• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 //         sameeragarwal@google.com (Sameer Agarwal)
31 //
32 // System level tests for Ceres. The current suite of two tests. The
33 // first test is a small test based on Powell's Function. It is a
34 // scalar problem with 4 variables. The second problem is a bundle
35 // adjustment problem with 16 cameras and two thousand cameras. The
36 // first problem is to test the sanity test the factorization based
37 // solvers. The second problem is used to test the various
38 // combinations of solvers, orderings, preconditioners and
39 // multithreading.
40 
41 #include <cmath>
42 #include <cstdio>
43 #include <cstdlib>
44 #include <string>
45 
46 #include "ceres/internal/port.h"
47 
48 #include "ceres/autodiff_cost_function.h"
49 #include "ceres/ordered_groups.h"
50 #include "ceres/problem.h"
51 #include "ceres/rotation.h"
52 #include "ceres/solver.h"
53 #include "ceres/stringprintf.h"
54 #include "ceres/test_util.h"
55 #include "ceres/types.h"
56 #include "gflags/gflags.h"
57 #include "glog/logging.h"
58 #include "gtest/gtest.h"
59 
60 namespace ceres {
61 namespace internal {
62 
63 const bool kAutomaticOrdering = true;
64 const bool kUserOrdering = false;
65 
66 // Struct used for configuring the solver.
67 struct SolverConfig {
SolverConfigceres::internal::SolverConfig68   SolverConfig(
69       LinearSolverType linear_solver_type,
70       SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
71       bool use_automatic_ordering)
72       : linear_solver_type(linear_solver_type),
73         sparse_linear_algebra_library_type(sparse_linear_algebra_library_type),
74         use_automatic_ordering(use_automatic_ordering),
75         preconditioner_type(IDENTITY),
76         num_threads(1) {
77   }
78 
SolverConfigceres::internal::SolverConfig79   SolverConfig(
80       LinearSolverType linear_solver_type,
81       SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
82       bool use_automatic_ordering,
83       PreconditionerType preconditioner_type)
84       : linear_solver_type(linear_solver_type),
85         sparse_linear_algebra_library_type(sparse_linear_algebra_library_type),
86         use_automatic_ordering(use_automatic_ordering),
87         preconditioner_type(preconditioner_type),
88         num_threads(1) {
89   }
90 
ToStringceres::internal::SolverConfig91   string ToString() const {
92     return StringPrintf(
93         "(%s, %s, %s, %s, %d)",
94         LinearSolverTypeToString(linear_solver_type),
95         SparseLinearAlgebraLibraryTypeToString(
96             sparse_linear_algebra_library_type),
97         use_automatic_ordering ? "AUTOMATIC" : "USER",
98         PreconditionerTypeToString(preconditioner_type),
99         num_threads);
100   }
101 
102   LinearSolverType linear_solver_type;
103   SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
104   bool use_automatic_ordering;
105   PreconditionerType preconditioner_type;
106   int num_threads;
107 };
108 
109 // Templated function that given a set of solver configurations,
110 // instantiates a new copy of SystemTestProblem for each configuration
111 // and solves it. The solutions are expected to have residuals with
112 // coordinate-wise maximum absolute difference less than or equal to
113 // max_abs_difference.
114 //
115 // The template parameter SystemTestProblem is expected to implement
116 // the following interface.
