598                 // strerror() can muster (probably "Unknown error" or some
599                 // generic CRT error string).
600                 errmsg = strerror(err);
601             }
602         } else {
603             // We don't have a custom message, so use whatever strerror(err)
604             // returned earlier.
605         }
606     }
607 
608     errno = saved_err;  // restore
609 
610     return errmsg;
611 #pragma pop_macro("strerror")
612 }
613 
614 /**************************************************************************/
615 /**************************************************************************/
616 /*****                                                                *****/
617 /*****    socket-based file descriptors                               *****/
618 /*****                                                                *****/
619 /**************************************************************************/
620 /**************************************************************************/
621 
622 #undef setsockopt
623 
_socket_set_errno(const DWORD err)624 static void _socket_set_errno( const DWORD err ) {
625     // Because the Windows C Runtime (MSVCRT.DLL) strerror() does not support a
626     // lot of POSIX and socket error codes, some of the resulting error codes
627     // are mapped to strings by adb_strerror() above.
628     switch ( err ) {
629     case 0:              errno = 0; break;
630     // Don't map WSAEINTR since that is only for Winsock 1.1 which we don't use.
631     // case WSAEINTR:    errno = EINTR; break;
632     case WSAEFAULT:      errno = EFAULT; break;
633     case WSAEINVAL:      errno = EINVAL; break;
634     case WSAEMFILE:      errno = EMFILE; break;
635     // Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because
636     // non-blocking sockets can cause an error code of WSAEWOULDBLOCK and
637     // callers check specifically for EAGAIN.
638     case WSAEWOULDBLOCK: errno = EAGAIN; break;
639     case WSAENOTSOCK:    errno = ENOTSOCK; break;
640     case WSAENOPROTOOPT: errno = ENOPROTOOPT; break;
641     case WSAEOPNOTSUPP:  errno = EOPNOTSUPP; break;
642     case WSAENETDOWN:    errno = ENETDOWN; break;
643     case WSAENETRESET:   errno = ENETRESET; break;
644     // Map WSAECONNABORTED to EPIPE instead of ECONNABORTED because POSIX seems
645     // to use EPIPE for these situations and there are some callers that look
646     // for EPIPE.
647     case WSAECONNABORTED: errno = EPIPE; break;
648     case WSAECONNRESET:  errno = ECONNRESET; break;
649     case WSAENOBUFS:     errno = ENOBUFS; break;
650     case WSAENOTCONN:    errno = ENOTCONN; break;
651     // Don't map WSAETIMEDOUT because we don't currently use SO_RCVTIMEO or
652     // SO_SNDTIMEO which would cause WSAETIMEDOUT to be returned. Future
653     // considerations: Reportedly send() can return zero on timeout, and POSIX
654     // code may expect EAGAIN instead of ETIMEDOUT on timeout.
655     // case WSAETIMEDOUT: errno = ETIMEDOUT; break;
656     case WSAEHOSTUNREACH: errno = EHOSTUNREACH; break;
657     default:
658         errno = EINVAL;
659         D( "_socket_set_errno: mapping Windows error code %lu to errno %d",
660            err, errno );
661     }
662 }
663 
adb_poll(adb_pollfd * fds,size_t nfds,int timeout)664 extern int adb_poll(adb_pollfd* fds, size_t nfds, int timeout) {
665     // WSAPoll doesn't handle invalid/non-socket handles, so we need to handle them ourselves.
666     int skipped = 0;
667     std::vector<WSAPOLLFD> sockets;
668     std::vector<adb_pollfd*> original;
669     for (size_t i = 0; i < nfds; ++i) {
670         FH fh = _fh_from_int(fds[i].fd, __func__);
671         if (!fh || !fh->used || fh->clazz != &_fh_socket_class) {
672             D("adb_poll received bad FD %d", fds[i].fd);
673             fds[i].revents = POLLNVAL;
674             ++skipped;
675         } else {
676             WSAPOLLFD wsapollfd = {
677                 .fd = fh->u.socket,
678                 .events = static_cast<short>(fds[i].events)
679             };
680             sockets.push_back(wsapollfd);
681             original.push_back(&fds[i]);
682         }
683     }
684 
685     if (sockets.empty()) {
686         return skipped;
687     }
688 
689     int result = WSAPoll(sockets.data(), sockets.size(), timeout);
690     if (result == SOCKET_ERROR) {
691         _socket_set_errno(WSAGetLastError());
692         return -1;
693     }
694 
695     // Map the results back onto the original set.
696     for (size_t i = 0; i < sockets.size(); ++i) {
697         original[i]->revents = sockets[i].revents;
698     }
699 
700     // WSAPoll appears to return the number of unique FDs with avaiable events, instead of how many
701     // of the pollfd elements have a non-zero revents field, which is what it and poll are specified
702     // to do. Ignore its result and calculate the proper return value.
703     result = 0;
704     for (size_t i = 0; i < nfds; ++i) {
705         if (fds[i].revents != 0) {
706             ++result;
707         }
708     }
709     return result;
710 }
711 
_fh_socket_init(FH f)712 static void _fh_socket_init(FH f) {
713     f->fh_socket = INVALID_SOCKET;
714     f->mask      = 0;
715 }
716 
_fh_socket_close(FH f)717 static int _fh_socket_close( FH  f ) {
718     if (f->fh_socket != INVALID_SOCKET) {
719         /* gently tell any peer that we're closing the socket */
720         if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
721             // If the socket is not connected, this returns an error. We want to
722             // minimize logging spam, so don't log these errors for now.
723 #if 0
724             D("socket shutdown failed: %s",
725               android::base::SystemErrorCodeToString(WSAGetLastError()).c_str());
726 #endif
727         }
728         if (closesocket(f->fh_socket) == SOCKET_ERROR) {
729             // Don't set errno here, since adb_close will ignore it.
730             const DWORD err = WSAGetLastError();
731             D("closesocket failed: %s", android::base::SystemErrorCodeToString(err).c_str());
732         }
733         f->fh_socket = INVALID_SOCKET;
734     }
735     f->mask = 0;
736     return 0;
737 }
738 
_fh_socket_lseek(FH f,int pos,int origin)739 static int _fh_socket_lseek( FH  f, int pos, int origin ) {
740     errno = EPIPE;
741     return -1;
742 }
743 
_fh_socket_read(FH f,void * buf,int len)744 static int _fh_socket_read(FH f, void* buf, int len) {
745     int  result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0);
746     if (result == SOCKET_ERROR) {
747         const DWORD err = WSAGetLastError();
748         // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
749         // that to reduce spam and confusion.
750         if (err != WSAEWOULDBLOCK) {
751             D("recv fd %d failed: %s", _fh_to_int(f),
752               android::base::SystemErrorCodeToString(err).c_str());
753         }
754         _socket_set_errno(err);
755         result = -1;
756     }
757     return  result;
758 }
759 
_fh_socket_write(FH f,const void * buf,int len)760 static int _fh_socket_write(FH f, const void* buf, int len) {
761     int  result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0);
762     if (result == SOCKET_ERROR) {
763         const DWORD err = WSAGetLastError();
764         // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
765         // that to reduce spam and confusion.
766         if (err != WSAEWOULDBLOCK) {
767             D("send fd %d failed: %s", _fh_to_int(f),
768               android::base::SystemErrorCodeToString(err).c_str());
769         }
770         _socket_set_errno(err);
771         result = -1;
772     } else {
773         // According to https://code.google.com/p/chromium/issues/detail?id=27870
774         // Winsock Layered Service Providers may cause this.
775         CHECK_LE(result, len) << "Tried to write " << len << " bytes to "
776                               << f->name << ", but " << result
777                               << " bytes reportedly written";
778     }
779     return result;
780 }
781 
782 /**************************************************************************/
783 /**************************************************************************/
784 /*****                                                                *****/
785 /*****    replacement for libs/cutils/socket_xxxx.c                   *****/
786 /*****                                                                *****/
787 /**************************************************************************/
788 /**************************************************************************/
789 
790 #include <winsock2.h>
791 
792 static int  _winsock_init;
793 
794 static void
_init_winsock(void)795 _init_winsock( void )
796 {
797     // TODO: Multiple threads calling this may potentially cause multiple calls
798     // to WSAStartup() which offers no real benefit.
799     if (!_winsock_init) {
800         WSADATA  wsaData;
801         int      rc = WSAStartup( MAKEWORD(2,2), &wsaData);
802         if (rc != 0) {
803             fatal("adb: could not initialize Winsock: %s",
804                   android::base::SystemErrorCodeToString(rc).c_str());
805         }
806         _winsock_init = 1;
807 
808         // Note that we do not call atexit() to register WSACleanup to be called
809         // at normal process termination because:
810         // 1) When exit() is called, there are still threads actively using
811         //    Winsock because we don't cleanly shutdown all threads, so it
812         //    doesn't make sense to call WSACleanup() and may cause problems
813         //    with those threads.
814         // 2) A deadlock can occur when exit() holds a C Runtime lock, then it
815         //    calls WSACleanup() which tries to unload a DLL, which tries to
816         //    grab the LoaderLock. This conflicts with the device_poll_thread
817         //    which holds the LoaderLock because AdbWinApi.dll calls
818         //    setupapi.dll which tries to load wintrust.dll which tries to load
819         //    crypt32.dll which calls atexit() which tries to acquire the C
820         //    Runtime lock that the other thread holds.
821     }
822 }
823 
824 // Map a socket type to an explicit socket protocol instead of using the socket
825 // protocol of 0. Explicit socket protocols are used by most apps and we should
826 // do the same to reduce the chance of exercising uncommon code-paths that might
827 // have problems or that might load different Winsock service providers that
828 // have problems.
GetSocketProtocolFromSocketType(int type)829 static int GetSocketProtocolFromSocketType(int type) {
830     switch (type) {
831         case SOCK_STREAM:
832             return IPPROTO_TCP;
833         case SOCK_DGRAM:
834             return IPPROTO_UDP;
835         default:
836             LOG(FATAL) << "Unknown socket type: " << type;
837             return 0;
838     }
839 }
840 
network_loopback_client(int port,int type,std::string * error)841 int network_loopback_client(int port, int type, std::string* error) {
842     struct sockaddr_in addr;
843     SOCKET s;
844 
845     unique_fh f(_fh_alloc(&_fh_socket_class));
846     if (!f) {
847         *error = strerror(errno);
848         return -1;
849     }
850 
851     if (!_winsock_init) _init_winsock();
852 
853     memset(&addr, 0, sizeof(addr));
854     addr.sin_family = AF_INET;
855     addr.sin_port = htons(port);
856     addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
857 
858     s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
859     if (s == INVALID_SOCKET) {
860         const DWORD err = WSAGetLastError();
861         *error = android::base::StringPrintf("cannot create socket: %s",
862                                              android::base::SystemErrorCodeToString(err).c_str());
863         D("%s", error->c_str());
864         _socket_set_errno(err);
865         return -1;
866     }
867     f->fh_socket = s;
868 
869     if (connect(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
870         // Save err just in case inet_ntoa() or ntohs() changes the last error.
871         const DWORD err = WSAGetLastError();
872         *error = android::base::StringPrintf("cannot connect to %s:%u: %s",
873                                              inet_ntoa(addr.sin_addr), ntohs(addr.sin_port),
874                                              android::base::SystemErrorCodeToString(err).c_str());
875         D("could not connect to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
876           error->c_str());
877         _socket_set_errno(err);
878         return -1;
879     }
880 
881     const int fd = _fh_to_int(f.get());
882     snprintf(f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
883              port);
884     D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
885     f.release();
886     return fd;
887 }
888 
889 #define LISTEN_BACKLOG 4
890 
891 // interface_address is INADDR_LOOPBACK or INADDR_ANY.
