• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 // This include must come before any #ifndef check on Ceres compile options.
32 #include "ceres/internal/port.h"
33 
34 #ifndef CERES_NO_SUITESPARSE
35 
36 #include "ceres/visibility_based_preconditioner.h"
37 
38 #include "Eigen/Dense"
39 #include "ceres/block_random_access_dense_matrix.h"
40 #include "ceres/block_random_access_sparse_matrix.h"
41 #include "ceres/block_sparse_matrix.h"
42 #include "ceres/casts.h"
43 #include "ceres/collections_port.h"
44 #include "ceres/file.h"
45 #include "ceres/internal/eigen.h"
46 #include "ceres/internal/scoped_ptr.h"
47 #include "ceres/linear_least_squares_problems.h"
48 #include "ceres/schur_eliminator.h"
49 #include "ceres/stringprintf.h"
50 #include "ceres/types.h"
51 #include "ceres/test_util.h"
52 #include "glog/logging.h"
53 #include "gtest/gtest.h"
54 
55 namespace ceres {
56 namespace internal {
57 
58 // TODO(sameeragarwal): Re-enable this test once serialization is
59 // working again.
60 
61 // using testing::AssertionResult;
62 // using testing::AssertionSuccess;
63 // using testing::AssertionFailure;
64 
65 // static const double kTolerance = 1e-12;
66 
67 // class VisibilityBasedPreconditionerTest : public ::testing::Test {
68 //  public:
69 //   static const int kCameraSize = 9;
70 
71 //  protected:
72 //   void SetUp() {
73 //     string input_file = TestFileAbsolutePath("problem-6-1384-000.lsqp");
74 
75 //     scoped_ptr<LinearLeastSquaresProblem> problem(
76 //         CHECK_NOTNULL(CreateLinearLeastSquaresProblemFromFile(input_file)));
77 //     A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
78 //     b_.reset(problem->b.release());
79 //     D_.reset(problem->D.release());
80 
81 //     const CompressedRowBlockStructure* bs =
82 //         CHECK_NOTNULL(A_->block_structure());
83 //     const int num_col_blocks = bs->cols.size();
84 
85 //     num_cols_ = A_->num_cols();
86 //     num_rows_ = A_->num_rows();
87 //     num_eliminate_blocks_ = problem->num_eliminate_blocks;
88 //     num_camera_blocks_ = num_col_blocks - num_eliminate_blocks_;
89 //     options_.elimination_groups.push_back(num_eliminate_blocks_);
90 //     options_.elimination_groups.push_back(
91 //         A_->block_structure()->cols.size() - num_eliminate_blocks_);
92 
93 //     vector<int> blocks(num_col_blocks - num_eliminate_blocks_, 0);
94 //     for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
95 //       blocks[i - num_eliminate_blocks_] = bs->cols[i].size;
96 //     }
97 
98 //     // The input matrix is a real jacobian and fairly poorly
99 //     // conditioned. Setting D to a large constant makes the normal
100 //     // equations better conditioned and makes the tests below better
101 //     // conditioned.
102 //     VectorRef(D_.get(), num_cols_).setConstant(10.0);
103 
104 //     schur_complement_.reset(new BlockRandomAccessDenseMatrix(blocks));
105 //     Vector rhs(schur_complement_->num_rows());
106 
107 //     scoped_ptr<SchurEliminatorBase> eliminator;
108 //     LinearSolver::Options eliminator_options;
109 //     eliminator_options.elimination_groups = options_.elimination_groups;
110 //     eliminator_options.num_threads = options_.num_threads;
111 
112 //     eliminator.reset(SchurEliminatorBase::Create(eliminator_options));
113 //     eliminator->Init(num_eliminate_blocks_, bs);
114 //     eliminator->Eliminate(A_.get(), b_.get(), D_.get(),
115 //                           schur_complement_.get(), rhs.data());
116 //   }
117 
118 
119 //   AssertionResult IsSparsityStructureValid() {
120 //     preconditioner_->InitStorage(*A_->block_structure());
121 //     const HashSet<pair<int, int> >& cluster_pairs = get_cluster_pairs();
122 //     const vector<int>& cluster_membership = get_cluster_membership();
123 
124 //     for (int i = 0; i < num_camera_blocks_; ++i) {
125 //       for (int j = i; j < num_camera_blocks_; ++j) {
126 //         if (cluster_pairs.count(make_pair(cluster_membership[i],
127 //                                           cluster_membership[j]))) {
128 //           if (!IsBlockPairInPreconditioner(i, j)) {
129 //             return AssertionFailure()
130 //                 << "block pair (" << i << "," << j << "missing";
131 //           }
132 //         } else {
133 //           if (IsBlockPairInPreconditioner(i, j)) {
134 //             return AssertionFailure()
135 //                << "block pair (" << i << "," << j << "should not be present";
136 //           }
137 //         }
138 //       }
139 //     }
140 //     return AssertionSuccess();
141 //   }
142 
143 //   AssertionResult PreconditionerValuesMatch() {
