1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides Objective-C code generation targeting the GNU runtime. The
11 // class in this file generates structures used by the GNU Objective-C runtime
12 // library. These structures are defined in objc/objc.h and objc/objc-api.h in
13 // the GNU runtime distribution.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "CGObjCRuntime.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Basic/FileManager.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringMap.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Compiler.h"
36 #include <cstdarg>
37
38
39 using namespace clang;
40 using namespace CodeGen;
41
42
43 namespace {
44 /// Class that lazily initialises the runtime function. Avoids inserting the
45 /// types and the function declaration into a module if they're not used, and
46 /// avoids constructing the type more than once if it's used more than once.
47 class LazyRuntimeFunction {
48 CodeGenModule *CGM;
49 llvm::FunctionType *FTy;
50 const char *FunctionName;
51 llvm::Constant *Function;
52
53 public:
54 /// Constructor leaves this class uninitialized, because it is intended to
55 /// be used as a field in another class and not all of the types that are
56 /// used as arguments will necessarily be available at construction time.
LazyRuntimeFunction()57 LazyRuntimeFunction()
58 : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
59
60 /// Initialises the lazy function with the name, return type, and the types
61 /// of the arguments.
62 LLVM_END_WITH_NULL
init(CodeGenModule * Mod,const char * name,llvm::Type * RetTy,...)63 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy, ...) {
64 CGM = Mod;
65 FunctionName = name;
66 Function = nullptr;
67 std::vector<llvm::Type *> ArgTys;
68 va_list Args;
69 va_start(Args, RetTy);
70 while (llvm::Type *ArgTy = va_arg(Args, llvm::Type *))
71 ArgTys.push_back(ArgTy);
72 va_end(Args);
73 FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
74 }
75
getType()76 llvm::FunctionType *getType() { return FTy; }
77
78 /// Overloaded cast operator, allows the class to be implicitly cast to an
79 /// LLVM constant.
operator llvm::Constant*()80 operator llvm::Constant *() {
81 if (!Function) {
82 if (!FunctionName)
83 return nullptr;
84 Function =
85 cast<llvm::Constant>(CGM->CreateRuntimeFunction(FTy, FunctionName));
86 }
87 return Function;
88 }
operator llvm::Function*()89 operator llvm::Function *() {
90 return cast<llvm::Function>((llvm::Constant *)*this);
91 }
92 };
93
94
95 /// GNU Objective-C runtime code generation. This class implements the parts of
96 /// Objective-C support that are specific to the GNU family of runtimes (GCC,
97 /// GNUstep and ObjFW).
98 class CGObjCGNU : public CGObjCRuntime {
99 protected:
100 /// The LLVM module into which output is inserted
101 llvm::Module &TheModule;
102 /// strut objc_super. Used for sending messages to super. This structure
103 /// contains the receiver (object) and the expected class.
104 llvm::StructType *ObjCSuperTy;
105 /// struct objc_super*. The type of the argument to the superclass message
106 /// lookup functions.
107 llvm::PointerType *PtrToObjCSuperTy;
108 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring
109 /// SEL is included in a header somewhere, in which case it will be whatever
110 /// type is declared in that header, most likely {i8*, i8*}.
111 llvm::PointerType *SelectorTy;
112 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the
113 /// places where it's used
114 llvm::IntegerType *Int8Ty;
115 /// Pointer to i8 - LLVM type of char*, for all of the places where the
116 /// runtime needs to deal with C strings.
117 llvm::PointerType *PtrToInt8Ty;
118 /// Instance Method Pointer type. This is a pointer to a function that takes,
119 /// at a minimum, an object and a selector, and is the generic type for
120 /// Objective-C methods. Due to differences between variadic / non-variadic
121 /// calling conventions, it must always be cast to the correct type before
122 /// actually being used.
123 llvm::PointerType *IMPTy;
124 /// Type of an untyped Objective-C object. Clang treats id as a built-in type
125 /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
126 /// but if the runtime header declaring it is included then it may be a
127 /// pointer to a structure.
128 llvm::PointerType *IdTy;
129 /// Pointer to a pointer to an Objective-C object. Used in the new ABI
130 /// message lookup function and some GC-related functions.
131 llvm::PointerType *PtrToIdTy;
132 /// The clang type of id. Used when using the clang CGCall infrastructure to
133 /// call Objective-C methods.
134 CanQualType ASTIdTy;
135 /// LLVM type for C int type.
136 llvm::IntegerType *IntTy;
137 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is
138 /// used in the code to document the difference between i8* meaning a pointer
139 /// to a C string and i8* meaning a pointer to some opaque type.
