| /external/smali/util/src/test/java/org/jf/util/ |
| D | PathUtilTest.java | 39 File[] roots = File.listRoots(); in pathUtilTest1() local 41 if (roots.length > 1) { in pathUtilTest1() 42 …File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar + "te… in pathUtilTest1() 43 …File relativePath = new File(roots[1] + "some" + File.separatorChar + "dir" + File.separatorChar +… in pathUtilTest1() 53 File[] roots = File.listRoots(); in pathUtilTest2() local 55 …File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar + "te… in pathUtilTest2() 56 …File relativePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar +… in pathUtilTest2() 68 File[] roots = File.listRoots(); in pathUtilTest3() local 70 … File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar); in pathUtilTest3() 71 … File relativePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar); in pathUtilTest3() [all …]
|
| /external/eigen/unsupported/doc/examples/ |
| D | PolynomialSolver1.cpp | 12 Vector5d roots = Vector5d::Random(); in main() local 13 cout << "Roots: " << roots.transpose() << endl; in main() 15 roots_to_monicPolynomial( roots, polynomial ); in main() 18 cout << "Complex roots: " << psolve.roots().transpose() << endl; in main() 23 cout << "Real roots: " << mapRR.transpose() << endl; in main() 33 cout << "Complex roots: " << psolvef.roots().transpose() << endl; in main() 35 …for( int i=0; i<6; ++i ){ evals[i] = std::abs( poly_eval( hardCase_polynomial, psolvef.roots()[i] … in main() 36 …cout << "Norms of the evaluations of the polynomial at the roots: " << evals.transpose() << endl <… in main() 41 cout << "Complex roots: " << psolve6d.roots().transpose() << endl; in main() 44 std::complex<float> castedRoot( psolve6d.roots()[i].real(), psolve6d.roots()[i].imag() ); in main() [all …]
|
| D | PolynomialUtils1.cpp | 9 Vector4d roots = Vector4d::Random(); in main() local 10 cout << "Roots: " << roots.transpose() << endl; in main() 12 roots_to_monicPolynomial( roots, polynomial ); in main() 18 evaluation[i] = poly_eval( polynomial, roots[i] ); } in main() 19 cout << "Evaluation of the polynomial at the roots: " << evaluation.transpose(); in main()
|
| /external/skia/src/pathops/ |
| D | SkPathOpsRect.cpp | 17 int roots = 0; in setBounds() local 19 roots = SkDQuad::FindExtrema(&sub[0].fX, tValues); in setBounds() 22 roots += SkDQuad::FindExtrema(&sub[0].fY, &tValues[roots]); in setBounds() 24 for (int index = 0; index < roots; ++index) { in setBounds() 34 int roots = 0; in setBounds() local 36 roots = SkDConic::FindExtrema(&sub[0].fX, sub.fWeight, tValues); in setBounds() 39 roots += SkDConic::FindExtrema(&sub[0].fY, sub.fWeight, &tValues[roots]); in setBounds() 41 for (int index = 0; index < roots; ++index) { in setBounds() 51 int roots = 0; in setBounds() local 53 roots = SkDCubic::FindExtrema(&sub[0].fX, tValues); in setBounds() [all …]
|
| D | SkPathOpsCurve.h | 272 static int line_intercept_h(const SkPoint a[2], SkScalar , SkScalar y, double* roots) { in line_intercept_h() argument 274 roots[0] = SkIntersections::HorizontalIntercept(line.set(a), y); in line_intercept_h() 275 return between(0, roots[0], 1); in line_intercept_h() 278 static int line_intercept_v(const SkPoint a[2], SkScalar , SkScalar x, double* roots) { in line_intercept_v() argument 280 roots[0] = SkIntersections::VerticalIntercept(line.set(a), x); in line_intercept_v() 281 return between(0, roots[0], 1); in line_intercept_v() 284 static int quad_intercept_h(const SkPoint a[2], SkScalar , SkScalar y, double* roots) { in quad_intercept_h() argument 286 return SkIntersections::HorizontalIntercept(quad.set(a), y, roots); in quad_intercept_h() 289 static int quad_intercept_v(const SkPoint a[2], SkScalar , SkScalar x, double* roots) { in quad_intercept_v() argument 291 return SkIntersections::VerticalIntercept(quad.set(a), x, roots); in quad_intercept_v() [all …]