144 //     preconditioner_->Update(*A_, D_.get());
145 //     const HashSet<pair<int, int> >& cluster_pairs = get_cluster_pairs();
146 //     const BlockRandomAccessSparseMatrix* m = get_m();
147 //     Matrix preconditioner_matrix;
148 //     m->matrix()->ToDenseMatrix(&preconditioner_matrix);
149 //     ConstMatrixRef full_schur_complement(schur_complement_->values(),
150 //                                          m->num_rows(),
151 //                                          m->num_rows());
152 //     const int num_clusters = get_num_clusters();
153 //     const int kDiagonalBlockSize =
154 //         kCameraSize * num_camera_blocks_ / num_clusters;
155 
156 //     for (int i = 0; i < num_clusters; ++i) {
157 //       for (int j = i; j < num_clusters; ++j) {
158 //         double diff = 0.0;
159 //         if (cluster_pairs.count(make_pair(i, j))) {
160 //           diff =
161 //               (preconditioner_matrix.block(kDiagonalBlockSize * i,
162 //                                            kDiagonalBlockSize * j,
163 //                                            kDiagonalBlockSize,
164 //                                            kDiagonalBlockSize) -
165 //                full_schur_complement.block(kDiagonalBlockSize * i,
166 //                                            kDiagonalBlockSize * j,
167 //                                            kDiagonalBlockSize,
168 //                                            kDiagonalBlockSize)).norm();
169 //         } else {
170 //           diff = preconditioner_matrix.block(kDiagonalBlockSize * i,
171 //                                              kDiagonalBlockSize * j,
172 //                                              kDiagonalBlockSize,
173 //                                              kDiagonalBlockSize).norm();
174 //         }
175 //         if (diff > kTolerance) {
176 //           return AssertionFailure()
177 //               << "Preconditioner block " << i << " " << j << " differs "
178 //               << "from expected value by " << diff;
179 //         }
180 //       }
181 //     }
182 //     return AssertionSuccess();
183 //   }
184 
185 //   // Accessors
186 //   int get_num_blocks() { return preconditioner_->num_blocks_; }
187 
188 //   int get_num_clusters() { return preconditioner_->num_clusters_; }
189 //   int* get_mutable_num_clusters() { return &preconditioner_->num_clusters_; }
190 
191 //   const vector<int>& get_block_size() {
192 //     return preconditioner_->block_size_; }
193 
194 //   vector<int>* get_mutable_block_size() {
195 //     return &preconditioner_->block_size_; }
196 
197 //   const vector<int>& get_cluster_membership() {
198 //     return preconditioner_->cluster_membership_;
199 //   }
200 
201 //   vector<int>* get_mutable_cluster_membership() {
202 //     return &preconditioner_->cluster_membership_;
203 //   }
204 
205 //   const set<pair<int, int> >& get_block_pairs() {
206 //     return preconditioner_->block_pairs_;
207 //   }
208 
209 //   set<pair<int, int> >* get_mutable_block_pairs() {
210 //     return &preconditioner_->block_pairs_;
211 //   }
212 
213 //   const HashSet<pair<int, int> >& get_cluster_pairs() {
214 //     return preconditioner_->cluster_pairs_;
215 //   }
216 
217 //   HashSet<pair<int, int> >* get_mutable_cluster_pairs() {
218 //     return &preconditioner_->cluster_pairs_;
219 //   }
220 
221 //   bool IsBlockPairInPreconditioner(const int block1, const int block2) {
222 //     return preconditioner_->IsBlockPairInPreconditioner(block1, block2);
223 //   }
224 
225 //   bool IsBlockPairOffDiagonal(const int block1, const int block2) {
226 //     return preconditioner_->IsBlockPairOffDiagonal(block1, block2);
227 //   }
228 
229 //   const BlockRandomAccessSparseMatrix* get_m() {
230 //     return preconditioner_->m_.get();
231 //   }
232 
233 //   int num_rows_;
234 //   int num_cols_;
235 //   int num_eliminate_blocks_;
236 //   int num_camera_blocks_;
237 
238 //   scoped_ptr<BlockSparseMatrix> A_;
239 //   scoped_array<double> b_;
240 //   scoped_array<double> D_;
241 
242 //   Preconditioner::Options options_;
243 //   scoped_ptr<VisibilityBasedPreconditioner> preconditioner_;
244 //   scoped_ptr<BlockRandomAccessDenseMatrix> schur_complement_;
245 // };
246 
247 // TEST_F(VisibilityBasedPreconditionerTest, OneClusterClusterJacobi) {
248 //   options_.type = CLUSTER_JACOBI;
249 //   preconditioner_.reset(
250 //       new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
251 
252 //   // Override the clustering to be a single clustering containing all
253 //   // the cameras.