_network_server(int port,int type,u_long interface_address,std::string * error)892 static int _network_server(int port, int type, u_long interface_address, std::string* error) {
893     struct sockaddr_in addr;
894     SOCKET s;
895     int n;
896 
897     unique_fh f(_fh_alloc(&_fh_socket_class));
898     if (!f) {
899         *error = strerror(errno);
900         return -1;
901     }
902 
903     if (!_winsock_init) _init_winsock();
904 
905     memset(&addr, 0, sizeof(addr));
906     addr.sin_family = AF_INET;
907     addr.sin_port = htons(port);
908     addr.sin_addr.s_addr = htonl(interface_address);
909 
910     // TODO: Consider using dual-stack socket that can simultaneously listen on
911     // IPv4 and IPv6.
912     s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
913     if (s == INVALID_SOCKET) {
914         const DWORD err = WSAGetLastError();
915         *error = android::base::StringPrintf("cannot create socket: %s",
916                                              android::base::SystemErrorCodeToString(err).c_str());
917         D("%s", error->c_str());
918         _socket_set_errno(err);
919         return -1;
920     }
921 
922     f->fh_socket = s;
923 
924     // Note: SO_REUSEADDR on Windows allows multiple processes to bind to the
925     // same port, so instead use SO_EXCLUSIVEADDRUSE.
926     n = 1;
927     if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)) == SOCKET_ERROR) {
928         const DWORD err = WSAGetLastError();
929         *error = android::base::StringPrintf("cannot set socket option SO_EXCLUSIVEADDRUSE: %s",
930                                              android::base::SystemErrorCodeToString(err).c_str());
931         D("%s", error->c_str());
932         _socket_set_errno(err);
933         return -1;
934     }
935 
936     if (bind(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
937         // Save err just in case inet_ntoa() or ntohs() changes the last error.
938         const DWORD err = WSAGetLastError();
939         *error = android::base::StringPrintf("cannot bind to %s:%u: %s", inet_ntoa(addr.sin_addr),
940                                              ntohs(addr.sin_port),
941                                              android::base::SystemErrorCodeToString(err).c_str());
942         D("could not bind to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
943         _socket_set_errno(err);
944         return -1;
945     }
946     if (type == SOCK_STREAM) {
947         if (listen(s, LISTEN_BACKLOG) == SOCKET_ERROR) {
948             const DWORD err = WSAGetLastError();
949             *error = android::base::StringPrintf(
950                 "cannot listen on socket: %s", android::base::SystemErrorCodeToString(err).c_str());
951             D("could not listen on %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
952               error->c_str());
953             _socket_set_errno(err);
954             return -1;
955         }
956     }
957     const int fd = _fh_to_int(f.get());
958     snprintf(f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd,
959              interface_address == INADDR_LOOPBACK ? "lo" : "any", type != SOCK_STREAM ? "udp:" : "",
960              port);
961     D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
962     f.release();
963     return fd;
964 }
965 
network_loopback_server(int port,int type,std::string * error)966 int network_loopback_server(int port, int type, std::string* error) {
967     return _network_server(port, type, INADDR_LOOPBACK, error);
968 }
969 
network_inaddr_any_server(int port,int type,std::string * error)970 int network_inaddr_any_server(int port, int type, std::string* error) {
971     return _network_server(port, type, INADDR_ANY, error);
972 }
973 
network_connect(const std::string & host,int port,int type,int timeout,std::string * error)974 int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) {
975     unique_fh f(_fh_alloc(&_fh_socket_class));
976     if (!f) {
977         *error = strerror(errno);
978         return -1;
979     }
980 
981     if (!_winsock_init) _init_winsock();
982 
983     struct addrinfo hints;
984     memset(&hints, 0, sizeof(hints));
985     hints.ai_family = AF_UNSPEC;
986     hints.ai_socktype = type;
987     hints.ai_protocol = GetSocketProtocolFromSocketType(type);
988 
989     char port_str[16];
990     snprintf(port_str, sizeof(port_str), "%d", port);
991 
992     struct addrinfo* addrinfo_ptr = nullptr;
993 
994 #if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03)
995 // TODO: When the Android SDK tools increases the Windows system
996 // requirements >= WinXP SP2, switch to android::base::UTF8ToWide() + GetAddrInfoW().
997 #else
998 // Otherwise, keep using getaddrinfo(), or do runtime API detection
999 // with GetProcAddress("GetAddrInfoW").
1000 #endif
1001     if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) {
1002         const DWORD err = WSAGetLastError();
1003         *error = android::base::StringPrintf("cannot resolve host '%s' and port %s: %s",
1004                                              host.c_str(), port_str,
1005                                              android::base::SystemErrorCodeToString(err).c_str());
1006 
1007         D("%s", error->c_str());
1008         _socket_set_errno(err);
1009         return -1;
1010     }
1011     std::unique_ptr<struct addrinfo, decltype(freeaddrinfo)*> addrinfo(addrinfo_ptr, freeaddrinfo);
1012     addrinfo_ptr = nullptr;
1013 
1014     // TODO: Try all the addresses if there's more than one? This just uses
1015     // the first. Or, could call WSAConnectByName() (Windows Vista and newer)
1016     // which tries all addresses, takes a timeout and more.
1017     SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, addrinfo->ai_protocol);
1018     if (s == INVALID_SOCKET) {
1019         const DWORD err = WSAGetLastError();
1020         *error = android::base::StringPrintf("cannot create socket: %s",
1021                                              android::base::SystemErrorCodeToString(err).c_str());
1022         D("%s", error->c_str());
1023         _socket_set_errno(err);
1024         return -1;
1025     }
1026     f->fh_socket = s;
1027 
1028     // TODO: Implement timeouts for Windows. Seems like the default in theory
1029     // (according to http://serverfault.com/a/671453) and in practice is 21 sec.
1030     if (connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) {
1031         // TODO: Use WSAAddressToString or inet_ntop on address.
1032         const DWORD err = WSAGetLastError();
1033         *error = android::base::StringPrintf("cannot connect to %s:%s: %s", host.c_str(), port_str,
1034                                              android::base::SystemErrorCodeToString(err).c_str());
1035         D("could not connect to %s:%s:%s: %s", type != SOCK_STREAM ? "udp" : "tcp", host.c_str(),
1036           port_str, error->c_str());
1037         _socket_set_errno(err);
1038         return -1;
1039     }
1040 
1041     const int fd = _fh_to_int(f.get());
1042     snprintf(f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
1043              port);
1044     D("host '%s' port %d type %s => fd %d", host.c_str(), port, type != SOCK_STREAM ? "udp" : "tcp",
1045       fd);
1046     f.release();
1047     return fd;
1048 }
1049 
1050 #undef accept
adb_socket_accept(int serverfd,struct sockaddr * addr,socklen_t * addrlen)1051 int  adb_socket_accept(int  serverfd, struct sockaddr*  addr, socklen_t  *addrlen)
1052 {
1053     FH   serverfh = _fh_from_int(serverfd, __func__);
1054 
1055     if ( !serverfh || serverfh->clazz != &_fh_socket_class ) {
1056         D("adb_socket_accept: invalid fd %d", serverfd);
1057         errno = EBADF;
1058         return -1;
1059     }
1060 
1061     unique_fh fh(_fh_alloc( &_fh_socket_class ));
1062     if (!fh) {
1063         PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket "
1064                        "descriptor";
1065         return -1;
1066     }
1067 
1068     fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen );
1069     if (fh->fh_socket == INVALID_SOCKET) {
1070         const DWORD err = WSAGetLastError();
1071         LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd <<
1072                       " failed: " + android::base::SystemErrorCodeToString(err);
1073         _socket_set_errno( err );
1074         return -1;
1075     }
1076 
1077     const int fd = _fh_to_int(fh.get());
1078     snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name );
1079     D( "adb_socket_accept on fd %d returns fd %d", serverfd, fd );
1080     fh.release();
1081     return  fd;
1082 }
1083 
1084 
adb_setsockopt(int fd,int level,int optname,const void * optval,socklen_t optlen)1085 int  adb_setsockopt( int  fd, int  level, int  optname, const void*  optval, socklen_t  optlen )
1086 {
1087     FH   fh = _fh_from_int(fd, __func__);
1088 
1089     if ( !fh || fh->clazz != &_fh_socket_class ) {
1090         D("adb_setsockopt: invalid fd %d", fd);
1091         errno = EBADF;
1092         return -1;
1093     }
1094 
1095     // TODO: Once we can assume Windows Vista or later, if the caller is trying
1096     // to set SOL_SOCKET, SO_SNDBUF/SO_RCVBUF, ignore it since the OS has
1097     // auto-tuning.
1098 
1099     int result = setsockopt( fh->fh_socket, level, optname,
1100                              reinterpret_cast<const char*>(optval), optlen );
1101     if ( result == SOCKET_ERROR ) {
1102         const DWORD err = WSAGetLastError();
1103         D("adb_setsockopt: setsockopt on fd %d level %d optname %d failed: %s\n",
1104           fd, level, optname, android::base::SystemErrorCodeToString(err).c_str());
1105         _socket_set_errno( err );
1106         result = -1;
1107     }
1108     return result;
1109 }
1110 
adb_getsockname(int fd,struct sockaddr * sockaddr,socklen_t * optlen)1111 int adb_getsockname(int fd, struct sockaddr* sockaddr, socklen_t* optlen) {
1112     FH fh = _fh_from_int(fd, __func__);
1113 
1114     if (!fh || fh->clazz != &_fh_socket_class) {
1115         D("adb_getsockname: invalid fd %d", fd);
1116         errno = EBADF;
1117         return -1;
1118     }
1119 
1120     int result = getsockname(fh->fh_socket, sockaddr, optlen);
1121     if (result == SOCKET_ERROR) {
1122         const DWORD err = WSAGetLastError();
1123         D("adb_getsockname: setsockopt on fd %d failed: %s\n", fd,
1124           android::base::SystemErrorCodeToString(err).c_str());
1125         _socket_set_errno(err);
1126         result = -1;
1127     }
1128     return result;
1129 }
1130 
adb_shutdown(int fd)1131 int  adb_shutdown(int  fd)
1132 {
1133     FH   f = _fh_from_int(fd, __func__);
1134 
1135     if (!f || f->clazz != &_fh_socket_class) {
1136         D("adb_shutdown: invalid fd %d", fd);
1137         errno = EBADF;
1138         return -1;
1139     }
1140 
1141     D( "adb_shutdown: %s", f->name);
1142     if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
1143         const DWORD err = WSAGetLastError();
1144         D("socket shutdown fd %d failed: %s", fd,
1145           android::base::SystemErrorCodeToString(err).c_str());
1146         _socket_set_errno(err);
1147         return -1;
1148     }
1149     return 0;
1150 }
1151 
1152 // Emulate socketpair(2) by binding and connecting to a socket.