117 //
118 //   class SystemTestProblem {
119 //     public:
120 //       SystemTestProblem();
121 //       Problem* mutable_problem();
122 //       Solver::Options* mutable_solver_options();
123 //   };
124 template <typename SystemTestProblem>
RunSolversAndCheckTheyMatch(const vector<SolverConfig> & configurations,const double max_abs_difference)125 void RunSolversAndCheckTheyMatch(const vector<SolverConfig>& configurations,
126                                  const double max_abs_difference) {
127   int num_configurations = configurations.size();
128   vector<SystemTestProblem*> problems;
129   vector<vector<double> > final_residuals(num_configurations);
130 
131   for (int i = 0; i < num_configurations; ++i) {
132     SystemTestProblem* system_test_problem = new SystemTestProblem();
133 
134     const SolverConfig& config = configurations[i];
135 
136     Solver::Options& options = *(system_test_problem->mutable_solver_options());
137     options.linear_solver_type = config.linear_solver_type;
138     options.sparse_linear_algebra_library_type =
139         config.sparse_linear_algebra_library_type;
140     options.preconditioner_type = config.preconditioner_type;
141     options.num_threads = config.num_threads;
142     options.num_linear_solver_threads = config.num_threads;
143 
144     if (config.use_automatic_ordering) {
145       options.linear_solver_ordering.reset();
146     }
147 
148     LOG(INFO) << "Running solver configuration: "
149               << config.ToString();
150 
151     Solver::Summary summary;
152     Solve(options,
153           system_test_problem->mutable_problem(),
154           &summary);
155 
156     system_test_problem
157         ->mutable_problem()
158         ->Evaluate(Problem::EvaluateOptions(),
159                    NULL,
160                    &final_residuals[i],
161                    NULL,
162                    NULL);
163 
164     CHECK_NE(summary.termination_type, ceres::FAILURE)
165         << "Solver configuration " << i << " failed.";
166     problems.push_back(system_test_problem);
167 
168     // Compare the resulting solutions to each other. Arbitrarily take
169     // SPARSE_NORMAL_CHOLESKY as the golden solve. We compare
170     // solutions by comparing their residual vectors. We do not
171     // compare parameter vectors because it is much more brittle and
172     // error prone to do so, since the same problem can have nearly
173     // the same residuals at two completely different positions in
174     // parameter space.
175     if (i > 0) {
176       const vector<double>& reference_residuals = final_residuals[0];
177       const vector<double>& current_residuals = final_residuals[i];
178 
179       for (int j = 0; j < reference_residuals.size(); ++j) {
180         EXPECT_NEAR(current_residuals[j],
181                     reference_residuals[j],
182                     max_abs_difference)
183             << "Not close enough residual:" << j
184             << " reference " << reference_residuals[j]
185             << " current " << current_residuals[j];
186       }
187     }
188   }
189 
190   for (int i = 0; i < num_configurations; ++i) {
191     delete problems[i];
192   }
193 }
194 
195 // This class implements the SystemTestProblem interface and provides
196 // access to an implementation of Powell's singular function.
197 //
198 //   F = 1/2 (f1^2 + f2^2 + f3^2 + f4^2)
199 //
200 //   f1 = x1 + 10*x2;
201 //   f2 = sqrt(5) * (x3 - x4)
202 //   f3 = (x2 - 2*x3)^2
203 //   f4 = sqrt(10) * (x1 - x4)^2
204 //
205 // The starting values are x1 = 3, x2 = -1, x3 = 0, x4 = 1.
206 // The minimum is 0 at (x1, x2, x3, x4) = 0.
207 //
208 // From: Testing Unconstrained Optimization Software by Jorge J. More, Burton S.
209 // Garbow and Kenneth E. Hillstrom in ACM Transactions on Mathematical Software,
210 // Vol 7(1), March 1981.
211 class PowellsFunction {
212  public:
PowellsFunction()213   PowellsFunction() {
214     x_[0] =  3.0;
215     x_[1] = -1.0;
216     x_[2] =  0.0;
217     x_[3] =  1.0;
218 
219     problem_.AddResidualBlock(
220         new AutoDiffCostFunction<F1, 1, 1, 1>(new F1), NULL, &x_[0], &x_[1]);
221     problem_.AddResidualBlock(
222         new AutoDiffCostFunction<F2, 1, 1, 1>(new F2), NULL, &x_[2], &x_[3]);
223     problem_.AddResidualBlock(
224         new AutoDiffCostFunction<F3, 1, 1, 1>(new F3), NULL, &x_[1], &x_[2]);
225     problem_.AddResidualBlock(
226         new AutoDiffCostFunction<F4, 1, 1, 1>(new F4), NULL, &x_[0], &x_[3]);
227 
228     options_.max_num_iterations = 10;
229   }
230 
mutable_problem()231   Problem* mutable_problem() { return &problem_; }
mutable_solver_options()232   Solver::Options* mutable_solver_options() { return &options_; }
233 
234  private:
235   // Templated functions used for automatically differentiated cost
236   // functions.