140 llvm::PointerType *PtrTy;
141 /// LLVM type for C long type. The runtime uses this in a lot of places where
142 /// it should be using intptr_t, but we can't fix this without breaking
143 /// compatibility with GCC...
144 llvm::IntegerType *LongTy;
145 /// LLVM type for C size_t. Used in various runtime data structures.
146 llvm::IntegerType *SizeTy;
147 /// LLVM type for C intptr_t.
148 llvm::IntegerType *IntPtrTy;
149 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions.
150 llvm::IntegerType *PtrDiffTy;
151 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance
152 /// variables.
153 llvm::PointerType *PtrToIntTy;
154 /// LLVM type for Objective-C BOOL type.
155 llvm::Type *BoolTy;
156 /// 32-bit integer type, to save us needing to look it up every time it's used.
157 llvm::IntegerType *Int32Ty;
158 /// 64-bit integer type, to save us needing to look it up every time it's used.
159 llvm::IntegerType *Int64Ty;
160 /// Metadata kind used to tie method lookups to message sends. The GNUstep
161 /// runtime provides some LLVM passes that can use this to do things like
162 /// automatic IMP caching and speculative inlining.
163 unsigned msgSendMDKind;
164 /// Helper function that generates a constant string and returns a pointer to
165 /// the start of the string. The result of this function can be used anywhere
166 /// where the C code specifies const char*.
MakeConstantString(const std::string & Str,const std::string & Name="")167 llvm::Constant *MakeConstantString(const std::string &Str,
168 const std::string &Name="") {
169 ConstantAddress Array = CGM.GetAddrOfConstantCString(Str, Name.c_str());
170 return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(),
171 Array.getPointer(), Zeros);
172 }
173 /// Emits a linkonce_odr string, whose name is the prefix followed by the
174 /// string value. This allows the linker to combine the strings between
175 /// different modules. Used for EH typeinfo names, selector strings, and a
176 /// few other things.
ExportUniqueString(const std::string & Str,const std::string prefix)177 llvm::Constant *ExportUniqueString(const std::string &Str,
178 const std::string prefix) {
179 std::string name = prefix + Str;
180 auto *ConstStr = TheModule.getGlobalVariable(name);
181 if (!ConstStr) {
182 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
183 ConstStr = new llvm::GlobalVariable(TheModule, value->getType(), true,
184 llvm::GlobalValue::LinkOnceODRLinkage, value, prefix + Str);
185 }
186 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
187 ConstStr, Zeros);
188 }
189 /// Generates a global structure, initialized by the elements in the vector.
190 /// The element types must match the types of the structure elements in the
191 /// first argument.
MakeGlobal(llvm::StructType * Ty,ArrayRef<llvm::Constant * > V,CharUnits Align,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)192 llvm::GlobalVariable *MakeGlobal(llvm::StructType *Ty,
193 ArrayRef<llvm::Constant *> V,
194 CharUnits Align,
195 StringRef Name="",
196 llvm::GlobalValue::LinkageTypes linkage
197 =llvm::GlobalValue::InternalLinkage) {
198 llvm::Constant *C = llvm::ConstantStruct::get(Ty, V);
199 auto GV = new llvm::GlobalVariable(TheModule, Ty, false,
200 linkage, C, Name);
201 GV->setAlignment(Align.getQuantity());
202 return GV;
203 }
204 /// Generates a global array. The vector must contain the same number of
205 /// elements that the array type declares, of the type specified as the array
206 /// element type.
MakeGlobal(llvm::ArrayType * Ty,ArrayRef<llvm::Constant * > V,CharUnits Align,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)207 llvm::GlobalVariable *MakeGlobal(llvm::ArrayType *Ty,
208 ArrayRef<llvm::Constant *> V,
209 CharUnits Align,
210 StringRef Name="",
211 llvm::GlobalValue::LinkageTypes linkage
212 =llvm::GlobalValue::InternalLinkage) {
213 llvm::Constant *C = llvm::ConstantArray::get(Ty, V);
214 auto GV = new llvm::GlobalVariable(TheModule, Ty, false,
215 linkage, C, Name);
216 GV->setAlignment(Align.getQuantity());
217 return GV;
218 }
219 /// Generates a global array, inferring the array type from the specified
220 /// element type and the size of the initialiser.