adb_socketpair(int sv[2])1153 int adb_socketpair(int sv[2]) {
1154     int server = -1;
1155     int client = -1;
1156     int accepted = -1;
1157     sockaddr_storage addr_storage;
1158     socklen_t addr_len = sizeof(addr_storage);
1159     sockaddr_in* addr = nullptr;
1160     std::string error;
1161 
1162     server = network_loopback_server(0, SOCK_STREAM, &error);
1163     if (server < 0) {
1164         D("adb_socketpair: failed to create server: %s", error.c_str());
1165         goto fail;
1166     }
1167 
1168     if (adb_getsockname(server, reinterpret_cast<sockaddr*>(&addr_storage), &addr_len) < 0) {
1169         D("adb_socketpair: adb_getsockname failed: %s", strerror(errno));
1170         goto fail;
1171     }
1172 
1173     if (addr_storage.ss_family != AF_INET) {
1174         D("adb_socketpair: unknown address family received: %d", addr_storage.ss_family);
1175         errno = ECONNABORTED;
1176         goto fail;
1177     }
1178 
1179     addr = reinterpret_cast<sockaddr_in*>(&addr_storage);
1180     D("adb_socketpair: bound on port %d", ntohs(addr->sin_port));
1181     client = network_loopback_client(ntohs(addr->sin_port), SOCK_STREAM, &error);
1182     if (client < 0) {
1183         D("adb_socketpair: failed to connect client: %s", error.c_str());
1184         goto fail;
1185     }
1186 
1187     accepted = adb_socket_accept(server, nullptr, nullptr);
1188     if (accepted < 0) {
1189         D("adb_socketpair: failed to accept: %s", strerror(errno));
1190         goto fail;
1191     }
1192     adb_close(server);
1193     sv[0] = client;
1194     sv[1] = accepted;
1195     return 0;
1196 
1197 fail:
1198     if (server >= 0) {
1199         adb_close(server);
1200     }
1201     if (client >= 0) {
1202         adb_close(client);
1203     }
1204     if (accepted >= 0) {
1205         adb_close(accepted);
1206     }
1207     return -1;
1208 }
1209 
set_file_block_mode(int fd,bool block)1210 bool set_file_block_mode(int fd, bool block) {
1211     FH fh = _fh_from_int(fd, __func__);
1212 
1213     if (!fh || !fh->used) {
1214         errno = EBADF;
1215         return false;
1216     }
1217 
1218     if (fh->clazz == &_fh_socket_class) {
1219         u_long x = !block;
1220         if (ioctlsocket(fh->u.socket, FIONBIO, &x) != 0) {
1221             _socket_set_errno(WSAGetLastError());
1222             return false;
1223         }
1224         return true;
1225     } else {
1226         errno = ENOTSOCK;
1227         return false;
1228     }
1229 }
1230 
set_tcp_keepalive(int fd,int interval_sec)1231 bool set_tcp_keepalive(int fd, int interval_sec) {
1232     FH fh = _fh_from_int(fd, __func__);
1233 
1234     if (!fh || fh->clazz != &_fh_socket_class) {
1235         D("set_tcp_keepalive(%d) failed: invalid fd", fd);
1236         errno = EBADF;
1237         return false;
1238     }
1239 
1240     tcp_keepalive keepalive;
1241     keepalive.onoff = (interval_sec > 0);
1242     keepalive.keepalivetime = interval_sec * 1000;
1243     keepalive.keepaliveinterval = interval_sec * 1000;
1244 
1245     DWORD bytes_returned = 0;
1246     if (WSAIoctl(fh->fh_socket, SIO_KEEPALIVE_VALS, &keepalive, sizeof(keepalive), nullptr, 0,
1247                  &bytes_returned, nullptr, nullptr) != 0) {
1248         const DWORD err = WSAGetLastError();
1249         D("set_tcp_keepalive(%d) failed: %s", fd,
1250           android::base::SystemErrorCodeToString(err).c_str());
1251         _socket_set_errno(err);
1252         return false;
1253     }
1254 
1255     return true;
1256 }
1257 
1258 static adb_mutex_t g_console_output_buffer_lock;
1259 
1260 void
adb_sysdeps_init(void)1261 adb_sysdeps_init( void )
1262 {
1263 #define  ADB_MUTEX(x)  InitializeCriticalSection( & x );
1264 #include "mutex_list.h"
1265     InitializeCriticalSection( &_win32_lock );
1266     InitializeCriticalSection( &g_console_output_buffer_lock );
1267 }
1268 
1269 /**************************************************************************/
1270 /**************************************************************************/
1271 /*****                                                                *****/
1272 /*****      Console Window Terminal Emulation                         *****/
1273 /*****                                                                *****/
1274 /**************************************************************************/
1275 /**************************************************************************/
1276 
1277 // This reads input from a Win32 console window and translates it into Unix
1278 // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
1279 // mode, not Application mode), which itself emulates xterm. Gnome Terminal
1280 // is emulated instead of xterm because it is probably more popular than xterm:
1281 // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
1282 // supports modern fonts, etc. It seems best to emulate the terminal that most
1283 // Android developers use because they'll fix apps (the shell, etc.) to keep
1284 // working with that terminal's emulation.
1285 //
1286 // The point of this emulation is not to be perfect or to solve all issues with
1287 // console windows on Windows, but to be better than the original code which
1288 // just called read() (which called ReadFile(), which called ReadConsoleA())
1289 // which did not support Ctrl-C, tab completion, shell input line editing
1290 // keys, server echo, and more.
1291 //
1292 // This implementation reconfigures the console with SetConsoleMode(), then
1293 // calls ReadConsoleInput() to get raw input which it remaps to Unix
1294 // terminal-style sequences which is returned via unix_read() which is used
1295 // by the 'adb shell' command.
1296 //
1297 // Code organization:
1298 //
1299 // * _get_console_handle() and unix_isatty() provide console information.
1300 // * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
1301 // * unix_read() detects console windows (as opposed to pipes, files, etc.).
1302 // * _console_read() is the main code of the emulation.
1303 
1304 // Returns a console HANDLE if |fd| is a console, otherwise returns nullptr.
1305 // If a valid HANDLE is returned and |mode| is not null, |mode| is also filled
1306 // with the console mode. Requires GENERIC_READ access to the underlying HANDLE.
_get_console_handle(int fd,DWORD * mode=nullptr)1307 static HANDLE _get_console_handle(int fd, DWORD* mode=nullptr) {
1308     // First check isatty(); this is very fast and eliminates most non-console
1309     // FDs, but returns 1 for both consoles and character devices like NUL.
1310 #pragma push_macro("isatty")
1311 #undef isatty
1312     if (!isatty(fd)) {
1313         return nullptr;
1314     }
1315 #pragma pop_macro("isatty")
1316 
1317     // To differentiate between character devices and consoles we need to get
1318     // the underlying HANDLE and use GetConsoleMode(), which is what requires
1319     // GENERIC_READ permissions.
1320     const intptr_t intptr_handle = _get_osfhandle(fd);
1321     if (intptr_handle == -1) {
1322         return nullptr;
1323     }
1324     const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle);
1325     DWORD temp_mode = 0;
1326     if (!GetConsoleMode(handle, mode ? mode : &temp_mode)) {
1327         return nullptr;
1328     }
1329 
1330     return handle;
1331 }
1332 
1333 // Returns a console handle if |stream| is a console, otherwise returns nullptr.
_get_console_handle(FILE * const stream)1334 static HANDLE _get_console_handle(FILE* const stream) {
1335     // Save and restore errno to make it easier for callers to prevent from overwriting errno.
1336     android::base::ErrnoRestorer er;
1337     const int fd = fileno(stream);
1338     if (fd < 0) {
1339         return nullptr;
1340     }
1341     return _get_console_handle(fd);
1342 }
1343 
unix_isatty(int fd)1344 int unix_isatty(int fd) {
1345     return _get_console_handle(fd) ? 1 : 0;
1346 }
1347 
1348 // Get the next KEY_EVENT_RECORD that should be processed.
_get_key_event_record(const HANDLE console,INPUT_RECORD * const input_record)1349 static bool _get_key_event_record(const HANDLE console, INPUT_RECORD* const input_record) {
1350     for (;;) {
1351         DWORD read_count = 0;
1352         memset(input_record, 0, sizeof(*input_record));
1353         if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
1354             D("_get_key_event_record: ReadConsoleInputA() failed: %s\n",
1355               android::base::SystemErrorCodeToString(GetLastError()).c_str());
1356             errno = EIO;
1357             return false;
1358         }
1359 
1360         if (read_count == 0) {   // should be impossible
1361             fatal("ReadConsoleInputA returned 0");
1362         }
1363 
1364         if (read_count != 1) {   // should be impossible
1365             fatal("ReadConsoleInputA did not return one input record");
1366         }
1367 
1368         // If the console window is resized, emulate SIGWINCH by breaking out
1369         // of read() with errno == EINTR. Note that there is no event on
1370         // vertical resize because we don't give the console our own custom
1371         // screen buffer (with CreateConsoleScreenBuffer() +
1372         // SetConsoleActiveScreenBuffer()). Instead, we use the default which
1373         // supports scrollback, but doesn't seem to raise an event for vertical
1374         // window resize.
1375         if (input_record->EventType == WINDOW_BUFFER_SIZE_EVENT) {
1376             errno = EINTR;
1377             return false;
1378         }
1379 
1380         if ((input_record->EventType == KEY_EVENT) &&
1381             (input_record->Event.KeyEvent.bKeyDown)) {
1382             if (input_record->Event.KeyEvent.wRepeatCount == 0) {
1383                 fatal("ReadConsoleInputA returned a key event with zero repeat"
1384                       " count");
1385             }
1386 
1387             // Got an interesting INPUT_RECORD, so return
1388             return true;
1389         }
1390     }
1391 }
1392 
_is_shift_pressed(const DWORD control_key_state)1393 static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
1394     return (control_key_state & SHIFT_PRESSED) != 0;
1395 }
1396 
_is_ctrl_pressed(const DWORD control_key_state)1397 static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
1398     return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
1399 }
1400 
_is_alt_pressed(const DWORD control_key_state)1401 static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
1402     return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
1403 }
1404 
_is_numlock_on(const DWORD control_key_state)1405 static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
1406     return (control_key_state & NUMLOCK_ON) != 0;
1407 }
1408 
_is_capslock_on(const DWORD control_key_state)1409 static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
1410     return (control_key_state & CAPSLOCK_ON) != 0;
1411 }
1412 
_is_enhanced_key(const DWORD control_key_state)1413 static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
1414     return (control_key_state & ENHANCED_KEY) != 0;
1415 }
1416 
1417 // Constants from MSDN for ToAscii().
1418 static const BYTE TOASCII_KEY_OFF = 0x00;
1419 static const BYTE TOASCII_KEY_DOWN = 0x80;
1420 static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01;   // for CapsLock
1421 
1422 // Given a key event, ignore a modifier key and return the character that was
1423 // entered without the modifier. Writes to *ch and returns the number of bytes
1424 // written.
_get_char_ignoring_modifier(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state,const WORD modifier)1425 static size_t _get_char_ignoring_modifier(char* const ch,
1426     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
1427     const WORD modifier) {
1428     // If there is no character from Windows, try ignoring the specified
1429     // modifier and look for a character. Note that if AltGr is being used,
1430     // there will be a character from Windows.
1431     if (key_event->uChar.AsciiChar == '\0') {
1432         // Note that we read the control key state from the passed in argument
1433         // instead of from key_event since the argument has been normalized.
1434         if (((modifier == VK_SHIFT)   &&
1435             _is_shift_pressed(control_key_state)) ||
1436             ((modifier == VK_CONTROL) &&
1437             _is_ctrl_pressed(control_key_state)) ||
1438             ((modifier == VK_MENU)    && _is_alt_pressed(control_key_state))) {
1439 
1440             BYTE key_state[256]   = {0};
1441             key_state[VK_SHIFT]   = _is_shift_pressed(control_key_state) ?