254 //   vector<int>& cluster_membership = *get_mutable_cluster_membership();
255 //   for (int i = 0; i < num_camera_blocks_; ++i) {
256 //     cluster_membership[i] = 0;
257 //   }
258 
259 //   *get_mutable_num_clusters() = 1;
260 
261 //   HashSet<pair<int, int> >& cluster_pairs = *get_mutable_cluster_pairs();
262 //   cluster_pairs.clear();
263 //   cluster_pairs.insert(make_pair(0, 0));
264 
265 //   EXPECT_TRUE(IsSparsityStructureValid());
266 //   EXPECT_TRUE(PreconditionerValuesMatch());
267 
268 //   // Multiplication by the inverse of the preconditioner.
269 //   const int num_rows = schur_complement_->num_rows();
270 //   ConstMatrixRef full_schur_complement(schur_complement_->values(),
271 //                                        num_rows,
272 //                                        num_rows);
273 //   Vector x(num_rows);
274 //   Vector y(num_rows);
275 //   Vector z(num_rows);
276 
277 //   for (int i = 0; i < num_rows; ++i) {
278 //     x.setZero();
279 //     y.setZero();
280 //     z.setZero();
281 //     x[i] = 1.0;
282 //     preconditioner_->RightMultiply(x.data(), y.data());
283 //     z = full_schur_complement
284 //         .selfadjointView<Eigen::Upper>()
285 //         .llt().solve(x);
286 //     double max_relative_difference =
287 //         ((y - z).array() / z.array()).matrix().lpNorm<Eigen::Infinity>();
288 //     EXPECT_NEAR(max_relative_difference, 0.0, kTolerance);
289 //   }
290 // }
291 
292 
293 
294 // TEST_F(VisibilityBasedPreconditionerTest, ClusterJacobi) {
295 //   options_.type = CLUSTER_JACOBI;
296 //   preconditioner_.reset(
297 //       new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
298 
299 //   // Override the clustering to be equal number of cameras.
300 //   vector<int>& cluster_membership = *get_mutable_cluster_membership();
301 //   cluster_membership.resize(num_camera_blocks_);
302 //   static const int kNumClusters = 3;
303 
304 //   for (int i = 0; i < num_camera_blocks_; ++i) {
305 //     cluster_membership[i] = (i * kNumClusters) / num_camera_blocks_;
306 //   }
307 //   *get_mutable_num_clusters() = kNumClusters;
308 
309 //   HashSet<pair<int, int> >& cluster_pairs = *get_mutable_cluster_pairs();
310 //   cluster_pairs.clear();
311 //   for (int i = 0; i < kNumClusters; ++i) {
312 //     cluster_pairs.insert(make_pair(i, i));
313 //   }
314 
315 //   EXPECT_TRUE(IsSparsityStructureValid());
316 //   EXPECT_TRUE(PreconditionerValuesMatch());
317 // }
318 
319 
320 // TEST_F(VisibilityBasedPreconditionerTest, ClusterTridiagonal) {
321 //   options_.type = CLUSTER_TRIDIAGONAL;
322 //   preconditioner_.reset(
323 //       new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
324 //   static const int kNumClusters = 3;
325 
326 //   // Override the clustering to be 3 clusters.
327 //   vector<int>& cluster_membership = *get_mutable_cluster_membership();
328 //   cluster_membership.resize(num_camera_blocks_);
329 //   for (int i = 0; i < num_camera_blocks_; ++i) {
330 //     cluster_membership[i] = (i * kNumClusters) / num_camera_blocks_;
331 //   }
332 //   *get_mutable_num_clusters() = kNumClusters;
333 
334 //   // Spanning forest has structure 0-1 2
335 //   HashSet<pair<int, int> >& cluster_pairs = *get_mutable_cluster_pairs();
336 //   cluster_pairs.clear();
337 //   for (int i = 0; i < kNumClusters; ++i) {
338 //     cluster_pairs.insert(make_pair(i, i));
339 //   }
340 //   cluster_pairs.insert(make_pair(0, 1));
341 
342 //   EXPECT_TRUE(IsSparsityStructureValid());
343 //   EXPECT_TRUE(PreconditionerValuesMatch());
344 // }
345 
346 }  // namespace internal
347 }  // namespace ceres
348 
349 #endif  // CERES_NO_SUITESPARSE
350