• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <unsupported/Eigen/Polynomials>
12 #include <iostream>
13 #include <algorithm>
14 
15 using namespace std;
16 
17 namespace Eigen {
18 namespace internal {
19 template<int Size>
20 struct increment_if_fixed_size
21 {
22   enum {
23     ret = (Size == Dynamic) ? Dynamic : Size+1
24   };
25 };
26 }
27 }
28 
29 
30 template<int Deg, typename POLYNOMIAL, typename SOLVER>
aux_evalSolver(const POLYNOMIAL & pols,SOLVER & psolve)31 bool aux_evalSolver( const POLYNOMIAL& pols, SOLVER& psolve )
32 {
33   typedef typename POLYNOMIAL::Index Index;
34   typedef typename POLYNOMIAL::Scalar Scalar;
35 
36   typedef typename SOLVER::RootsType    RootsType;
37   typedef Matrix<Scalar,Deg,1>          EvalRootsType;
38 
39   const Index deg = pols.size()-1;
40 
41   psolve.compute( pols );
42   const RootsType& roots( psolve.roots() );
43   EvalRootsType evr( deg );
44   for( int i=0; i<roots.size(); ++i ){
45     evr[i] = std::abs( poly_eval( pols, roots[i] ) ); }
46 
47   bool evalToZero = evr.isZero( test_precision<Scalar>() );
48   if( !evalToZero )
49   {
50     cerr << "WRONG root: " << endl;
51     cerr << "Polynomial: " << pols.transpose() << endl;
52     cerr << "Roots found: " << roots.transpose() << endl;
53     cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl;
54     cerr << endl;
55   }
56 
57   std::vector<Scalar> rootModuli( roots.size() );
58   Map< EvalRootsType > aux( &rootModuli[0], roots.size() );
59   aux = roots.array().abs();
60   std::sort( rootModuli.begin(), rootModuli.end() );
61   bool distinctModuli=true;
62   for( size_t i=1; i<rootModuli.size() && distinctModuli; ++i )
63   {
64     if( internal::isApprox( rootModuli[i], rootModuli[i-1] ) ){
65       distinctModuli = false; }
66   }
67   VERIFY( evalToZero || !distinctModuli );
68 
69   return distinctModuli;
70 }
71 
72 
73 
74 
75 
76 
77 
78 template<int Deg, typename POLYNOMIAL>
evalSolver(const POLYNOMIAL & pols)79 void evalSolver( const POLYNOMIAL& pols )
80 {
81   typedef typename POLYNOMIAL::Scalar Scalar;
82 
83   typedef PolynomialSolver<Scalar, Deg >              PolynomialSolverType;
84 
85   PolynomialSolverType psolve;
86   aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve );
87 }
88 
89 
90 
91 
92 template< int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS >
evalSolverSugarFunction(const POLYNOMIAL & pols,const ROOTS & roots,const REAL_ROOTS & real_roots)93 void evalSolverSugarFunction( const POLYNOMIAL& pols, const ROOTS& roots, const REAL_ROOTS& real_roots )
94 {
95   using std::sqrt;
96   typedef typename POLYNOMIAL::Scalar Scalar;
97 
98   typedef PolynomialSolver<Scalar, Deg >              PolynomialSolverType;
99 
100   PolynomialSolverType psolve;
101   if( aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ) )
102   {
103     //It is supposed that
104     // 1) the roots found are correct
105     // 2) the roots have distinct moduli
106 
107     typedef typename REAL_ROOTS::Scalar                 Real;
108 
109     //Test realRoots
110     std::vector< Real > calc_realRoots;
111     psolve.realRoots( calc_realRoots );
112     VERIFY( calc_realRoots.size() == (size_t)real_roots.size() );
113 
114     const Scalar psPrec = sqrt( test_precision<Scalar>() );
115 
116     for( size_t i=0; i<calc_realRoots.size(); ++i )
117     {
118       bool found = false;
119       for( size_t j=0; j<calc_realRoots.size()&& !found; ++j )
120       {
121         if( internal::isApprox( calc_realRoots[i], real_roots[j] ), psPrec ){
122           found = true; }