1442                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1443             key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state)  ?
1444                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1445             key_state[VK_MENU]    = _is_alt_pressed(control_key_state)   ?
1446                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1447             key_state[VK_CAPITAL] = _is_capslock_on(control_key_state)   ?
1448                 TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
1449 
1450             // cause this modifier to be ignored
1451             key_state[modifier]   = TOASCII_KEY_OFF;
1452 
1453             WORD translated = 0;
1454             if (ToAscii(key_event->wVirtualKeyCode,
1455                 key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
1456                 // Ignoring the modifier, we found a character.
1457                 *ch = (CHAR)translated;
1458                 return 1;
1459             }
1460         }
1461     }
1462 
1463     // Just use whatever Windows told us originally.
1464     *ch = key_event->uChar.AsciiChar;
1465 
1466     // If the character from Windows is NULL, return a size of zero.
1467     return (*ch == '\0') ? 0 : 1;
1468 }
1469 
1470 // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
1471 // but taking into account the shift key. This is because for a sequence like
1472 // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
1473 // we want to find the character ')'.
1474 //
1475 // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
1476 // because it is the default key-sequence to switch the input language.
1477 // This is configurable in the Region and Language control panel.
_get_non_control_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1478 static __inline__ size_t _get_non_control_char(char* const ch,
1479     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1480     return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1481         VK_CONTROL);
1482 }
1483 
1484 // Get without Alt.
_get_non_alt_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1485 static __inline__ size_t _get_non_alt_char(char* const ch,
1486     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1487     return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1488         VK_MENU);
1489 }
1490 
1491 // Ignore the control key, find the character from Windows, and apply any
1492 // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
1493 // *pch and returns number of bytes written.
_get_control_character(char * const pch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1494 static size_t _get_control_character(char* const pch,
1495     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1496     const size_t len = _get_non_control_char(pch, key_event,
1497         control_key_state);
1498 
1499     if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
1500         char ch = *pch;
1501         switch (ch) {
1502         case '2':
1503         case '@':
1504         case '`':
1505             ch = '\0';
1506             break;
1507         case '3':
1508         case '[':
1509         case '{':
1510             ch = '\x1b';
1511             break;
1512         case '4':
1513         case '\\':
1514         case '|':
1515             ch = '\x1c';
1516             break;
1517         case '5':
1518         case ']':
1519         case '}':
1520             ch = '\x1d';
1521             break;
1522         case '6':
1523         case '^':
1524         case '~':
1525             ch = '\x1e';
1526             break;
1527         case '7':
1528         case '-':
1529         case '_':
1530             ch = '\x1f';
1531             break;
1532         case '8':
1533             ch = '\x7f';
1534             break;
1535         case '/':
1536             if (!_is_alt_pressed(control_key_state)) {
1537                 ch = '\x1f';
1538             }
1539             break;
1540         case '?':
1541             if (!_is_alt_pressed(control_key_state)) {
1542                 ch = '\x7f';
1543             }
1544             break;
1545         }
1546         *pch = ch;
1547     }
1548 
1549     return len;
1550 }
1551 
_normalize_altgr_control_key_state(const KEY_EVENT_RECORD * const key_event)1552 static DWORD _normalize_altgr_control_key_state(
1553     const KEY_EVENT_RECORD* const key_event) {
1554     DWORD control_key_state = key_event->dwControlKeyState;
1555 
1556     // If we're in an AltGr situation where the AltGr key is down (depending on
1557     // the keyboard layout, that might be the physical right alt key which
1558     // produces a control_key_state where Right-Alt and Left-Ctrl are down) or
1559     // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
1560     // a character (which indicates that there was an AltGr mapping), then act
1561     // as if alt and control are not really down for the purposes of modifiers.
1562     // This makes it so that if the user with, say, a German keyboard layout
1563     // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
1564     // output the key and we don't see the Alt and Ctrl keys.
1565     if (_is_ctrl_pressed(control_key_state) &&
1566         _is_alt_pressed(control_key_state)
1567         && (key_event->uChar.AsciiChar != '\0')) {
1568         // Try to remove as few bits as possible to improve our chances of
1569         // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
1570         // Left-Alt + Right-Ctrl + AltGr.
1571         if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
1572             // Remove Right-Alt.
1573             control_key_state &= ~RIGHT_ALT_PRESSED;
1574             // If uChar is set, a Ctrl key is pressed, and Right-Alt is
1575             // pressed, Left-Ctrl is almost always set, except if the user
1576             // presses Right-Ctrl, then AltGr (in that specific order) for
1577             // whatever reason. At any rate, make sure the bit is not set.
1578             control_key_state &= ~LEFT_CTRL_PRESSED;
1579         } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
1580             // Remove Left-Alt.
1581             control_key_state &= ~LEFT_ALT_PRESSED;
1582             // Whichever Ctrl key is down, remove it from the state. We only
1583             // remove one key, to improve our chances of detecting the
1584             // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
1585             if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
1586                 // Remove Left-Ctrl.
1587                 control_key_state &= ~LEFT_CTRL_PRESSED;
1588             } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
1589                 // Remove Right-Ctrl.
1590                 control_key_state &= ~RIGHT_CTRL_PRESSED;
1591             }
1592         }
1593 
1594         // Note that this logic isn't 100% perfect because Windows doesn't
1595         // allow us to detect all combinations because a physical AltGr key
1596         // press shows up as two bits, plus some combinations are ambiguous
1597         // about what is actually physically pressed.
1598     }
1599 
1600     return control_key_state;
1601 }
1602 
1603 // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
1604 // dwControlKeyState for the following keypad keys: period, 0-9. If we detect
1605 // this scenario, set the SHIFT_PRESSED bit so we can add modifiers
1606 // appropriately.
_normalize_keypad_control_key_state(const WORD vk,const DWORD control_key_state)1607 static DWORD _normalize_keypad_control_key_state(const WORD vk,
1608     const DWORD control_key_state) {
1609     if (!_is_numlock_on(control_key_state)) {
1610         return control_key_state;
1611     }
1612     if (!_is_enhanced_key(control_key_state)) {
1613         switch (vk) {
1614             case VK_INSERT: // 0
1615             case VK_DELETE: // .
1616             case VK_END:    // 1
1617             case VK_DOWN:   // 2
1618             case VK_NEXT:   // 3
1619             case VK_LEFT:   // 4
1620             case VK_CLEAR:  // 5
1621             case VK_RIGHT:  // 6
1622             case VK_HOME:   // 7
1623             case VK_UP:     // 8
1624             case VK_PRIOR:  // 9
1625                 return control_key_state | SHIFT_PRESSED;
1626         }
1627     }
1628 
1629     return control_key_state;
1630 }
1631 
_get_keypad_sequence(const DWORD control_key_state,const char * const normal,const char * const shifted)1632 static const char* _get_keypad_sequence(const DWORD control_key_state,
1633     const char* const normal, const char* const shifted) {
1634     if (_is_shift_pressed(control_key_state)) {
1635         // Shift is pressed and NumLock is off
1636         return shifted;
1637     } else {
1638         // Shift is not pressed and NumLock is off, or,
1639         // Shift is pressed and NumLock is on, in which case we want the
1640         // NumLock and Shift to neutralize each other, thus, we want the normal
1641         // sequence.
1642         return normal;
1643     }
1644     // If Shift is not pressed and NumLock is on, a different virtual key code
1645     // is returned by Windows, which can be taken care of by a different case
1646     // statement in _console_read().
1647 }
1648 
1649 // Write sequence to buf and return the number of bytes written.
_get_modifier_sequence(char * const buf,const WORD vk,DWORD control_key_state,const char * const normal)1650 static size_t _get_modifier_sequence(char* const buf, const WORD vk,
1651     DWORD control_key_state, const char* const normal) {
1652     // Copy the base sequence into buf.
1653     const size_t len = strlen(normal);
1654     memcpy(buf, normal, len);
1655 
1656     int code = 0;
1657 
1658     control_key_state = _normalize_keypad_control_key_state(vk,
1659         control_key_state);
1660 
1661     if (_is_shift_pressed(control_key_state)) {
1662         code |= 0x1;
1663     }
1664     if (_is_alt_pressed(control_key_state)) {   // any alt key pressed
1665         code |= 0x2;
1666     }
1667     if (_is_ctrl_pressed(control_key_state)) {  // any control key pressed
1668         code |= 0x4;
1669     }
1670     // If some modifier was held down, then we need to insert the modifier code
1671     if (code != 0) {
1672         if (len == 0) {
1673             // Should be impossible because caller should pass a string of
1674             // non-zero length.
1675             return 0;
1676         }
1677         size_t index = len - 1;
1678         const char lastChar = buf[index];
1679         if (lastChar != '~') {
1680             buf[index++] = '1';
1681         }
1682         buf[index++] = ';';         // modifier separator
1683         // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
1684         // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
1685         buf[index++] = '1' + code;
1686         buf[index++] = lastChar;    // move ~ (or other last char) to the end
1687         return index;
1688     }
1689     return len;
1690 }
1691 
1692 // Write sequence to buf and return the number of bytes written.
_get_modifier_keypad_sequence(char * const buf,const WORD vk,const DWORD control_key_state,const char * const normal,const char shifted)1693 static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
1694     const DWORD control_key_state, const char* const normal,
1695     const char shifted) {
1696     if (_is_shift_pressed(control_key_state)) {
1697         // Shift is pressed and NumLock is off
1698         if (shifted != '\0') {
1699             buf[0] = shifted;
1700             return sizeof(buf[0]);
1701         } else {
1702             return 0;
1703         }
1704     } else {
1705         // Shift is not pressed and NumLock is off, or,
1706         // Shift is pressed and NumLock is on, in which case we want the
1707         // NumLock and Shift to neutralize each other, thus, we want the normal
1708         // sequence.
1709         return _get_modifier_sequence(buf, vk, control_key_state, normal);
1710     }
1711     // If Shift is not pressed and NumLock is on, a different virtual key code
1712     // is returned by Windows, which can be taken care of by a different case
1713     // statement in _console_read().
1714 }
1715 
1716 // The decimal key on the keypad produces a '.' for U.S. English and a ',' for
1717 // Standard German. Figure this out at runtime so we know what to output for
1718 // Shift-VK_DELETE.
_get_decimal_char()1719 static char _get_decimal_char() {
1720     return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
1721 }
1722 
1723 // Prefix the len bytes in buf with the escape character, and then return the
1724 // new buffer length.
_escape_prefix(char * const buf,const size_t len)1725 size_t _escape_prefix(char* const buf, const size_t len) {
1726     // If nothing to prefix, don't do anything. We might be called with
1727     // len == 0, if alt was held down with a dead key which produced nothing.
1728     if (len == 0) {
1729         return 0;
1730     }
1731 
1732     memmove(&buf[1], buf, len);
1733     buf[0] = '\x1b';
1734     return len + 1;
1735 }
1736 
1737 // Internal buffer to satisfy future _console_read() calls.
1738 static auto& g_console_input_buffer = *new std::vector<char>();
1739 
1740 // Writes to buffer buf (of length len), returning number of bytes written or -1 on error. Never
1741 // returns zero on console closure because Win32 consoles are never 'closed' (as far as I can tell).
_console_read(const HANDLE console,void * buf,size_t len)1742 static int _console_read(const HANDLE console, void* buf, size_t len) {
1743     for (;;) {
1744         // Read of zero bytes should not block waiting for something from the console.
1745         if (len == 0) {
1746             return 0;
1747         }
1748 
1749         // Flush as much as possible from input buffer.