237   class F1 {
238    public:
operator ()(const T * const x1,const T * const x2,T * residual) const239     template <typename T> bool operator()(const T* const x1,
240                                           const T* const x2,
241                                           T* residual) const {
242       // f1 = x1 + 10 * x2;
243       *residual = *x1 + T(10.0) * *x2;
244       return true;
245     }
246   };
247 
248   class F2 {
249    public:
operator ()(const T * const x3,const T * const x4,T * residual) const250     template <typename T> bool operator()(const T* const x3,
251                                           const T* const x4,
252                                           T* residual) const {
253       // f2 = sqrt(5) (x3 - x4)
254       *residual = T(sqrt(5.0)) * (*x3 - *x4);
255       return true;
256     }
257   };
258 
259   class F3 {
260    public:
operator ()(const T * const x2,const T * const x4,T * residual) const261     template <typename T> bool operator()(const T* const x2,
262                                           const T* const x4,
263                                           T* residual) const {
264       // f3 = (x2 - 2 x3)^2
265       residual[0] = (x2[0] - T(2.0) * x4[0]) * (x2[0] - T(2.0) * x4[0]);
266       return true;
267     }
268   };
269 
270   class F4 {
271    public:
operator ()(const T * const x1,const T * const x4,T * residual) const272     template <typename T> bool operator()(const T* const x1,
273                                           const T* const x4,
274                                           T* residual) const {
275       // f4 = sqrt(10) (x1 - x4)^2
276       residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]);
277       return true;
278     }
279   };
280 
281   double x_[4];
282   Problem problem_;
283   Solver::Options options_;
284 };
285 
TEST(SystemTest,PowellsFunction)286 TEST(SystemTest, PowellsFunction) {
287   vector<SolverConfig> configs;
288 #define CONFIGURE(linear_solver, sparse_linear_algebra_library_type, ordering) \
289   configs.push_back(SolverConfig(linear_solver,                         \
290                                  sparse_linear_algebra_library_type,    \
291                                  ordering))
292 
293   CONFIGURE(DENSE_QR,               SUITE_SPARSE, kAutomaticOrdering);
294   CONFIGURE(DENSE_NORMAL_CHOLESKY,  SUITE_SPARSE, kAutomaticOrdering);
295   CONFIGURE(DENSE_SCHUR,            SUITE_SPARSE, kAutomaticOrdering);
296 
297 #ifndef CERES_NO_SUITESPARSE
298   CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering);
299 #endif  // CERES_NO_SUITESPARSE
300 
301 #ifndef CERES_NO_CXSPARSE
302   CONFIGURE(SPARSE_NORMAL_CHOLESKY, CX_SPARSE,    kAutomaticOrdering);
303 #endif  // CERES_NO_CXSPARSE
304 
305   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering);
306 
307 #undef CONFIGURE
308 
309   const double kMaxAbsoluteDifference = 1e-8;
310   RunSolversAndCheckTheyMatch<PowellsFunction>(configs, kMaxAbsoluteDifference);
311 }
312 
313 // This class implements the SystemTestProblem interface and provides
314 // access to a bundle adjustment problem. It is based on
315 // examples/bundle_adjustment_example.cc. Currently a small 16 camera
316 // problem is hard coded in the constructor. Going forward we may
317 // extend this to a larger number of problems.
318 class BundleAdjustmentProblem {
319  public:
BundleAdjustmentProblem()320   BundleAdjustmentProblem() {
321     const string input_file = TestFileAbsolutePath("problem-16-22106-pre.txt");
322     ReadData(input_file);
323     BuildProblem();
324   }
325 
~BundleAdjustmentProblem()326   ~BundleAdjustmentProblem() {
327     delete []point_index_;
328     delete []camera_index_;
329     delete []observations_;
330     delete []parameters_;
331   }
332 
mutable_problem()333   Problem* mutable_problem() { return &problem_; }
mutable_solver_options()334   Solver::Options* mutable_solver_options() { return &options_; }
335 
num_cameras() const336   int num_cameras()            const { return num_cameras_;        }
num_points() const337   int num_points()             const { return num_points_;         }
num_observations() const338   int num_observations()       const { return num_observations_;   }
point_index() const339   const int* point_index()     const { return point_index_;  }
camera_index() const340   const int* camera_index()    const { return camera_index_; }
observations() const341   const double* observations() const { return observations_; }
mutable_cameras()342   double* mutable_cameras() { return parameters_; }
mutable_points()343   double* mutable_points() { return parameters_  + 9 * num_cameras_; }
344 
345  private:
ReadData(const string & filename)346   void ReadData(const string& filename) {
347     FILE * fptr = fopen(filename.c_str(), "r");
348 
349     if (!fptr) {
350       LOG(FATAL) << "File Error: unable to open file " << filename;
351     };
352 
353     // This will die horribly on invalid files. Them's the breaks.