|
| D | SkDCubicLineIntersection.cpp | 120 int intersectRay(double roots[3]) { in intersectRay() 129 int count = SkDCubic::RootsValidT(A, B, C, D, roots); in intersectRay() 131 SkDPoint calcPt = c.ptAtT(roots[index]); in intersectRay() 139 count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots); in intersectRay() 152 int roots = intersectRay(rootVals); in intersect() local 153 for (int index = 0; index < roots; ++index) { in intersect() 165 static int HorizontalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) { in HorizontalIntersect() 169 int count = SkDCubic::RootsValidT(A, B, C, D, roots); in HorizontalIntersect() 171 SkDPoint calcPt = c.ptAtT(roots[index]); in HorizontalIntersect() 175 count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kYAxis, roots); in HorizontalIntersect() [all …]
|
| D | SkDConicLineIntersection.cpp | 66 int horizontalIntersect(double axisIntercept, double roots[2]) { in horizontalIntersect() 68 return this->validT(conicVals, axisIntercept, roots); in horizontalIntersect() 76 double roots[2]; in horizontalIntersect() local 77 int count = this->horizontalIntersect(axisIntercept, roots); in horizontalIntersect() 79 double conicT = roots[index]; in horizontalIntersect() 102 int roots = this->intersectRay(rootVals); in intersect() local 103 for (int index = 0; index < roots; ++index) { in intersect() 119 int intersectRay(double roots[2]) { in intersectRay() 126 return this->validT(r, 0, roots); in intersectRay() 129 int validT(double r[3], double axisIntercept, double roots[2]) { in validT() [all …]
|
| D | SkDQuadLineIntersection.cpp | 138 int intersectRay(double roots[2]) { in intersectRay() 140 solve by rotating line+quad so line is horizontal, then finding the roots in intersectRay() 165 return SkDQuad::RootsValidT(A, 2 * B, C, roots); in intersectRay() 174 int roots = intersectRay(rootVals); in intersect() local 175 for (int index = 0; index < roots; ++index) { in intersect() 187 int horizontalIntersect(double axisIntercept, double roots[2]) { in horizontalIntersect() 194 return SkDQuad::RootsValidT(D, 2 * E, F, roots); in horizontalIntersect() 203 int roots = horizontalIntersect(axisIntercept, rootVals); in horizontalIntersect() local 204 for (int index = 0; index < roots; ++index) { in horizontalIntersect() 243 int verticalIntersect(double axisIntercept, double roots[2]) { in verticalIntersect() [all …]
|
| /external/eigen/bench/ |
| D | eig33.cpp | 48 template<typename Matrix, typename Roots> 49 inline void computeRoots(const Matrix& m, Roots& roots) in computeRoots() argument 56 // eigenvalues are the roots to this equation, all guaranteed to be in computeRoots() 62 // Construct the parameters used in classifying the roots of the equation in computeRoots() 63 // and in solving the equation for the roots in closed form. in computeRoots() 75 // Compute the eigenvalues by solving for the roots of the polynomial. in computeRoots() 80 roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta; in computeRoots() 81 roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); in computeRoots() 82 roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); in computeRoots() 85 if (roots(0) >= roots(1)) in computeRoots() [all …]
|
| /external/eigen/unsupported/test/ |