1750         if (!g_console_input_buffer.empty()) {
1751             const int bytes_read = std::min(len, g_console_input_buffer.size());
1752             memcpy(buf, g_console_input_buffer.data(), bytes_read);
1753             const auto begin = g_console_input_buffer.begin();
1754             g_console_input_buffer.erase(begin, begin + bytes_read);
1755             return bytes_read;
1756         }
1757 
1758         // Read from the actual console. This may block until input.
1759         INPUT_RECORD input_record;
1760         if (!_get_key_event_record(console, &input_record)) {
1761             return -1;
1762         }
1763 
1764         KEY_EVENT_RECORD* const key_event = &input_record.Event.KeyEvent;
1765         const WORD vk = key_event->wVirtualKeyCode;
1766         const CHAR ch = key_event->uChar.AsciiChar;
1767         const DWORD control_key_state = _normalize_altgr_control_key_state(
1768             key_event);
1769 
1770         // The following emulation code should write the output sequence to
1771         // either seqstr or to seqbuf and seqbuflen.
1772         const char* seqstr = NULL;  // NULL terminated C-string
1773         // Enough space for max sequence string below, plus modifiers and/or
1774         // escape prefix.
1775         char seqbuf[16];
1776         size_t seqbuflen = 0;       // Space used in seqbuf.
1777 
1778 #define MATCH(vk, normal) \
1779             case (vk): \
1780             { \
1781                 seqstr = (normal); \
1782             } \
1783             break;
1784 
1785         // Modifier keys should affect the output sequence.
1786 #define MATCH_MODIFIER(vk, normal) \
1787             case (vk): \
1788             { \
1789                 seqbuflen = _get_modifier_sequence(seqbuf, (vk), \
1790                     control_key_state, (normal)); \
1791             } \
1792             break;
1793 
1794         // The shift key should affect the output sequence.
1795 #define MATCH_KEYPAD(vk, normal, shifted) \
1796             case (vk): \
1797             { \
1798                 seqstr = _get_keypad_sequence(control_key_state, (normal), \
1799                     (shifted)); \
1800             } \
1801             break;
1802 
1803         // The shift key and other modifier keys should affect the output
1804         // sequence.
1805 #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \
1806             case (vk): \
1807             { \
1808                 seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \
1809                     control_key_state, (normal), (shifted)); \
1810             } \
1811             break;
1812 
1813 #define ESC "\x1b"
1814 #define CSI ESC "["
1815 #define SS3 ESC "O"
1816 
1817         // Only support normal mode, not application mode.
1818 
1819         // Enhanced keys:
1820         // * 6-pack: insert, delete, home, end, page up, page down
1821         // * cursor keys: up, down, right, left
1822         // * keypad: divide, enter
1823         // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT,
1824         //   VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK
1825         if (_is_enhanced_key(control_key_state)) {
1826             switch (vk) {
1827                 case VK_RETURN: // Enter key on keypad
1828                     if (_is_ctrl_pressed(control_key_state)) {
1829                         seqstr = "\n";
1830                     } else {
1831                         seqstr = "\r";
1832                     }
1833                     break;
1834 
1835                 MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up
1836                 MATCH_MODIFIER(VK_NEXT,  CSI "6~"); // Page Down
1837 
1838                 // gnome-terminal currently sends SS3 "F" and SS3 "H", but that
1839                 // will be fixed soon to match xterm which sends CSI "F" and
1840                 // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764
1841                 MATCH(VK_END,  CSI "F");
1842                 MATCH(VK_HOME, CSI "H");
1843 
1844                 MATCH_MODIFIER(VK_LEFT,  CSI "D");
1845                 MATCH_MODIFIER(VK_UP,    CSI "A");
1846                 MATCH_MODIFIER(VK_RIGHT, CSI "C");
1847                 MATCH_MODIFIER(VK_DOWN,  CSI "B");
1848 
1849                 MATCH_MODIFIER(VK_INSERT, CSI "2~");
1850                 MATCH_MODIFIER(VK_DELETE, CSI "3~");
1851 
1852                 MATCH(VK_DIVIDE, "/");
1853             }
1854         } else {    // Non-enhanced keys:
1855             switch (vk) {
1856                 case VK_BACK:   // backspace
1857                     if (_is_alt_pressed(control_key_state)) {
1858                         seqstr = ESC "\x7f";
1859                     } else {
1860                         seqstr = "\x7f";
1861                     }
1862                     break;
1863 
1864                 case VK_TAB:
1865                     if (_is_shift_pressed(control_key_state)) {
1866                         seqstr = CSI "Z";
1867                     } else {
1868                         seqstr = "\t";
1869                     }
1870                     break;
1871 
1872                 // Number 5 key in keypad when NumLock is off, or if NumLock is
1873                 // on and Shift is down.
1874                 MATCH_KEYPAD(VK_CLEAR, CSI "E", "5");
1875 
1876                 case VK_RETURN:     // Enter key on main keyboard
1877                     if (_is_alt_pressed(control_key_state)) {
1878                         seqstr = ESC "\n";
1879                     } else if (_is_ctrl_pressed(control_key_state)) {
1880                         seqstr = "\n";
1881                     } else {
1882                         seqstr = "\r";
1883                     }
1884                     break;
1885 
1886                 // VK_ESCAPE: Don't do any special handling. The OS uses many
1887                 // of the sequences with Escape and many of the remaining
1888                 // sequences don't produce bKeyDown messages, only !bKeyDown
1889                 // for whatever reason.
1890 
1891                 case VK_SPACE:
1892                     if (_is_alt_pressed(control_key_state)) {
1893                         seqstr = ESC " ";
1894                     } else if (_is_ctrl_pressed(control_key_state)) {
1895                         seqbuf[0] = '\0';   // NULL char
1896                         seqbuflen = 1;
1897                     } else {
1898                         seqstr = " ";
1899                     }
1900                     break;
1901 
1902                 MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up
1903                 MATCH_MODIFIER_KEYPAD(VK_NEXT,  CSI "6~", '3'); // Page Down
1904 
1905                 MATCH_KEYPAD(VK_END,  CSI "4~", "1");
1906                 MATCH_KEYPAD(VK_HOME, CSI "1~", "7");
1907 
1908                 MATCH_MODIFIER_KEYPAD(VK_LEFT,  CSI "D", '4');
1909                 MATCH_MODIFIER_KEYPAD(VK_UP,    CSI "A", '8');
1910                 MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6');
1911                 MATCH_MODIFIER_KEYPAD(VK_DOWN,  CSI "B", '2');
1912 
1913                 MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0');
1914                 MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~",
1915                     _get_decimal_char());
1916 
1917                 case 0x30:          // 0
1918                 case 0x31:          // 1
1919                 case 0x39:          // 9
1920                 case VK_OEM_1:      // ;:
1921                 case VK_OEM_PLUS:   // =+
1922                 case VK_OEM_COMMA:  // ,<
1923                 case VK_OEM_PERIOD: // .>
1924                 case VK_OEM_7:      // '"
1925                 case VK_OEM_102:    // depends on keyboard, could be <> or \|
1926                 case VK_OEM_2:      // /?
1927                 case VK_OEM_3:      // `~
1928                 case VK_OEM_4:      // [{
1929                 case VK_OEM_5:      // \|
1930                 case VK_OEM_6:      // ]}
1931                 {
1932                     seqbuflen = _get_control_character(seqbuf, key_event,
1933                         control_key_state);
1934 
1935                     if (_is_alt_pressed(control_key_state)) {
1936                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1937                     }
1938                 }
1939                 break;
1940 
1941                 case 0x32:          // 2
1942                 case 0x33:          // 3
1943                 case 0x34:          // 4
1944                 case 0x35:          // 5
1945                 case 0x36:          // 6
1946                 case 0x37:          // 7
1947                 case 0x38:          // 8
1948                 case VK_OEM_MINUS:  // -_
1949                 {
1950                     seqbuflen = _get_control_character(seqbuf, key_event,
1951                         control_key_state);
1952 
1953                     // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
1954                     // prefix with escape.
1955                     if (_is_alt_pressed(control_key_state) &&
1956                         !(_is_ctrl_pressed(control_key_state) &&
1957                         !_is_shift_pressed(control_key_state))) {
1958                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1959                     }
1960                 }
1961                 break;
1962 
1963                 case 0x41:  // a
1964                 case 0x42:  // b
1965                 case 0x43:  // c
1966                 case 0x44:  // d
1967                 case 0x45:  // e
1968                 case 0x46:  // f
1969                 case 0x47:  // g
1970                 case 0x48:  // h
1971                 case 0x49:  // i
1972                 case 0x4a:  // j
1973                 case 0x4b:  // k
1974                 case 0x4c:  // l
1975                 case 0x4d:  // m
1976                 case 0x4e:  // n
1977                 case 0x4f:  // o
1978                 case 0x50:  // p
1979                 case 0x51:  // q
1980                 case 0x52:  // r
1981                 case 0x53:  // s
1982                 case 0x54:  // t
1983                 case 0x55:  // u
1984                 case 0x56:  // v
1985                 case 0x57:  // w
1986                 case 0x58:  // x
1987                 case 0x59:  // y
1988                 case 0x5a:  // z
1989                 {
1990                     seqbuflen = _get_non_alt_char(seqbuf, key_event,
1991                         control_key_state);
1992 
1993                     // If Alt is pressed, then prefix with escape.
1994                     if (_is_alt_pressed(control_key_state)) {
1995                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1996                     }
1997                 }
1998                 break;
1999 
2000                 // These virtual key codes are generated by the keys on the
2001                 // keypad *when NumLock is on* and *Shift is up*.
2002                 MATCH(VK_NUMPAD0, "0");
2003                 MATCH(VK_NUMPAD1, "1");
2004                 MATCH(VK_NUMPAD2, "2");
2005                 MATCH(VK_NUMPAD3, "3");
2006                 MATCH(VK_NUMPAD4, "4");
2007                 MATCH(VK_NUMPAD5, "5");
2008                 MATCH(VK_NUMPAD6, "6");
2009                 MATCH(VK_NUMPAD7, "7");
2010                 MATCH(VK_NUMPAD8, "8");
2011                 MATCH(VK_NUMPAD9, "9");
2012 
2013                 MATCH(VK_MULTIPLY, "*");
2014                 MATCH(VK_ADD,      "+");
2015                 MATCH(VK_SUBTRACT, "-");
2016                 // VK_DECIMAL is generated by the . key on the keypad *when
2017                 // NumLock is on* and *Shift is up* and the sequence is not
2018                 // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the
2019                 // Windows Security screen to come up).
2020                 case VK_DECIMAL:
2021                     // U.S. English uses '.', Germany German uses ','.