MakeGlobalArray(llvm::Type * Ty,ArrayRef<llvm::Constant * > V,CharUnits Align,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)221 llvm::GlobalVariable *MakeGlobalArray(llvm::Type *Ty,
222 ArrayRef<llvm::Constant *> V,
223 CharUnits Align,
224 StringRef Name="",
225 llvm::GlobalValue::LinkageTypes linkage
226 =llvm::GlobalValue::InternalLinkage) {
227 llvm::ArrayType *ArrayTy = llvm::ArrayType::get(Ty, V.size());
228 return MakeGlobal(ArrayTy, V, Align, Name, linkage);
229 }
230 /// Returns a property name and encoding string.
MakePropertyEncodingString(const ObjCPropertyDecl * PD,const Decl * Container)231 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
232 const Decl *Container) {
233 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
234 if ((R.getKind() == ObjCRuntime::GNUstep) &&
235 (R.getVersion() >= VersionTuple(1, 6))) {
236 std::string NameAndAttributes;
237 std::string TypeStr;
238 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
239 NameAndAttributes += '\0';
240 NameAndAttributes += TypeStr.length() + 3;
241 NameAndAttributes += TypeStr;
242 NameAndAttributes += '\0';
243 NameAndAttributes += PD->getNameAsString();
244 return MakeConstantString(NameAndAttributes);
245 }
246 return MakeConstantString(PD->getNameAsString());
247 }
248 /// Push the property attributes into two structure fields.
PushPropertyAttributes(std::vector<llvm::Constant * > & Fields,ObjCPropertyDecl * property,bool isSynthesized=true,bool isDynamic=true)249 void PushPropertyAttributes(std::vector<llvm::Constant*> &Fields,
250 ObjCPropertyDecl *property, bool isSynthesized=true, bool
251 isDynamic=true) {
252 int attrs = property->getPropertyAttributes();
253 // For read-only properties, clear the copy and retain flags
254 if (attrs & ObjCPropertyDecl::OBJC_PR_readonly) {
255 attrs &= ~ObjCPropertyDecl::OBJC_PR_copy;
256 attrs &= ~ObjCPropertyDecl::OBJC_PR_retain;
257 attrs &= ~ObjCPropertyDecl::OBJC_PR_weak;
258 attrs &= ~ObjCPropertyDecl::OBJC_PR_strong;
259 }
260 // The first flags field has the same attribute values as clang uses internally
261 Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
262 attrs >>= 8;
263 attrs <<= 2;
264 // For protocol properties, synthesized and dynamic have no meaning, so we
265 // reuse these flags to indicate that this is a protocol property (both set
266 // has no meaning, as a property can't be both synthesized and dynamic)
267 attrs |= isSynthesized ? (1<<0) : 0;
268 attrs |= isDynamic ? (1<<1) : 0;
269 // The second field is the next four fields left shifted by two, with the
270 // low bit set to indicate whether the field is synthesized or dynamic.
271 Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
272 // Two padding fields
273 Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
274 Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
275 }
276 /// Ensures that the value has the required type, by inserting a bitcast if
277 /// required. This function lets us avoid inserting bitcasts that are
278 /// redundant.
EnforceType(CGBuilderTy & B,llvm::Value * V,llvm::Type * Ty)279 llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
280 if (V->getType() == Ty) return V;
281 return B.CreateBitCast(V, Ty);
282 }
EnforceType(CGBuilderTy & B,Address V,llvm::Type * Ty)283 Address EnforceType(CGBuilderTy &B, Address V, llvm::Type *Ty) {
284 if (V.getType() == Ty) return V;
285 return B.CreateBitCast(V, Ty);
286 }
287 // Some zeros used for GEPs in lots of places.
288 llvm::Constant *Zeros[2];
289 /// Null pointer value. Mainly used as a terminator in various arrays.
290 llvm::Constant *NULLPtr;
291 /// LLVM context.
292 llvm::LLVMContext &VMContext;
293 private:
294 /// Placeholder for the class. Lots of things refer to the class before we've
295 /// actually emitted it. We use this alias as a placeholder, and then replace
296 /// it with a pointer to the class structure before finally emitting the
297 /// module.
298 llvm::GlobalAlias *ClassPtrAlias;
299 /// Placeholder for the metaclass. Lots of things refer to the class before
300 /// we've / actually emitted it. We use this alias as a placeholder, and then
301 /// replace / it with a pointer to the metaclass structure before finally
302 /// emitting the / module.
303 llvm::GlobalAlias *MetaClassPtrAlias;
304 /// All of the classes that have been generated for this compilation units.
305 std::vector<llvm::Constant*> Classes;
306 /// All of the categories that have been generated for this compilation units.