| D | polynomialsolver.cpp | 42 const RootsType& roots( psolve.roots() ); in aux_evalSolver() local 44 for( int i=0; i<roots.size(); ++i ){ in aux_evalSolver() 45 evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } in aux_evalSolver() 52 cerr << "Roots found: " << roots.transpose() << endl; in aux_evalSolver() 53 cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl; in aux_evalSolver() 57 std::vector<Scalar> rootModuli( roots.size() ); in aux_evalSolver() 58 Map< EvalRootsType > aux( &rootModuli[0], roots.size() ); in aux_evalSolver() 59 aux = roots.array().abs(); in aux_evalSolver() 92 template< int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS > 93 void evalSolverSugarFunction( const POLYNOMIAL& pols, const ROOTS& roots, const REAL_ROOTS& real_ro… in evalSolverSugarFunction() argument [all …]
|
| D | polynomialutils.cpp | 36 EvalRootsType roots = EvalRootsType::Random(deg); in realRoots_to_monicPolynomial_test() local 37 roots_to_monicPolynomial( roots, pols ); in realRoots_to_monicPolynomial_test() 40 for( int i=0; i<roots.size(); ++i ){ in realRoots_to_monicPolynomial_test() 41 evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } in realRoots_to_monicPolynomial_test() 74 EvalRootsType roots = EvalRootsType::Random(deg); in CauchyBounds() local 75 roots_to_monicPolynomial( roots, pols ); in CauchyBounds() 78 _Scalar Max = roots.array().abs().maxCoeff(); in CauchyBounds() 79 _Scalar min = roots.array().abs().minCoeff(); in CauchyBounds() 83 cerr << "Roots: " << roots << endl; in CauchyBounds()
|
| /external/ceres-solver/internal/ceres/ |
| D | polynomial_test.cc | 78 // Needed because the roots are not returned in sorted order. 85 // Run a test with the polynomial defined by the N real roots in roots_real. 141 const double roots[1] = { 42.42 }; in TEST() local 142 RunPolynomialTestRealRoots(roots, true, true, kEpsilon); in TEST() 146 const double roots[1] = { -42.42 }; in TEST() local 147 RunPolynomialTestRealRoots(roots, true, true, kEpsilon); in TEST() 151 const double roots[2] = { 1.0, 42.42 }; in TEST() local 152 RunPolynomialTestRealRoots(roots, true, true, kEpsilon); in TEST() 156 const double roots[2] = { -42.42, 1.0 }; in TEST() local 157 RunPolynomialTestRealRoots(roots, true, true, kEpsilon); in TEST() [all …]
|
| /external/tlsdate/ |
| D | Makefile.am | 71 cert_DATA = ca-roots/tlsdate-ca-roots.conf 119 # context is dangerous. This gives us a basic set of CA roots to trust for use 124 …lla.org/mozilla/source/security/nss/lib/ckfw/builtins/certdata.txt\?raw\=1 -o ca-roots/certdata.txt 125 …xtract-nss-root-certs/convert_mozilla_certdata.go ca-roots/certdata.txt > ca-roots/tlsdate-ca-root… 126 rm ca-roots/certdata.txt 129 …./src/tlsdate-helper google.com 443 tlsv1 racket verbose ca-roots/tlsdate-ca-roots.conf dont-set-c… 137 echo '#define TLSDATE_CONFIG "$(sysconfdir)/ca-roots/"'; \ 138 echo '#define TLSDATE_CERTFILE "$(sysconfdir)/tlsdate/ca-roots/tlsdate-ca-roots.conf"'; \
|
| /external/eigen/unsupported/Eigen/src/Polynomials/ |
| D | PolynomialSolver.h | 20 * - real roots, 21 * - greatest, smallest complex roots, 22 * - real roots with greatest, smallest absolute real value, 23 * - greatest, smallest real roots. 25 * It stores the set of roots as a vector of complexes. 54 /** \returns the complex roots of the polynomial */ 55 inline const RootsType& roots() const { return m_roots; } in roots() function 58 /** Clear and fills the back insertion sequence with the real roots of the polynomial 59 * i.e. the real part of the complex roots that have an imaginary part which 307 * Computes the complex roots of a real polynomial. [all …]
|
| /external/llvm/lib/CodeGen/ |