354     FscanfOrDie(fptr, "%d", &num_cameras_);
355     FscanfOrDie(fptr, "%d", &num_points_);
356     FscanfOrDie(fptr, "%d", &num_observations_);
357 
358     VLOG(1) << "Header: " << num_cameras_
359             << " " << num_points_
360             << " " << num_observations_;
361 
362     point_index_ = new int[num_observations_];
363     camera_index_ = new int[num_observations_];
364     observations_ = new double[2 * num_observations_];
365 
366     num_parameters_ = 9 * num_cameras_ + 3 * num_points_;
367     parameters_ = new double[num_parameters_];
368 
369     for (int i = 0; i < num_observations_; ++i) {
370       FscanfOrDie(fptr, "%d", camera_index_ + i);
371       FscanfOrDie(fptr, "%d", point_index_ + i);
372       for (int j = 0; j < 2; ++j) {
373         FscanfOrDie(fptr, "%lf", observations_ + 2*i + j);
374       }
375     }
376 
377     for (int i = 0; i < num_parameters_; ++i) {
378       FscanfOrDie(fptr, "%lf", parameters_ + i);
379     }
380   }
381 
BuildProblem()382   void BuildProblem() {
383     double* points = mutable_points();
384     double* cameras = mutable_cameras();
385 
386     for (int i = 0; i < num_observations(); ++i) {
387       // Each Residual block takes a point and a camera as input and
388       // outputs a 2 dimensional residual.
389       CostFunction* cost_function =
390           new AutoDiffCostFunction<BundlerResidual, 2, 9, 3>(
391               new BundlerResidual(observations_[2*i + 0],
392                                   observations_[2*i + 1]));
393 
394       // Each observation correponds to a pair of a camera and a point
395       // which are identified by camera_index()[i] and
396       // point_index()[i] respectively.
397       double* camera = cameras + 9 * camera_index_[i];
398       double* point = points + 3 * point_index()[i];
399       problem_.AddResidualBlock(cost_function, NULL, camera, point);
400     }
401 
402     options_.linear_solver_ordering.reset(new ParameterBlockOrdering);
403 
404     // The points come before the cameras.
405     for (int i = 0; i < num_points_; ++i) {
406       options_.linear_solver_ordering->AddElementToGroup(points + 3 * i, 0);
407     }
408 
409     for (int i = 0; i < num_cameras_; ++i) {
410       options_.linear_solver_ordering->AddElementToGroup(cameras + 9 * i, 1);
411     }
412 
413     options_.max_num_iterations = 25;
414     options_.function_tolerance = 1e-10;
415     options_.gradient_tolerance = 1e-10;
416     options_.parameter_tolerance = 1e-10;
417   }
418 
419   template<typename T>
FscanfOrDie(FILE * fptr,const char * format,T * value)420   void FscanfOrDie(FILE *fptr, const char *format, T *value) {
421     int num_scanned = fscanf(fptr, format, value);
422     if (num_scanned != 1) {
423       LOG(FATAL) << "Invalid UW data file.";
424     }
425   }
426 
427   // Templated pinhole camera model.  The camera is parameterized
428   // using 9 parameters. 3 for rotation, 3 for translation, 1 for
429   // focal length and 2 for radial distortion. The principal point is
430   // not modeled (i.e. it is assumed be located at the image center).
431   struct BundlerResidual {
432     // (u, v): the position of the observation with respect to the image
433     // center point.
BundlerResidualceres::internal::BundleAdjustmentProblem::BundlerResidual434     BundlerResidual(double u, double v): u(u), v(v) {}
435 
436     template <typename T>
operator ()ceres::internal::BundleAdjustmentProblem::BundlerResidual437     bool operator()(const T* const camera,
438                     const T* const point,
439                     T* residuals) const {
440       T p[3];
441       AngleAxisRotatePoint(camera, point, p);
442 
443       // Add the translation vector
444       p[0] += camera[3];
445       p[1] += camera[4];
446       p[2] += camera[5];
447 
448       const T& focal = camera[6];
449       const T& l1 = camera[7];
450       const T& l2 = camera[8];
451 
452       // Compute the center of distortion.  The sign change comes from
453       // the camera model that Noah Snavely's Bundler assumes, whereby
454       // the camera coordinate system has a negative z axis.
455       T xp = - focal * p[0] / p[2];
456       T yp = - focal * p[1] / p[2];
457 
458       // Apply second and fourth order radial distortion.