307 std::vector<llvm::Constant*> Categories;
308 /// All of the Objective-C constant strings that have been generated for this
309 /// compilation units.
310 std::vector<llvm::Constant*> ConstantStrings;
311 /// Map from string values to Objective-C constant strings in the output.
312 /// Used to prevent emitting Objective-C strings more than once. This should
313 /// not be required at all - CodeGenModule should manage this list.
314 llvm::StringMap<llvm::Constant*> ObjCStrings;
315 /// All of the protocols that have been declared.
316 llvm::StringMap<llvm::Constant*> ExistingProtocols;
317 /// For each variant of a selector, we store the type encoding and a
318 /// placeholder value. For an untyped selector, the type will be the empty
319 /// string. Selector references are all done via the module's selector table,
320 /// so we create an alias as a placeholder and then replace it with the real
321 /// value later.
322 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
323 /// Type of the selector map. This is roughly equivalent to the structure
324 /// used in the GNUstep runtime, which maintains a list of all of the valid
325 /// types for a selector in a table.
326 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
327 SelectorMap;
328 /// A map from selectors to selector types. This allows us to emit all
329 /// selectors of the same name and type together.
330 SelectorMap SelectorTable;
331
332 /// Selectors related to memory management. When compiling in GC mode, we
333 /// omit these.
334 Selector RetainSel, ReleaseSel, AutoreleaseSel;
335 /// Runtime functions used for memory management in GC mode. Note that clang
336 /// supports code generation for calling these functions, but neither GNU
337 /// runtime actually supports this API properly yet.
338 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
339 WeakAssignFn, GlobalAssignFn;
340
341 typedef std::pair<std::string, std::string> ClassAliasPair;
342 /// All classes that have aliases set for them.
343 std::vector<ClassAliasPair> ClassAliases;
344
345 protected:
346 /// Function used for throwing Objective-C exceptions.
347 LazyRuntimeFunction ExceptionThrowFn;
348 /// Function used for rethrowing exceptions, used at the end of \@finally or
349 /// \@synchronize blocks.
350 LazyRuntimeFunction ExceptionReThrowFn;
351 /// Function called when entering a catch function. This is required for
352 /// differentiating Objective-C exceptions and foreign exceptions.
353 LazyRuntimeFunction EnterCatchFn;
354 /// Function called when exiting from a catch block. Used to do exception
355 /// cleanup.
356 LazyRuntimeFunction ExitCatchFn;
357 /// Function called when entering an \@synchronize block. Acquires the lock.
358 LazyRuntimeFunction SyncEnterFn;
359 /// Function called when exiting an \@synchronize block. Releases the lock.
360 LazyRuntimeFunction SyncExitFn;
361
362 private:
363
364 /// Function called if fast enumeration detects that the collection is
365 /// modified during the update.
366 LazyRuntimeFunction EnumerationMutationFn;
367 /// Function for implementing synthesized property getters that return an
368 /// object.
369 LazyRuntimeFunction GetPropertyFn;
370 /// Function for implementing synthesized property setters that return an
371 /// object.
372 LazyRuntimeFunction SetPropertyFn;
373 /// Function used for non-object declared property getters.
374 LazyRuntimeFunction GetStructPropertyFn;
375 /// Function used for non-object declared property setters.
376 LazyRuntimeFunction SetStructPropertyFn;
377
378 /// The version of the runtime that this class targets. Must match the
379 /// version in the runtime.
380 int RuntimeVersion;
381 /// The version of the protocol class. Used to differentiate between ObjC1
382 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional
383 /// components and can not contain declared properties. We always emit
384 /// Objective-C 2 property structures, but we have to pretend that they're
385 /// Objective-C 1 property structures when targeting the GCC runtime or it
386 /// will abort.
387 const int ProtocolVersion;
388 private:
389 /// Generates an instance variable list structure. This is a structure
390 /// containing a size and an array of structures containing instance variable
391 /// metadata. This is used purely for introspection in the fragile ABI. In
392 /// the non-fragile ABI, it's used for instance variable fixup.
393 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
394 ArrayRef<llvm::Constant *> IvarTypes,
395 ArrayRef<llvm::Constant *> IvarOffsets);
396 /// Generates a method list structure. This is a structure containing a size
397 /// and an array of structures containing method metadata.
398 ///
399 /// This structure is used by both classes and categories, and contains a next
400 /// pointer allowing them to be chained together in a linked list.