123       }
124       VERIFY( found );
125     }
126 
127     //Test greatestRoot
128     VERIFY( internal::isApprox( roots.array().abs().maxCoeff(),
129           abs( psolve.greatestRoot() ), psPrec ) );
130 
131     //Test smallestRoot
132     VERIFY( internal::isApprox( roots.array().abs().minCoeff(),
133           abs( psolve.smallestRoot() ), psPrec ) );
134 
135     bool hasRealRoot;
136     //Test absGreatestRealRoot
137     Real r = psolve.absGreatestRealRoot( hasRealRoot );
138     VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
139     if( hasRealRoot ){
140       VERIFY( internal::isApprox( real_roots.array().abs().maxCoeff(), abs(r), psPrec ) );  }
141 
142     //Test absSmallestRealRoot
143     r = psolve.absSmallestRealRoot( hasRealRoot );
144     VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
145     if( hasRealRoot ){
146       VERIFY( internal::isApprox( real_roots.array().abs().minCoeff(), abs( r ), psPrec ) ); }
147 
148     //Test greatestRealRoot
149     r = psolve.greatestRealRoot( hasRealRoot );
150     VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
151     if( hasRealRoot ){
152       VERIFY( internal::isApprox( real_roots.array().maxCoeff(), r, psPrec ) ); }
153 
154     //Test smallestRealRoot
155     r = psolve.smallestRealRoot( hasRealRoot );
156     VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
157     if( hasRealRoot ){
158     VERIFY( internal::isApprox( real_roots.array().minCoeff(), r, psPrec ) ); }
159   }
160 }
161 
162 
163 template<typename _Scalar, int _Deg>
polynomialsolver(int deg)164 void polynomialsolver(int deg)
165 {
166   typedef internal::increment_if_fixed_size<_Deg>            Dim;
167   typedef Matrix<_Scalar,Dim::ret,1>                  PolynomialType;
168   typedef Matrix<_Scalar,_Deg,1>                      EvalRootsType;
169 
170   cout << "Standard cases" << endl;
171   PolynomialType pols = PolynomialType::Random(deg+1);
172   evalSolver<_Deg,PolynomialType>( pols );
173 
174   cout << "Hard cases" << endl;
175   _Scalar multipleRoot = internal::random<_Scalar>();
176   EvalRootsType allRoots = EvalRootsType::Constant(deg,multipleRoot);
177   roots_to_monicPolynomial( allRoots, pols );
178   evalSolver<_Deg,PolynomialType>( pols );
179 
180   cout << "Test sugar" << endl;
181   EvalRootsType realRoots = EvalRootsType::Random(deg);
182   roots_to_monicPolynomial( realRoots, pols );
183   evalSolverSugarFunction<_Deg>(
184       pols,
185       realRoots.template cast <
186                     std::complex<
187                          typename NumTraits<_Scalar>::Real
188                          >
189                     >(),
190       realRoots );
191 }
192 
test_polynomialsolver()193 void test_polynomialsolver()
194 {
195   for(int i = 0; i < g_repeat; i++)
196   {
197     CALL_SUBTEST_1( (polynomialsolver<float,1>(1)) );
198     CALL_SUBTEST_2( (polynomialsolver<double,2>(2)) );
199     CALL_SUBTEST_3( (polynomialsolver<double,3>(3)) );
200     CALL_SUBTEST_4( (polynomialsolver<float,4>(4)) );
201     CALL_SUBTEST_5( (polynomialsolver<double,5>(5)) );
202     CALL_SUBTEST_6( (polynomialsolver<float,6>(6)) );
203     CALL_SUBTEST_7( (polynomialsolver<float,7>(7)) );
204     CALL_SUBTEST_8( (polynomialsolver<double,8>(8)) );
205 
206     CALL_SUBTEST_9( (polynomialsolver<float,Dynamic>(
207             internal::random<int>(9,13)
208             )) );
209     CALL_SUBTEST_10((polynomialsolver<double,Dynamic>(
210             internal::random<int>(9,13)
211             )) );
212   }
213 }
214