2022                     seqbuflen = _get_non_control_char(seqbuf, key_event,
2023                         control_key_state);
2024                     break;
2025 
2026                 MATCH_MODIFIER(VK_F1,  SS3 "P");
2027                 MATCH_MODIFIER(VK_F2,  SS3 "Q");
2028                 MATCH_MODIFIER(VK_F3,  SS3 "R");
2029                 MATCH_MODIFIER(VK_F4,  SS3 "S");
2030                 MATCH_MODIFIER(VK_F5,  CSI "15~");
2031                 MATCH_MODIFIER(VK_F6,  CSI "17~");
2032                 MATCH_MODIFIER(VK_F7,  CSI "18~");
2033                 MATCH_MODIFIER(VK_F8,  CSI "19~");
2034                 MATCH_MODIFIER(VK_F9,  CSI "20~");
2035                 MATCH_MODIFIER(VK_F10, CSI "21~");
2036                 MATCH_MODIFIER(VK_F11, CSI "23~");
2037                 MATCH_MODIFIER(VK_F12, CSI "24~");
2038 
2039                 MATCH_MODIFIER(VK_F13, CSI "25~");
2040                 MATCH_MODIFIER(VK_F14, CSI "26~");
2041                 MATCH_MODIFIER(VK_F15, CSI "28~");
2042                 MATCH_MODIFIER(VK_F16, CSI "29~");
2043                 MATCH_MODIFIER(VK_F17, CSI "31~");
2044                 MATCH_MODIFIER(VK_F18, CSI "32~");
2045                 MATCH_MODIFIER(VK_F19, CSI "33~");
2046                 MATCH_MODIFIER(VK_F20, CSI "34~");
2047 
2048                 // MATCH_MODIFIER(VK_F21, ???);
2049                 // MATCH_MODIFIER(VK_F22, ???);
2050                 // MATCH_MODIFIER(VK_F23, ???);
2051                 // MATCH_MODIFIER(VK_F24, ???);
2052             }
2053         }
2054 
2055 #undef MATCH
2056 #undef MATCH_MODIFIER
2057 #undef MATCH_KEYPAD
2058 #undef MATCH_MODIFIER_KEYPAD
2059 #undef ESC
2060 #undef CSI
2061 #undef SS3
2062 
2063         const char* out;
2064         size_t outlen;
2065 
2066         // Check for output in any of:
2067         // * seqstr is set (and strlen can be used to determine the length).
2068         // * seqbuf and seqbuflen are set
2069         // Fallback to ch from Windows.
2070         if (seqstr != NULL) {
2071             out = seqstr;
2072             outlen = strlen(seqstr);
2073         } else if (seqbuflen > 0) {
2074             out = seqbuf;
2075             outlen = seqbuflen;
2076         } else if (ch != '\0') {
2077             // Use whatever Windows told us it is.
2078             seqbuf[0] = ch;
2079             seqbuflen = 1;
2080             out = seqbuf;
2081             outlen = seqbuflen;
2082         } else {
2083             // No special handling for the virtual key code and Windows isn't
2084             // telling us a character code, then we don't know how to translate
2085             // the key press.
2086             //
2087             // Consume the input and 'continue' to cause us to get a new key
2088             // event.
2089             D("_console_read: unknown virtual key code: %d, enhanced: %s",
2090                 vk, _is_enhanced_key(control_key_state) ? "true" : "false");
2091             continue;
2092         }
2093 
2094         // put output wRepeatCount times into g_console_input_buffer
2095         while (key_event->wRepeatCount-- > 0) {
2096             g_console_input_buffer.insert(g_console_input_buffer.end(), out, out + outlen);
2097         }
2098 
2099         // Loop around and try to flush g_console_input_buffer
2100     }
2101 }
2102 
2103 static DWORD _old_console_mode; // previous GetConsoleMode() result
2104 static HANDLE _console_handle;  // when set, console mode should be restored
2105 
stdin_raw_init()2106 void stdin_raw_init() {
2107     const HANDLE in = _get_console_handle(STDIN_FILENO, &_old_console_mode);
2108     if (in == nullptr) {
2109         return;
2110     }
2111 
2112     // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of
2113     // calling the process Ctrl-C routine (configured by
2114     // SetConsoleCtrlHandler()).
2115     // Disable ENABLE_LINE_INPUT so that input is immediately sent.
2116     // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this
2117     // flag also seems necessary to have proper line-ending processing.
2118     DWORD new_console_mode = _old_console_mode & ~(ENABLE_PROCESSED_INPUT |
2119                                                    ENABLE_LINE_INPUT |
2120                                                    ENABLE_ECHO_INPUT);
2121     // Enable ENABLE_WINDOW_INPUT to get window resizes.
2122     new_console_mode |= ENABLE_WINDOW_INPUT;
2123 
2124     if (!SetConsoleMode(in, new_console_mode)) {
2125         // This really should not fail.
2126         D("stdin_raw_init: SetConsoleMode() failed: %s",
2127           android::base::SystemErrorCodeToString(GetLastError()).c_str());
2128     }
2129 
2130     // Once this is set, it means that stdin has been configured for
2131     // reading from and that the old console mode should be restored later.
2132     _console_handle = in;
2133 
2134     // Note that we don't need to configure C Runtime line-ending
2135     // translation because _console_read() does not call the C Runtime to
2136     // read from the console.
2137 }
2138 
stdin_raw_restore()2139 void stdin_raw_restore() {
2140     if (_console_handle != NULL) {
2141         const HANDLE in = _console_handle;
2142         _console_handle = NULL;  // clear state
2143 
2144         if (!SetConsoleMode(in, _old_console_mode)) {
2145             // This really should not fail.
2146             D("stdin_raw_restore: SetConsoleMode() failed: %s",
2147               android::base::SystemErrorCodeToString(GetLastError()).c_str());
2148         }
2149     }
2150 }
2151 
2152 // Called by 'adb shell' and 'adb exec-in' (via unix_read()) to read from stdin.
unix_read_interruptible(int fd,void * buf,size_t len)2153 int unix_read_interruptible(int fd, void* buf, size_t len) {
2154     if ((fd == STDIN_FILENO) && (_console_handle != NULL)) {
2155         // If it is a request to read from stdin, and stdin_raw_init() has been
2156         // called, and it successfully configured the console, then read from
2157         // the console using Win32 console APIs and partially emulate a unix
2158         // terminal.
2159         return _console_read(_console_handle, buf, len);
2160     } else {
2161         // On older versions of Windows (definitely 7, definitely not 10),
2162         // ReadConsole() with a size >= 31367 fails, so if |fd| is a console
2163         // we need to limit the read size.
2164         if (len > 4096 && unix_isatty(fd)) {
2165             len = 4096;
2166         }
2167         // Just call into C Runtime which can read from pipes/files and which
2168         // can do LF/CR translation (which is overridable with _setmode()).
2169         // Undefine the macro that is set in sysdeps.h which bans calls to
2170         // plain read() in favor of unix_read() or adb_read().
2171 #pragma push_macro("read")
2172 #undef read
2173         return read(fd, buf, len);
2174 #pragma pop_macro("read")
2175     }
2176 }
2177 
2178 /**************************************************************************/
2179 /**************************************************************************/
2180 /*****                                                                *****/
2181 /*****      Unicode support                                           *****/
2182 /*****                                                                *****/
2183 /**************************************************************************/
2184 /**************************************************************************/
2185 
2186 // This implements support for using files with Unicode filenames and for
2187 // outputting Unicode text to a Win32 console window. This is inspired from
2188 // http://utf8everywhere.org/.
2189 //
2190 // Background
2191 // ----------
2192 //
2193 // On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8
2194 // filenames to APIs such as open(). This works because filenames are largely
2195 // opaque 'cookies' (perhaps excluding path separators).
2196 //
2197 // On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t
2198 // UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char
2199 // strings, but the strings are in the ANSI codepage and not UTF-8. (The
2200 // CreateFile() API is really just a macro that adds the W/A based on whether
2201 // the UNICODE preprocessor symbol is defined).
2202 //
2203 // Options
2204 // -------
2205 //
2206 // Thus, to write a portable program, there are a few options:
2207 //
2208 // 1. Write the program with wchar_t filenames (wchar_t path[256];).
2209 //    For Windows, just call CreateFileW(). For POSIX, write a wrapper openW()
2210 //    that takes a wchar_t string, converts it to UTF-8 and then calls the real
2211 //    open() API.
2212 //
2213 // 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and
2214 //    1 byte on POSIX. Make T-* wrappers for various OS APIs and call those,
2215 //    potentially touching a lot of code.
2216 //
2217 // 3. Write the program with a 1-byte char filenames (char path[256];) that are
2218 //    UTF-8. For POSIX, just call open(). For Windows, write a wrapper that
2219 //    takes a UTF-8 string, converts it to UTF-16 and then calls the real OS
2220 //    or C Runtime API.
2221 //
2222 // The Choice
2223 // ----------
2224 //
2225 // The code below chooses option 3, the UTF-8 everywhere strategy. It uses
2226 // android::base::WideToUTF8() which converts UTF-16 to UTF-8. This is used by the
2227 // NarrowArgs helper class that is used to convert wmain() args into UTF-8
2228 // args that are passed to main() at the beginning of program startup. We also use
2229 // android::base::UTF8ToWide() which converts from UTF-8 to UTF-16. This is used to
2230 // implement wrappers below that call UTF-16 OS and C Runtime APIs.
2231 //
2232 // Unicode console output
2233 // ----------------------
2234 //
2235 // The way to output Unicode to a Win32 console window is to call
2236 // WriteConsoleW() with UTF-16 text. (The user must also choose a proper font
2237 // such as Lucida Console or Consolas, and in the case of East Asian languages
2238 // (such as Chinese, Japanese, Korean), the user must go to the Control Panel
2239 // and change the "system locale" to Chinese, etc., which allows a Chinese, etc.
2240 // font to be used in console windows.)
2241 //
2242 // The problem is getting the C Runtime to make fprintf and related APIs call
2243 // WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds
2244 // promising, but the various modes have issues:
2245 //
2246 // 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and
2247 //    UTF-16 do not display properly.
2248 // 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out
2249 //    totally wrong.
2250 // 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter
2251 //    handler to be called (upon a later I/O call), aborting the process.
2252 // 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf
2253 //    to output nothing.
2254 //
2255 // So the only solution is to write our own adb_fprintf() that converts UTF-8
2256 // to UTF-16 and then calls WriteConsoleW().
2257 
2258 
2259 // Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to
2260 // be passed to main().
NarrowArgs(const int argc,wchar_t ** const argv)2261 NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) {
2262     narrow_args = new char*[argc + 1];
2263 
2264     for (int i = 0; i < argc; ++i) {
2265         std::string arg_narrow;
2266         if (!android::base::WideToUTF8(argv[i], &arg_narrow)) {
2267             fatal_errno("cannot convert argument from UTF-16 to UTF-8");
2268         }
2269         narrow_args[i] = strdup(arg_narrow.c_str());
2270     }
2271     narrow_args[argc] = nullptr;   // terminate
2272 }
2273 
~NarrowArgs()2274 NarrowArgs::~NarrowArgs() {
2275     if (narrow_args != nullptr) {
2276         for (char** argp = narrow_args; *argp != nullptr; ++argp) {
2277             free(*argp);
2278         }
2279         delete[] narrow_args;
2280         narrow_args = nullptr;
2281     }
2282 }
2283 
unix_open(const char * path,int options,...)2284 int unix_open(const char* path, int options, ...) {
2285     std::wstring path_wide;
2286     if (!android::base::UTF8ToWide(path, &path_wide)) {
2287         return -1;
2288     }
2289     if ((options & O_CREAT) == 0) {
2290         return _wopen(path_wide.c_str(), options);
2291     } else {
2292         int      mode;
2293         va_list  args;
2294         va_start(args, options);
2295         mode = va_arg(args, int);
2296         va_end(args);
2297         return _wopen(path_wide.c_str(), options, mode);
2298     }
2299 }
2300 
2301 // Version of stat() that takes a UTF-8 path.
adb_stat(const char * path,struct adb_stat * s)2302 int adb_stat(const char* path, struct adb_stat* s) {
2303 #pragma push_macro("wstat")
2304 // This definition of wstat seems to be missing from <sys/stat.h>.