401 llvm::Constant *GenerateMethodList(StringRef ClassName,
402 StringRef CategoryName,
403 ArrayRef<Selector> MethodSels,
404 ArrayRef<llvm::Constant *> MethodTypes,
405 bool isClassMethodList);
406 /// Emits an empty protocol. This is used for \@protocol() where no protocol
407 /// is found. The runtime will (hopefully) fix up the pointer to refer to the
408 /// real protocol.
409 llvm::Constant *GenerateEmptyProtocol(const std::string &ProtocolName);
410 /// Generates a list of property metadata structures. This follows the same
411 /// pattern as method and instance variable metadata lists.
412 llvm::Constant *GeneratePropertyList(const ObjCImplementationDecl *OID,
413 SmallVectorImpl<Selector> &InstanceMethodSels,
414 SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes);
415 /// Generates a list of referenced protocols. Classes, categories, and
416 /// protocols all use this structure.
417 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
418 /// To ensure that all protocols are seen by the runtime, we add a category on
419 /// a class defined in the runtime, declaring no methods, but adopting the
420 /// protocols. This is a horribly ugly hack, but it allows us to collect all
421 /// of the protocols without changing the ABI.
422 void GenerateProtocolHolderCategory();
423 /// Generates a class structure.
424 llvm::Constant *GenerateClassStructure(
425 llvm::Constant *MetaClass,
426 llvm::Constant *SuperClass,
427 unsigned info,
428 const char *Name,
429 llvm::Constant *Version,
430 llvm::Constant *InstanceSize,
431 llvm::Constant *IVars,
432 llvm::Constant *Methods,
433 llvm::Constant *Protocols,
434 llvm::Constant *IvarOffsets,
435 llvm::Constant *Properties,
436 llvm::Constant *StrongIvarBitmap,
437 llvm::Constant *WeakIvarBitmap,
438 bool isMeta=false);
439 /// Generates a method list. This is used by protocols to define the required
440 /// and optional methods.
441 llvm::Constant *GenerateProtocolMethodList(
442 ArrayRef<llvm::Constant *> MethodNames,
443 ArrayRef<llvm::Constant *> MethodTypes);
444 /// Returns a selector with the specified type encoding. An empty string is
445 /// used to return an untyped selector (with the types field set to NULL).
446 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
447 const std::string &TypeEncoding);
448 /// Returns the variable used to store the offset of an instance variable.
449 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
450 const ObjCIvarDecl *Ivar);
451 /// Emits a reference to a class. This allows the linker to object if there
452 /// is no class of the matching name.
453 protected:
454 void EmitClassRef(const std::string &className);
455 /// Emits a pointer to the named class
456 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
457 const std::string &Name, bool isWeak);
458 /// Looks up the method for sending a message to the specified object. This
459 /// mechanism differs between the GCC and GNU runtimes, so this method must be
460 /// overridden in subclasses.
461 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
462 llvm::Value *&Receiver,
463 llvm::Value *cmd,
464 llvm::MDNode *node,
465 MessageSendInfo &MSI) = 0;
466 /// Looks up the method for sending a message to a superclass. This
467 /// mechanism differs between the GCC and GNU runtimes, so this method must
468 /// be overridden in subclasses.
469 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
470 Address ObjCSuper,
471 llvm::Value *cmd,
472 MessageSendInfo &MSI) = 0;
473 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
474 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
475 /// bits set to their values, LSB first, while larger ones are stored in a
476 /// structure of this / form:
477 ///
478 /// struct { int32_t length; int32_t values[length]; };
479 ///
480 /// The values in the array are stored in host-endian format, with the least
481 /// significant bit being assumed to come first in the bitfield. Therefore,
482 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
483 /// while a bitfield / with the 63rd bit set will be 1<<64.
