• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2013 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/numeric_diff_test_utils.h"
32 
33 #include <algorithm>
34 #include <cmath>
35 #include "ceres/cost_function.h"
36 #include "ceres/internal/macros.h"
37 #include "ceres/test_util.h"
38 #include "ceres/types.h"
39 #include "gtest/gtest.h"
40 
41 
42 namespace ceres {
43 namespace internal {
44 
operator ()(const double * x1,const double * x2,double * residuals) const45 bool EasyFunctor::operator()(const double* x1,
46                              const double* x2,
47                              double* residuals) const {
48   residuals[0] = residuals[1] = residuals[2] = 0;
49   for (int i = 0; i < 5; ++i) {
50     residuals[0] += x1[i] * x2[i];
51     residuals[2] += x2[i] * x2[i];
52   }
53   residuals[1] = residuals[0] * residuals[0];
54   return true;
55 }
56 
ExpectCostFunctionEvaluationIsNearlyCorrect(const CostFunction & cost_function,NumericDiffMethod method) const57 void EasyFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
58     const CostFunction& cost_function,
59     NumericDiffMethod method) const {
60   double x1[] = { 1.0, 2.0, 3.0, 4.0, 5.0 };
61   double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 };
62   double *parameters[] = { &x1[0], &x2[0] };
63 
64   double dydx1[15];  // 3 x 5, row major.
65   double dydx2[15];  // 3 x 5, row major.
66   double *jacobians[2] = { &dydx1[0], &dydx2[0] };
67 
68   double residuals[3] = {-1e-100, -2e-100, -3e-100 };
69 
70   ASSERT_TRUE(cost_function.Evaluate(&parameters[0],
71                                      &residuals[0],
72                                      &jacobians[0]));
73 
74   EXPECT_EQ(residuals[0], 67);
75   EXPECT_EQ(residuals[1], 4489);
76   EXPECT_EQ(residuals[2], 213);
77 
78   const double tolerance = (method == CENTRAL)? 3e-9 : 2e-5;
79 
80   for (int i = 0; i < 5; ++i) {
81     ExpectClose(x2[i],                    dydx1[5 * 0 + i], tolerance);  // y1
82     ExpectClose(x1[i],                    dydx2[5 * 0 + i], tolerance);
83     ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], tolerance);  // y2
84     ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], tolerance);
85     ExpectClose(0.0,                      dydx1[5 * 2 + i], tolerance);  // y3
86     ExpectClose(2 * x2[i],                dydx2[5 * 2 + i], tolerance);
87   }
88 }
89 
operator ()(const double * x1,const double * x2,double * residuals) const90 bool TranscendentalFunctor::operator()(const double* x1,
91                                        const double* x2,
92                                        double* residuals) const {
93   double x1x2 = 0;
94   for (int i = 0; i < 5; ++i) {
95     x1x2 += x1[i] * x2[i];
96   }
97   residuals[0] = sin(x1x2);
98   residuals[1] = exp(-x1x2 / 10);
99   return true;
100 }
101 
ExpectCostFunctionEvaluationIsNearlyCorrect(const CostFunction & cost_function,NumericDiffMethod method) const102 void TranscendentalFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
103     const CostFunction& cost_function,
104     NumericDiffMethod method) const {
105   struct {
106     double x1[5];
107     double x2[5];
108   } kTests[] = {
109     { { 1.0, 2.0, 3.0, 4.0, 5.0 },  // No zeros.
110       { 9.0, 9.0, 5.0, 5.0, 1.0 },
111     },
112     { { 0.0, 2.0, 3.0, 0.0, 5.0 },  // Some zeros x1.
113       { 9.0, 9.0, 5.0, 5.0, 1.0 },
114     },
115     { { 1.0, 2.0, 3.0, 1.0, 5.0 },  // Some zeros x2.
116       { 0.0, 9.0, 0.0, 5.0, 0.0 },
117     },
118     { { 0.0, 0.0, 0.0, 0.0, 0.0 },  // All zeros x1.
119       { 9.0, 9.0, 5.0, 5.0, 1.0 },
120     },
121     { { 1.0, 2.0, 3.0, 4.0, 5.0 },  // All zeros x2.
122       { 0.0, 0.0, 0.0, 0.0, 0.0 },
123     },
124     { { 0.0, 0.0, 0.0, 0.0, 0.0 },  // All zeros.
125       { 0.0, 0.0, 0.0, 0.0, 0.0 },
126     },
127   };
128 
129   for (int k = 0; k < CERES_ARRAYSIZE(kTests); ++k) {
130     double *x1 = &(kTests[k].x1[0]);
131     double *x2 = &(kTests[k].x2[0]);
132     double *parameters[] = { x1, x2 };
133 
134     double dydx1[10];
135     double dydx2[10];
136     double *jacobians[2] = { &dydx1[0], &dydx2[0] };
137 
138     double residuals[2];
139 
140     ASSERT_TRUE(cost_function.Evaluate(&parameters[0],
141                                        &residuals[0],
142                                        &jacobians[0]));
143     double x1x2 = 0;
144     for (int i = 0; i < 5; ++i) {
145       x1x2 += x1[i] * x2[i];
146     }
147 
148     const double tolerance = (method == CENTRAL)? 3e-9 : 2e-5;
149 
150     for (int i = 0; i < 5; ++i) {
151       ExpectClose( x2[i] * cos(x1x2),              dydx1[5 * 0 + i], tolerance);
152       ExpectClose( x1[i] * cos(x1x2),              dydx2[5 * 0 + i], tolerance);
153       ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], tolerance);
154       ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], tolerance);
155     }
156   }
157 }
158 
159 }  // namespace internal
160 }  // namespace ceres
161