459       T r2 = xp*xp + yp*yp;
460       T distortion = T(1.0) + r2  * (l1 + l2  * r2);
461 
462       residuals[0] = distortion * xp - T(u);
463       residuals[1] = distortion * yp - T(v);
464 
465       return true;
466     }
467 
468     double u;
469     double v;
470   };
471 
472 
473   Problem problem_;
474   Solver::Options options_;
475 
476   int num_cameras_;
477   int num_points_;
478   int num_observations_;
479   int num_parameters_;
480 
481   int* point_index_;
482   int* camera_index_;
483   double* observations_;
484   // The parameter vector is laid out as follows
485   // [camera_1, ..., camera_n, point_1, ..., point_m]
486   double* parameters_;
487 };
488 
TEST(SystemTest,BundleAdjustmentProblem)489 TEST(SystemTest, BundleAdjustmentProblem) {
490   vector<SolverConfig> configs;
491 
492 #define CONFIGURE(linear_solver, sparse_linear_algebra_library_type, ordering, preconditioner) \
493   configs.push_back(SolverConfig(linear_solver,                         \
494                                  sparse_linear_algebra_library_type,    \
495                                  ordering,                              \
496                                  preconditioner))
497 
498   CONFIGURE(DENSE_SCHUR,            SUITE_SPARSE, kAutomaticOrdering, IDENTITY);
499   CONFIGURE(DENSE_SCHUR,            SUITE_SPARSE, kUserOrdering,      IDENTITY);
500 
501   CONFIGURE(CGNR,                   SUITE_SPARSE, kAutomaticOrdering, JACOBI);
502 
503   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      JACOBI);
504   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, JACOBI);
505 
506   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      SCHUR_JACOBI);
507   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, SCHUR_JACOBI);
508 
509 #ifndef CERES_NO_SUITESPARSE
510   CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering, IDENTITY);
511   CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kUserOrdering,      IDENTITY);
512 
513   CONFIGURE(SPARSE_SCHUR,           SUITE_SPARSE, kAutomaticOrdering, IDENTITY);
514   CONFIGURE(SPARSE_SCHUR,           SUITE_SPARSE, kUserOrdering,      IDENTITY);
515 
516   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, CLUSTER_JACOBI);
517   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      CLUSTER_JACOBI);
518 
519   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, CLUSTER_TRIDIAGONAL);
520   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      CLUSTER_TRIDIAGONAL);
521 #endif  // CERES_NO_SUITESPARSE
522 
523 #ifndef CERES_NO_CXSPARSE
524   CONFIGURE(SPARSE_NORMAL_CHOLESKY, CX_SPARSE,    kAutomaticOrdering, IDENTITY);
525   CONFIGURE(SPARSE_NORMAL_CHOLESKY, CX_SPARSE,    kUserOrdering,      IDENTITY);
526 
527   CONFIGURE(SPARSE_SCHUR,           CX_SPARSE,    kAutomaticOrdering, IDENTITY);
528   CONFIGURE(SPARSE_SCHUR,           CX_SPARSE,    kUserOrdering,      IDENTITY);
529 #endif  // CERES_NO_CXSPARSE
530 
531 #ifdef CERES_USE_EIGEN_SPARSE
532   CONFIGURE(SPARSE_SCHUR,           EIGEN_SPARSE, kAutomaticOrdering, IDENTITY);
533   CONFIGURE(SPARSE_SCHUR,           EIGEN_SPARSE, kUserOrdering,      IDENTITY);
534   CONFIGURE(SPARSE_NORMAL_CHOLESKY, EIGEN_SPARSE, kAutomaticOrdering, IDENTITY);
535   CONFIGURE(SPARSE_NORMAL_CHOLESKY, EIGEN_SPARSE, kUserOrdering,      IDENTITY);
536 #endif  // CERES_USE_EIGEN_SPARSE
537 
538 #undef CONFIGURE
539 
540   // Single threaded evaluators and linear solvers.
541   const double kMaxAbsoluteDifference = 1e-4;
542   RunSolversAndCheckTheyMatch<BundleAdjustmentProblem>(configs,
543                                                        kMaxAbsoluteDifference);
544 
545 #ifdef CERES_USE_OPENMP
546   // Multithreaded evaluators and linear solvers.
547   for (int i = 0; i < configs.size(); ++i) {
548     configs[i].num_threads = 2;
549   }
550   RunSolversAndCheckTheyMatch<BundleAdjustmentProblem>(configs,
551                                                        kMaxAbsoluteDifference);
552 #endif  // CERES_USE_OPENMP
553 }
554 
555 }  // namespace internal
556 }  // namespace ceres
557