484 llvm::Constant *MakeBitField(ArrayRef<bool> bits);
485 public:
486 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
487 unsigned protocolClassVersion);
488
489 ConstantAddress GenerateConstantString(const StringLiteral *) override;
490
491 RValue
492 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
493 QualType ResultType, Selector Sel,
494 llvm::Value *Receiver, const CallArgList &CallArgs,
495 const ObjCInterfaceDecl *Class,
496 const ObjCMethodDecl *Method) override;
497 RValue
498 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
499 QualType ResultType, Selector Sel,
500 const ObjCInterfaceDecl *Class,
501 bool isCategoryImpl, llvm::Value *Receiver,
502 bool IsClassMessage, const CallArgList &CallArgs,
503 const ObjCMethodDecl *Method) override;
504 llvm::Value *GetClass(CodeGenFunction &CGF,
505 const ObjCInterfaceDecl *OID) override;
506 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
507 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
508 llvm::Value *GetSelector(CodeGenFunction &CGF,
509 const ObjCMethodDecl *Method) override;
510 llvm::Constant *GetEHType(QualType T) override;
511
512 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
513 const ObjCContainerDecl *CD) override;
514 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
515 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
516 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
517 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
518 const ObjCProtocolDecl *PD) override;
519 void GenerateProtocol(const ObjCProtocolDecl *PD) override;
520 llvm::Function *ModuleInitFunction() override;
521 llvm::Constant *GetPropertyGetFunction() override;
522 llvm::Constant *GetPropertySetFunction() override;
523 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
524 bool copy) override;
525 llvm::Constant *GetSetStructFunction() override;
526 llvm::Constant *GetGetStructFunction() override;
527 llvm::Constant *GetCppAtomicObjectGetFunction() override;
528 llvm::Constant *GetCppAtomicObjectSetFunction() override;
529 llvm::Constant *EnumerationMutationFunction() override;
530
531 void EmitTryStmt(CodeGenFunction &CGF,
532 const ObjCAtTryStmt &S) override;
533 void EmitSynchronizedStmt(CodeGenFunction &CGF,
534 const ObjCAtSynchronizedStmt &S) override;
535 void EmitThrowStmt(CodeGenFunction &CGF,
536 const ObjCAtThrowStmt &S,
537 bool ClearInsertionPoint=true) override;
538 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
539 Address AddrWeakObj) override;
540 void EmitObjCWeakAssign(CodeGenFunction &CGF,
541 llvm::Value *src, Address dst) override;
542 void EmitObjCGlobalAssign(CodeGenFunction &CGF,
543 llvm::Value *src, Address dest,
544 bool threadlocal=false) override;
545 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
546 Address dest, llvm::Value *ivarOffset) override;
547 void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
548 llvm::Value *src, Address dest) override;
549 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr,
550 Address SrcPtr,
551 llvm::Value *Size) override;
552 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
553 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
554 unsigned CVRQualifiers) override;
555 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
556 const ObjCInterfaceDecl *Interface,
557 const ObjCIvarDecl *Ivar) override;
558 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
BuildGCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)559 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
560 const CGBlockInfo &blockInfo) override {
561 return NULLPtr;
562 }
BuildRCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)563 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
564 const CGBlockInfo &blockInfo) override {
565 return NULLPtr;
566 }
567
BuildByrefLayout(CodeGenModule & CGM,QualType T)568 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
569 return NULLPtr;
570 }
571
GetClassGlobal(const std::string & Name,bool Weak=false)572 llvm::GlobalVariable *GetClassGlobal(const std::string &Name,
573 bool Weak = false) override {
574 return nullptr;
575 }
576 };
577 /// Class representing the legacy GCC Objective-C ABI. This is the default when
578 /// -fobjc-nonfragile-abi is not specified.
579 ///
580 /// The GCC ABI target actually generates code that is approximately compatible
581 /// with the new GNUstep runtime ABI, but refrains from using any features that
582 /// would not work with the GCC runtime. For example, clang always generates
583 /// the extended form of the class structure, and the extra fields are simply
584 /// ignored by GCC libobjc.
585 class CGObjCGCC : public CGObjCGNU {
586 /// The GCC ABI message lookup function. Returns an IMP pointing to the
587 /// method implementation for this message.
588 LazyRuntimeFunction MsgLookupFn;
589 /// The GCC ABI superclass message lookup function. Takes a pointer to a
590 /// structure describing the receiver and the class, and a selector as
591 /// arguments. Returns the IMP for the corresponding method.
592 LazyRuntimeFunction MsgLookupSuperFn;
593 protected:
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)594 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
595 llvm::Value *cmd, llvm::MDNode *node,
596 MessageSendInfo &MSI) override {
597 CGBuilderTy &Builder = CGF.Builder;
598 llvm::Value *args[] = {
599 EnforceType(Builder, Receiver, IdTy),
600 EnforceType(Builder, cmd, SelectorTy) };
601 llvm::CallSite imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
602 imp->setMetadata(msgSendMDKind, node);
603 return imp.getInstruction();
604 }
LookupIMPSuper(CodeGenFunction & CGF,Address ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)605 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
606 llvm::Value *cmd, MessageSendInfo &MSI) override {
607 CGBuilderTy &Builder = CGF.Builder;
608 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
609 PtrToObjCSuperTy).getPointer(), cmd};
610 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
611 }
612 public:
CGObjCGCC(CodeGenModule & Mod)613 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
614 // IMP objc_msg_lookup(id, SEL);
615 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy,
616 nullptr);
617 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
618 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
619 PtrToObjCSuperTy, SelectorTy, nullptr);
620 }
621 };
622 /// Class used when targeting the new GNUstep runtime ABI.