2305 #if defined(_FILE_OFFSET_BITS) && (_FILE_OFFSET_BITS == 64)
2306 #ifdef _USE_32BIT_TIME_T
2307 #define wstat _wstat32i64
2308 #else
2309 #define wstat _wstat64
2310 #endif
2311 #else
2312 // <sys/stat.h> has a function prototype for wstat() that should be available.
2313 #endif
2314 
2315     std::wstring path_wide;
2316     if (!android::base::UTF8ToWide(path, &path_wide)) {
2317         return -1;
2318     }
2319 
2320     return wstat(path_wide.c_str(), s);
2321 
2322 #pragma pop_macro("wstat")
2323 }
2324 
2325 // Version of opendir() that takes a UTF-8 path.
adb_opendir(const char * path)2326 DIR* adb_opendir(const char* path) {
2327     std::wstring path_wide;
2328     if (!android::base::UTF8ToWide(path, &path_wide)) {
2329         return nullptr;
2330     }
2331 
2332     // Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of
2333     // the fields, but right now all the callers treat the structure as
2334     // opaque.
2335     return reinterpret_cast<DIR*>(_wopendir(path_wide.c_str()));
2336 }
2337 
2338 // Version of readdir() that returns UTF-8 paths.
adb_readdir(DIR * dir)2339 struct dirent* adb_readdir(DIR* dir) {
2340     _WDIR* const wdir = reinterpret_cast<_WDIR*>(dir);
2341     struct _wdirent* const went = _wreaddir(wdir);
2342     if (went == nullptr) {
2343         return nullptr;
2344     }
2345 
2346     // Convert from UTF-16 to UTF-8.
2347     std::string name_utf8;
2348     if (!android::base::WideToUTF8(went->d_name, &name_utf8)) {
2349         return nullptr;
2350     }
2351 
2352     // Cast the _wdirent* to dirent* and overwrite the d_name field (which has
2353     // space for UTF-16 wchar_t's) with UTF-8 char's.
2354     struct dirent* ent = reinterpret_cast<struct dirent*>(went);
2355 
2356     if (name_utf8.length() + 1 > sizeof(went->d_name)) {
2357         // Name too big to fit in existing buffer.
2358         errno = ENOMEM;
2359         return nullptr;
2360     }
2361 
2362     // Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name)
2363     // because _wdirent contains wchar_t instead of char. So even if name_utf8
2364     // can fit in _wdirent::d_name, the resulting dirent::d_name field may be
2365     // bigger than the caller expects because they expect a dirent structure
2366     // which has a smaller d_name field. Ignore this since the caller should be
2367     // resilient.
2368 
2369     // Rewrite the UTF-16 d_name field to UTF-8.
2370     strcpy(ent->d_name, name_utf8.c_str());
2371 
2372     return ent;
2373 }
2374 
2375 // Version of closedir() to go with our version of adb_opendir().
adb_closedir(DIR * dir)2376 int adb_closedir(DIR* dir) {
2377     return _wclosedir(reinterpret_cast<_WDIR*>(dir));
2378 }
2379 
2380 // Version of unlink() that takes a UTF-8 path.
adb_unlink(const char * path)2381 int adb_unlink(const char* path) {
2382     std::wstring wpath;
2383     if (!android::base::UTF8ToWide(path, &wpath)) {
2384         return -1;
2385     }
2386 
2387     int  rc = _wunlink(wpath.c_str());
2388 
2389     if (rc == -1 && errno == EACCES) {
2390         /* unlink returns EACCES when the file is read-only, so we first */
2391         /* try to make it writable, then unlink again...                 */
2392         rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE);
2393         if (rc == 0)
2394             rc = _wunlink(wpath.c_str());
2395     }
2396     return rc;
2397 }
2398 
2399 // Version of mkdir() that takes a UTF-8 path.
adb_mkdir(const std::string & path,int mode)2400 int adb_mkdir(const std::string& path, int mode) {
2401     std::wstring path_wide;
2402     if (!android::base::UTF8ToWide(path, &path_wide)) {
2403         return -1;
2404     }
2405 
2406     return _wmkdir(path_wide.c_str());
2407 }
2408 
2409 // Version of utime() that takes a UTF-8 path.
adb_utime(const char * path,struct utimbuf * u)2410 int adb_utime(const char* path, struct utimbuf* u) {
2411     std::wstring path_wide;
2412     if (!android::base::UTF8ToWide(path, &path_wide)) {
2413         return -1;
2414     }
2415 
2416     static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf),
2417         "utimbuf and _utimbuf should be the same size because they both "
2418         "contain the same types, namely time_t");
2419     return _wutime(path_wide.c_str(), reinterpret_cast<struct _utimbuf*>(u));
2420 }
2421 
2422 // Version of chmod() that takes a UTF-8 path.
adb_chmod(const char * path,int mode)2423 int adb_chmod(const char* path, int mode) {
2424     std::wstring path_wide;
2425     if (!android::base::UTF8ToWide(path, &path_wide)) {
2426         return -1;
2427     }
2428 
2429     return _wchmod(path_wide.c_str(), mode);
2430 }
2431 
2432 // From libutils/Unicode.cpp, get the length of a UTF-8 sequence given the lead byte.
utf8_codepoint_len(uint8_t ch)2433 static inline size_t utf8_codepoint_len(uint8_t ch) {
2434     return ((0xe5000000 >> ((ch >> 3) & 0x1e)) & 3) + 1;
2435 }
2436 
2437 namespace internal {
2438 
2439 // Given a sequence of UTF-8 bytes (denoted by the range [first, last)), return the number of bytes
2440 // (from the beginning) that are complete UTF-8 sequences and append the remaining bytes to
2441 // remaining_bytes.
ParseCompleteUTF8(const char * const first,const char * const last,std::vector<char> * const remaining_bytes)2442 size_t ParseCompleteUTF8(const char* const first, const char* const last,
2443                          std::vector<char>* const remaining_bytes) {
2444     // Walk backwards from the end of the sequence looking for the beginning of a UTF-8 sequence.
2445     // Current_after points one byte past the current byte to be examined.
2446     for (const char* current_after = last; current_after != first; --current_after) {
2447         const char* const current = current_after - 1;
2448         const char ch = *current;
2449         const char kHighBit = 0x80u;
2450         const char kTwoHighestBits = 0xC0u;
2451         if ((ch & kHighBit) == 0) { // high bit not set
2452             // The buffer ends with a one-byte UTF-8 sequence, possibly followed by invalid trailing
2453             // bytes with no leading byte, so return the entire buffer.
2454             break;
2455         } else if ((ch & kTwoHighestBits) == kTwoHighestBits) { // top two highest bits set
2456             // Lead byte in UTF-8 sequence, so check if we have all the bytes in the sequence.
2457             const size_t bytes_available = last - current;
2458             if (bytes_available < utf8_codepoint_len(ch)) {
2459                 // We don't have all the bytes in the UTF-8 sequence, so return all the bytes
2460                 // preceding the current incomplete UTF-8 sequence and append the remaining bytes
2461                 // to remaining_bytes.
2462                 remaining_bytes->insert(remaining_bytes->end(), current, last);
2463                 return current - first;
2464             } else {
2465                 // The buffer ends with a complete UTF-8 sequence, possibly followed by invalid
2466                 // trailing bytes with no lead byte, so return the entire buffer.
2467                 break;
2468             }
2469         } else {
2470             // Trailing byte, so keep going backwards looking for the lead byte.
2471         }
2472     }
2473 
2474     // Return the size of the entire buffer. It is possible that we walked backward past invalid
2475     // trailing bytes with no lead byte, in which case we want to return all those invalid bytes
2476     // so that they can be processed.
2477     return last - first;
2478 }
2479 
2480 }
2481 
2482 // Bytes that have not yet been output to the console because they are incomplete UTF-8 sequences.
2483 // Note that we use only one buffer even though stderr and stdout are logically separate streams.
2484 // This matches the behavior of Linux.
2485 // Protected by g_console_output_buffer_lock.
2486 static auto& g_console_output_buffer = *new std::vector<char>();
2487 
2488 // Internal helper function to write UTF-8 bytes to a console. Returns -1 on error.
_console_write_utf8(const char * const buf,const size_t buf_size,FILE * stream,HANDLE console)2489 static int _console_write_utf8(const char* const buf, const size_t buf_size, FILE* stream,
2490                                HANDLE console) {
2491     const int saved_errno = errno;
2492     std::vector<char> combined_buffer;
2493 
2494     // Complete UTF-8 sequences that should be immediately written to the console.
2495     const char* utf8;
2496     size_t utf8_size;
2497 
2498     adb_mutex_lock(&g_console_output_buffer_lock);
2499     if (g_console_output_buffer.empty()) {
2500         // If g_console_output_buffer doesn't have a buffered up incomplete UTF-8 sequence (the
2501         // common case with plain ASCII), parse buf directly.
2502         utf8 = buf;
2503         utf8_size = internal::ParseCompleteUTF8(buf, buf + buf_size, &g_console_output_buffer);
2504     } else {
2505         // If g_console_output_buffer has a buffered up incomplete UTF-8 sequence, move it to
2506         // combined_buffer (and effectively clear g_console_output_buffer) and append buf to
2507         // combined_buffer, then parse it all together.
2508         combined_buffer.swap(g_console_output_buffer);
2509         combined_buffer.insert(combined_buffer.end(), buf, buf + buf_size);
2510 
2511         utf8 = combined_buffer.data();
2512         utf8_size = internal::ParseCompleteUTF8(utf8, utf8 + combined_buffer.size(),
2513                                                 &g_console_output_buffer);
2514     }
2515     adb_mutex_unlock(&g_console_output_buffer_lock);
2516 
2517     std::wstring utf16;
2518 
2519     // Try to convert from data that might be UTF-8 to UTF-16, ignoring errors (just like Linux
2520     // which does not return an error on bad UTF-8). Data might not be UTF-8 if the user cat's
2521     // random data, runs dmesg (which might have non-UTF-8), etc.
2522     // This could throw std::bad_alloc.
2523     (void)android::base::UTF8ToWide(utf8, utf8_size, &utf16);
2524 
2525     // Note that this does not do \n => \r\n translation because that
2526     // doesn't seem necessary for the Windows console. For the Windows
2527     // console \r moves to the beginning of the line and \n moves to a new
2528     // line.
2529 
2530     // Flush any stream buffering so that our output is afterwards which
2531     // makes sense because our call is afterwards.
2532     (void)fflush(stream);
2533 
2534     // Write UTF-16 to the console.
2535     DWORD written = 0;
2536     if (!WriteConsoleW(console, utf16.c_str(), utf16.length(), &written, NULL)) {
2537         errno = EIO;
2538         return -1;
2539     }
2540 
2541     // Return the size of the original buffer passed in, signifying that we consumed it all, even
2542     // if nothing was displayed, in the case of being passed an incomplete UTF-8 sequence. This
2543     // matches the Linux behavior.
2544     errno = saved_errno;
2545     return buf_size;
2546 }
2547 
2548 // Function prototype because attributes cannot be placed on func definitions.
2549 static int _console_vfprintf(const HANDLE console, FILE* stream,
2550                              const char *format, va_list ap)
2551     __attribute__((__format__(ADB_FORMAT_ARCHETYPE, 3, 0)));
2552 
2553 // Internal function to format a UTF-8 string and write it to a Win32 console.
2554 // Returns -1 on error.
_console_vfprintf(const HANDLE console,FILE * stream,const char * format,va_list ap)2555 static int _console_vfprintf(const HANDLE console, FILE* stream,
2556                              const char *format, va_list ap) {
2557     const int saved_errno = errno;
2558     std::string output_utf8;
2559 
2560     // Format the string.