| D | ShadowStackGCLowering.cpp | 31 /// roots. 39 /// Roots - GC roots in the current function. Each is a pair of the 41 std::vector<std::pair<CallInst *, AllocaInst *>> Roots; member in __anon4b4f45ef0111::ShadowStackGCLowering 202 for (unsigned I = 0; I != Roots.size(); ++I) { in GetFrameMap() 203 Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1)); in GetFrameMap() 213 ConstantInt::get(Int32Ty, Roots.size(), false), in GetFrameMap() 253 for (size_t I = 0; I != Roots.size(); I++) in GetConcreteStackEntryType() 254 EltTys.push_back(Roots[I].second->getAllocatedType()); in GetConcreteStackEntryType() 273 // int32_t NumRoots; // Number of roots in stack frame. in doInitialization() 275 // void *Meta[]; // May be absent for roots without metadata. in doInitialization() [all …]
|
| /external/llvm/include/llvm/CodeGen/ |
| D | GCMetadata.h | 19 // - Stack offsets for GC roots, as specified by calls to llvm.gcroot 21 // As a refinement, liveness analysis calculates the set of live roots at each 23 // generator, so all roots are assumed live. 83 std::vector<GCRoot> Roots; variable 93 // The bit vector is the more compact representation where >3.2% of roots 112 Roots.push_back(GCRoot(Num, Metadata)); in addStackRoot() 117 return Roots.erase(position); in removeStackRoot() 138 /// roots_begin/roots_end - Iterators for all roots in the function. 140 roots_iterator roots_begin() { return Roots.begin(); } in roots_begin() 141 roots_iterator roots_end() { return Roots.end(); } in roots_end() [all …]
|
| /external/skia/src/effects/gradients/ |
| D | SkTwoPointConicalGradient.cpp | 32 // Return the number of distinct real roots, and write them into roots[] in 34 static int find_quad_roots(float A, float B, float C, float roots[2], bool descendingOrder = false)… in find_quad_roots() 35 SkASSERT(roots); in find_quad_roots() 38 return valid_divide(-C, B, roots); in find_quad_roots() 60 roots[0] = 0; in find_quad_roots() 66 roots[0] = r0 < r1 ? r0 : r1; in find_quad_roots() 67 roots[1] = r0 > r1 ? r0 : r1; in find_quad_roots() 69 SkTSwap(roots[0], roots[1]); in find_quad_roots() 108 float roots[2]; in nextT() local 111 int countRoots = find_quad_roots(fRec.fA, fB, C, roots, fRec.fFlipped); in nextT() [all …]
|
| /external/skia/src/core/ |
| D | SkGeometry.cpp | 71 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) { in SkFindUnitQuadRoots() 72 SkASSERT(roots); in SkFindUnitQuadRoots() 75 return valid_unit_divide(-C, B, roots); in SkFindUnitQuadRoots() 78 SkScalar* r = roots; in SkFindUnitQuadRoots() 81 if (R < 0 || !SkScalarIsFinite(R)) { // complex roots in SkFindUnitQuadRoots() 95 if (r - roots == 2) { in SkFindUnitQuadRoots() 96 if (roots[0] > roots[1]) in SkFindUnitQuadRoots() 97 SkTSwap<SkScalar>(roots[0], roots[1]); in SkFindUnitQuadRoots() 98 else if (roots[0] == roots[1]) // nearly-equal? in SkFindUnitQuadRoots() 101 return (int)(r - roots); in SkFindUnitQuadRoots() [all …]
|
| /external/llvm/lib/Transforms/Scalar/ |
| D | LoopRerollPass.cpp | 329 // ST[y1] +1 +2 <-- Roots 347 SmallInstructionVector Roots; member 352 // The set of all DAG roots, and state tracking of all roots 363 /// Stage 1: Find all the DAG roots for the induction variable. 365 /// Stage 2: Validate if the found roots are valid. 379 std::map<int64_t,Instruction*> &Roots); 382 void collectInLoopUserSet(const SmallInstructionVector &Roots, 419 // The roots themselves. 610 const SmallInstructionVector &Roots, in collectInLoopUserSet() argument 614 for (SmallInstructionVector::const_iterator I = Roots.begin(), in collectInLoopUserSet() [all …]
|