623 class CGObjCGNUstep : public CGObjCGNU {
624 /// The slot lookup function. Returns a pointer to a cacheable structure
625 /// that contains (among other things) the IMP.
626 LazyRuntimeFunction SlotLookupFn;
627 /// The GNUstep ABI superclass message lookup function. Takes a pointer to
628 /// a structure describing the receiver and the class, and a selector as
629 /// arguments. Returns the slot for the corresponding method. Superclass
630 /// message lookup rarely changes, so this is a good caching opportunity.
631 LazyRuntimeFunction SlotLookupSuperFn;
632 /// Specialised function for setting atomic retain properties
633 LazyRuntimeFunction SetPropertyAtomic;
634 /// Specialised function for setting atomic copy properties
635 LazyRuntimeFunction SetPropertyAtomicCopy;
636 /// Specialised function for setting nonatomic retain properties
637 LazyRuntimeFunction SetPropertyNonAtomic;
638 /// Specialised function for setting nonatomic copy properties
639 LazyRuntimeFunction SetPropertyNonAtomicCopy;
640 /// Function to perform atomic copies of C++ objects with nontrivial copy
641 /// constructors from Objective-C ivars.
642 LazyRuntimeFunction CxxAtomicObjectGetFn;
643 /// Function to perform atomic copies of C++ objects with nontrivial copy
644 /// constructors to Objective-C ivars.
645 LazyRuntimeFunction CxxAtomicObjectSetFn;
646 /// Type of an slot structure pointer. This is returned by the various
647 /// lookup functions.
648 llvm::Type *SlotTy;
649 public:
650 llvm::Constant *GetEHType(QualType T) override;
651 protected:
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)652 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
653 llvm::Value *cmd, llvm::MDNode *node,
654 MessageSendInfo &MSI) override {
655 CGBuilderTy &Builder = CGF.Builder;
656 llvm::Function *LookupFn = SlotLookupFn;
657
658 // Store the receiver on the stack so that we can reload it later
659 Address ReceiverPtr =
660 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
661 Builder.CreateStore(Receiver, ReceiverPtr);
662
663 llvm::Value *self;
664
665 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
666 self = CGF.LoadObjCSelf();
667 } else {
668 self = llvm::ConstantPointerNull::get(IdTy);
669 }
670
671 // The lookup function is guaranteed not to capture the receiver pointer.
672 LookupFn->setDoesNotCapture(1);
673
674 llvm::Value *args[] = {
675 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
676 EnforceType(Builder, cmd, SelectorTy),
677 EnforceType(Builder, self, IdTy) };
678 llvm::CallSite slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
679 slot.setOnlyReadsMemory();
680 slot->setMetadata(msgSendMDKind, node);
681
682 // Load the imp from the slot
683 llvm::Value *imp = Builder.CreateAlignedLoad(
684 Builder.CreateStructGEP(nullptr, slot.getInstruction(), 4),
685 CGF.getPointerAlign());
686
687 // The lookup function may have changed the receiver, so make sure we use
688 // the new one.