2561     // This could throw std::bad_alloc.
2562     android::base::StringAppendV(&output_utf8, format, ap);
2563 
2564     const int result = _console_write_utf8(output_utf8.c_str(), output_utf8.length(), stream,
2565                                            console);
2566     if (result != -1) {
2567         errno = saved_errno;
2568     } else {
2569         // If -1 was returned, errno has been set.
2570     }
2571     return result;
2572 }
2573 
2574 // Version of vfprintf() that takes UTF-8 and can write Unicode to a
2575 // Windows console.
adb_vfprintf(FILE * stream,const char * format,va_list ap)2576 int adb_vfprintf(FILE *stream, const char *format, va_list ap) {
2577     const HANDLE console = _get_console_handle(stream);
2578 
2579     // If there is an associated Win32 console, write to it specially,
2580     // otherwise defer to the regular C Runtime, passing it UTF-8.
2581     if (console != NULL) {
2582         return _console_vfprintf(console, stream, format, ap);
2583     } else {
2584         // If vfprintf is a macro, undefine it, so we can call the real
2585         // C Runtime API.
2586 #pragma push_macro("vfprintf")
2587 #undef vfprintf
2588         return vfprintf(stream, format, ap);
2589 #pragma pop_macro("vfprintf")
2590     }
2591 }
2592 
2593 // Version of vprintf() that takes UTF-8 and can write Unicode to a Windows console.
adb_vprintf(const char * format,va_list ap)2594 int adb_vprintf(const char *format, va_list ap) {
2595     return adb_vfprintf(stdout, format, ap);
2596 }
2597 
2598 // Version of fprintf() that takes UTF-8 and can write Unicode to a
2599 // Windows console.
adb_fprintf(FILE * stream,const char * format,...)2600 int adb_fprintf(FILE *stream, const char *format, ...) {
2601     va_list ap;
2602     va_start(ap, format);
2603     const int result = adb_vfprintf(stream, format, ap);
2604     va_end(ap);
2605 
2606     return result;
2607 }
2608 
2609 // Version of printf() that takes UTF-8 and can write Unicode to a
2610 // Windows console.
adb_printf(const char * format,...)2611 int adb_printf(const char *format, ...) {
2612     va_list ap;
2613     va_start(ap, format);
2614     const int result = adb_vfprintf(stdout, format, ap);
2615     va_end(ap);
2616 
2617     return result;
2618 }
2619 
2620 // Version of fputs() that takes UTF-8 and can write Unicode to a
2621 // Windows console.
adb_fputs(const char * buf,FILE * stream)2622 int adb_fputs(const char* buf, FILE* stream) {
2623     // adb_fprintf returns -1 on error, which is conveniently the same as EOF
2624     // which fputs (and hence adb_fputs) should return on error.
2625     static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2626     return adb_fprintf(stream, "%s", buf);
2627 }
2628 
2629 // Version of fputc() that takes UTF-8 and can write Unicode to a
2630 // Windows console.
adb_fputc(int ch,FILE * stream)2631 int adb_fputc(int ch, FILE* stream) {
2632     const int result = adb_fprintf(stream, "%c", ch);
2633     if (result == -1) {
2634         return EOF;
2635     }
2636     // For success, fputc returns the char, cast to unsigned char, then to int.
2637     return static_cast<unsigned char>(ch);
2638 }
2639 
2640 // Version of putchar() that takes UTF-8 and can write Unicode to a Windows console.
adb_putchar(int ch)2641 int adb_putchar(int ch) {
2642     return adb_fputc(ch, stdout);
2643 }
2644 
2645 // Version of puts() that takes UTF-8 and can write Unicode to a Windows console.
adb_puts(const char * buf)2646 int adb_puts(const char* buf) {
2647     // adb_printf returns -1 on error, which is conveniently the same as EOF
2648     // which puts (and hence adb_puts) should return on error.
2649     static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2650     return adb_printf("%s\n", buf);
2651 }
2652 
2653 // Internal function to write UTF-8 to a Win32 console. Returns the number of
2654 // items (of length size) written. On error, returns a short item count or 0.
_console_fwrite(const void * ptr,size_t size,size_t nmemb,FILE * stream,HANDLE console)2655 static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb,
2656                               FILE* stream, HANDLE console) {
2657     const int result = _console_write_utf8(reinterpret_cast<const char*>(ptr), size * nmemb, stream,
2658                                            console);
2659     if (result == -1) {
2660         return 0;
2661     }
2662     return result / size;
2663 }
2664 
2665 // Version of fwrite() that takes UTF-8 and can write Unicode to a
2666 // Windows console.
adb_fwrite(const void * ptr,size_t size,size_t nmemb,FILE * stream)2667 size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) {
2668     const HANDLE console = _get_console_handle(stream);
2669 
2670     // If there is an associated Win32 console, write to it specially,
2671     // otherwise defer to the regular C Runtime, passing it UTF-8.
2672     if (console != NULL) {
2673         return _console_fwrite(ptr, size, nmemb, stream, console);
2674     } else {
2675         // If fwrite is a macro, undefine it, so we can call the real
2676         // C Runtime API.
2677 #pragma push_macro("fwrite")
2678 #undef fwrite
2679         return fwrite(ptr, size, nmemb, stream);
2680 #pragma pop_macro("fwrite")
2681     }
2682 }
2683 
2684 // Version of fopen() that takes a UTF-8 filename and can access a file with
2685 // a Unicode filename.
adb_fopen(const char * path,const char * mode)2686 FILE* adb_fopen(const char* path, const char* mode) {
2687     std::wstring path_wide;
2688     if (!android::base::UTF8ToWide(path, &path_wide)) {
2689         return nullptr;
2690     }
2691 
2692     std::wstring mode_wide;
2693     if (!android::base::UTF8ToWide(mode, &mode_wide)) {
2694         return nullptr;
2695     }
2696 
2697     return _wfopen(path_wide.c_str(), mode_wide.c_str());
2698 }
2699 
2700 // Return a lowercase version of the argument. Uses C Runtime tolower() on
2701 // each byte which is not UTF-8 aware, and theoretically uses the current C
2702 // Runtime locale (which in practice is not changed, so this becomes a ASCII
2703 // conversion).
ToLower(const std::string & anycase)2704 static std::string ToLower(const std::string& anycase) {
2705     // copy string
2706     std::string str(anycase);
2707     // transform the copy
2708     std::transform(str.begin(), str.end(), str.begin(), tolower);
2709     return str;
2710 }
2711 
2712 extern "C" int main(int argc, char** argv);
2713 
2714 // Link with -municode to cause this wmain() to be used as the program
2715 // entrypoint. It will convert the args from UTF-16 to UTF-8 and call the
2716 // regular main() with UTF-8 args.
wmain(int argc,wchar_t ** argv)2717 extern "C" int wmain(int argc, wchar_t **argv) {
2718     // Convert args from UTF-16 to UTF-8 and pass that to main().
2719     NarrowArgs narrow_args(argc, argv);
2720     return main(argc, narrow_args.data());
2721 }
2722 
2723 // Shadow UTF-8 environment variable name/value pairs that are created from
2724 // _wenviron the first time that adb_getenv() is called. Note that this is not
2725 // currently updated if putenv, setenv, unsetenv are called. Note that no
2726 // thread synchronization is done, but we're called early enough in
2727 // single-threaded startup that things work ok.
2728 static auto& g_environ_utf8 = *new std::unordered_map<std::string, char*>();
2729 
2730 // Make sure that shadow UTF-8 environment variables are setup.
_ensure_env_setup()2731 static void _ensure_env_setup() {
2732     // If some name/value pairs exist, then we've already done the setup below.
2733     if (g_environ_utf8.size() != 0) {
2734         return;
2735     }
2736 
2737     if (_wenviron == nullptr) {
2738         // If _wenviron is null, then -municode probably wasn't used. That
2739         // linker flag will cause the entry point to setup _wenviron. It will
2740         // also require an implementation of wmain() (which we provide above).
2741         fatal("_wenviron is not set, did you link with -municode?");
2742     }
2743 
2744     // Read name/value pairs from UTF-16 _wenviron and write new name/value
2745     // pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense
2746     // to use the D() macro here because that tracing only works if the
2747     // ADB_TRACE environment variable is setup, but that env var can't be read
2748     // until this code completes.
2749     for (wchar_t** env = _wenviron; *env != nullptr; ++env) {
2750         wchar_t* const equal = wcschr(*env, L'=');
2751         if (equal == nullptr) {
2752             // Malformed environment variable with no equal sign. Shouldn't
2753             // really happen, but we should be resilient to this.
2754             continue;
2755         }
2756 
2757         // If we encounter an error converting UTF-16, don't error-out on account of a single env
2758         // var because the program might never even read this particular variable.
2759         std::string name_utf8;
2760         if (!android::base::WideToUTF8(*env, equal - *env, &name_utf8)) {
2761             continue;
2762         }
2763 
2764         // Store lowercase name so that we can do case-insensitive searches.
2765         name_utf8 = ToLower(name_utf8);
2766 
2767         std::string value_utf8;
2768         if (!android::base::WideToUTF8(equal + 1, &value_utf8)) {
2769             continue;
2770         }
2771 
2772         char* const value_dup = strdup(value_utf8.c_str());
2773 
2774         // Don't overwrite a previus env var with the same name. In reality,
2775         // the system probably won't let two env vars with the same name exist
2776         // in _wenviron.
2777         g_environ_utf8.insert({name_utf8, value_dup});
2778     }
2779 }
2780 
2781 // Version of getenv() that takes a UTF-8 environment variable name and
2782 // retrieves a UTF-8 value. Case-insensitive to match getenv() on Windows.
adb_getenv(const char * name)2783 char* adb_getenv(const char* name) {
2784     _ensure_env_setup();
2785 
2786     // Case-insensitive search by searching for lowercase name in a map of
2787     // lowercase names.
2788     const auto it = g_environ_utf8.find(ToLower(std::string(name)));
2789     if (it == g_environ_utf8.end()) {
2790         return nullptr;
2791     }
2792 
2793     return it->second;
2794 }
2795 
2796 // Version of getcwd() that returns the current working directory in UTF-8.
adb_getcwd(char * buf,int size)2797 char* adb_getcwd(char* buf, int size) {
2798     wchar_t* wbuf = _wgetcwd(nullptr, 0);
2799     if (wbuf == nullptr) {
2800         return nullptr;
2801     }
2802 
2803     std::string buf_utf8;
2804     const bool narrow_result = android::base::WideToUTF8(wbuf, &buf_utf8);
2805     free(wbuf);
2806     wbuf = nullptr;
2807 
2808     if (!narrow_result) {
2809         return nullptr;
2810     }
2811 
2812     // If size was specified, make sure all the chars will fit.
2813     if (size != 0) {
2814         if (size < static_cast<int>(buf_utf8.length() + 1)) {
2815             errno = ERANGE;
2816             return nullptr;
2817         }
2818     }
2819 
2820     // If buf was not specified, allocate storage.
2821     if (buf == nullptr) {
2822         if (size == 0) {
2823             size = buf_utf8.length() + 1;
2824         }
2825         buf = reinterpret_cast<char*>(malloc(size));
2826         if (buf == nullptr) {
2827             return nullptr;
2828         }
2829     }
2830 
2831     // Destination buffer was allocated with enough space, or we've already
2832     // checked an existing buffer size for enough space.
2833     strcpy(buf, buf_utf8.c_str());
2834 
2835     return buf;
2836 }
2837