| D | Float2Int.cpp | 68 void findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots); 73 void walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots); 80 SmallPtrSet<Instruction*,8> Roots; member 130 // Find the roots - instructions that convert from the FP domain to 132 void Float2Int::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) { in findRoots() argument 140 Roots.insert(&I); in findRoots() 145 Roots.insert(&I); in findRoots() 179 // the roots. Populate "SeenInsts" with interesting 188 void Float2Int::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) { in walkBackwards() argument 189 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); in walkBackwards() [all …]
|
| /external/dbus/test/ |
| D | unused-code-gc.py | 11 roots = {} variable 176 ## now we need to find the roots (exported symbols) 185 if roots.has_key(name): 188 roots[name] = 1 190 print "%d symbols exported from this object" % len(roots) 193 ## notice they are used. Manually add them as roots... 214 if roots.has_key(vr): 216 roots[vr] = 1 218 for k in roots.keys(): 237 print "The following are hardcoded in as vtable roots: %s" % vtable_roots
|
| /external/clang/unittests/Basic/ |
| D | VirtualFileSystemTest.cpp | 707 getFromYAMLString("{ 'roots': [\n" in TEST_F() 768 " 'roots': [\n" in TEST_F() 804 " 'roots': [\n" in TEST_F() 837 // invalid YAML in roots in TEST_F() 838 FS = getFromYAMLString("{ 'roots':[}", Lower); in TEST_F() 841 "{ 'roots':[ { 'name': 'foo', 'type': 'directory', 'contents': [}", in TEST_F() 846 FS = getFromYAMLString("{ 'knobular': 'true', 'roots':[] }", Lower); in TEST_F() 848 FS = getFromYAMLString("{ 'case-sensitive': 'maybe', 'roots':[] }", Lower); in TEST_F() 851 // invalid roots in TEST_F() 852 FS = getFromYAMLString("{ 'roots':'' }", Lower); in TEST_F() [all …]
|
| /external/apache-commons-math/src/main/java/org/apache/commons/math/transform/ |
| D | FastFourierTransformer.java | 53 /** roots of unity */ 54 private RootsOfUnity roots = new RootsOfUnity(); field in FastFourierTransformer 112 roots.computeOmega(f.length); in transform() 170 roots.computeOmega(f.length); in transform2() 229 roots.computeOmega(-f.length); // pass negative argument in inversetransform() 288 roots.computeOmega(-f.length); // pass negative argument in inversetransform2() 318 roots.computeOmega(isInverse ? -N : N); in fft() 322 roots.computeOmega(isInverse ? -2*N : 2*N); in fft() 329 //Complex D = roots.getOmega(i).multiply(Complex.I); in fft() 330 Complex D = new Complex(-roots.getOmegaImaginary(i), in fft() [all …]
|
| /external/eigen/unsupported/Eigen/ |
| D | Polynomials | 61 where \f$ p \f$ is known through its roots i.e. \f$ p(x) = (x-r_1)(x-r_2)...(x-r_n) \f$. 70 …omputes the coefficients in the monomial basis of the monic polynomial that has the provided roots; 99 …Computes the complex roots of a polynomial by computing the eigenvalues of the associated companio… 101 The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of 114 …al solver is guaranteed to provide a correct result only when the complex roots \f$r_1,r_2,...,r_d… 127 …em with the QR algorithm is presented: a polynomial with almost conjugate roots is provided to the… 128 Those roots have almost same module therefore the QR algorithm failed to converge: the accuracy
|
| /external/fonttools/Lib/fontTools/misc/ |
| D | bezierTools.py | 36 roots = [] 38 roots.append(-bx/ax2) 40 roots.append(-by/ay2) 41 points = [(ax*t*t + bx*t + cx, ay*t*t + by*t + cy) for t in roots if 0 <= t < 1] + [pt1, pt3] 64 roots = xRoots + yRoots 66 …points = [(ax*t*t*t + bx*t*t + cx * t + dx, ay*t*t*t + by*t*t + cy * t + dy) for t in roots] + [pt… 260 This function returns a list of roots. Note that the returned list 266 roots = [] 269 roots = [-c/b] 271 # We have a true quadratic equation. Apply the quadratic formula to find two roots. [all …]
|