689 Receiver = Builder.CreateLoad(ReceiverPtr, true);
690 return imp;
691 }
LookupIMPSuper(CodeGenFunction & CGF,Address ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)692 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
693 llvm::Value *cmd,
694 MessageSendInfo &MSI) override {
695 CGBuilderTy &Builder = CGF.Builder;
696 llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd};
697
698 llvm::CallInst *slot =
699 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
700 slot->setOnlyReadsMemory();
701
702 return Builder.CreateAlignedLoad(Builder.CreateStructGEP(nullptr, slot, 4),
703 CGF.getPointerAlign());
704 }
705 public:
CGObjCGNUstep(CodeGenModule & Mod)706 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNU(Mod, 9, 3) {
707 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
708
709 llvm::StructType *SlotStructTy = llvm::StructType::get(PtrTy,
710 PtrTy, PtrTy, IntTy, IMPTy, nullptr);
711 SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
712 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
713 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
714 SelectorTy, IdTy, nullptr);
715 // Slot_t objc_msg_lookup_super(struct objc_super*, SEL);
716 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
717 PtrToObjCSuperTy, SelectorTy, nullptr);
718 // If we're in ObjC++ mode, then we want to make
719 if (CGM.getLangOpts().CPlusPlus) {
720 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
721 // void *__cxa_begin_catch(void *e)
722 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy, nullptr);
723 // void __cxa_end_catch(void)
724 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy, nullptr);
725 // void _Unwind_Resume_or_Rethrow(void*)
726 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
727 PtrTy, nullptr);
728 } else if (R.getVersion() >= VersionTuple(1, 7)) {
729 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
730 // id objc_begin_catch(void *e)
731 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy, nullptr);
732 // void objc_end_catch(void)
733 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy, nullptr);
734 // void _Unwind_Resume_or_Rethrow(void*)
735 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy,
736 PtrTy, nullptr);
737 }
738 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
739 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
740 SelectorTy, IdTy, PtrDiffTy, nullptr);
741 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
742 IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
743 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
744 IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
745 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
746 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
747 // void objc_setCppObjectAtomic(void *dest, const void *src, void
748 // *helper);
749 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
750 PtrTy, PtrTy, nullptr);
751 // void objc_getCppObjectAtomic(void *dest, const void *src, void
752 // *helper);
753 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
754 PtrTy, PtrTy, nullptr);
755 }
GetCppAtomicObjectGetFunction()756 llvm::Constant *GetCppAtomicObjectGetFunction() override {
757 // The optimised functions were added in version 1.7 of the GNUstep
758 // runtime.
759 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
760 VersionTuple(1, 7));
761 return CxxAtomicObjectGetFn;
762 }
GetCppAtomicObjectSetFunction()763 llvm::Constant *GetCppAtomicObjectSetFunction() override {
764 // The optimised functions were added in version 1.7 of the GNUstep
765 // runtime.
766 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
767 VersionTuple(1, 7));
768 return CxxAtomicObjectSetFn;
769 }
GetOptimizedPropertySetFunction(bool atomic,bool copy)770 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
771 bool copy) override {
772 // The optimised property functions omit the GC check, and so are not
773 // safe to use in GC mode. The standard functions are fast in GC mode,
774 // so there is less advantage in using them.
775 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
776 // The optimised functions were added in version 1.7 of the GNUstep
777 // runtime.
778 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
779 VersionTuple(1, 7));
780
781 if (atomic) {
782 if (copy) return SetPropertyAtomicCopy;
783 return SetPropertyAtomic;
784 }
785
786 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
787 }
788 };
789
790 /// Support for the ObjFW runtime.
791 class CGObjCObjFW: public CGObjCGNU {
792 protected:
793 /// The GCC ABI message lookup function. Returns an IMP pointing to the
794 /// method implementation for this message.
795 LazyRuntimeFunction MsgLookupFn;
796 /// stret lookup function. While this does not seem to make sense at the
797 /// first look, this is required to call the correct forwarding function.
798 LazyRuntimeFunction MsgLookupFnSRet;
799 /// The GCC ABI superclass message lookup function. Takes a pointer to a
800 /// structure describing the receiver and the class, and a selector as
801 /// arguments. Returns the IMP for the corresponding method.
802 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
803
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)804 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
805 llvm::Value *cmd, llvm::MDNode *node,
806 MessageSendInfo &MSI) override {
807 CGBuilderTy &Builder = CGF.Builder;
808 llvm::Value *args[] = {
809 EnforceType(Builder, Receiver, IdTy),
810 EnforceType(Builder, cmd, SelectorTy) };
811
812 llvm::CallSite imp;
813 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
814 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
815 else
816 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
817
818 imp->setMetadata(msgSendMDKind, node);
819 return imp.getInstruction();
820 }
821
LookupIMPSuper(CodeGenFunction & CGF,Address ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)822 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
823 llvm::Value *cmd, MessageSendInfo &MSI) override {
824 CGBuilderTy &Builder = CGF.Builder;
825 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper.getPointer(),
826 PtrToObjCSuperTy), cmd};
827
828 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
829 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
830 else
831 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
832 }
833
GetClassNamed(CodeGenFunction & CGF,const std::string & Name,bool isWeak)834 llvm::Value *GetClassNamed(CodeGenFunction &CGF,
835 const std::string &Name, bool isWeak) override {
836 if (isWeak)
837 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
838
839 EmitClassRef(Name);
840
841 std::string SymbolName = "_OBJC_CLASS_" + Name;
842
843 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
844
845 if (!ClassSymbol)
846 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
847 llvm::GlobalValue::ExternalLinkage,
848 nullptr, SymbolName);
849
850 return ClassSymbol;
851 }
852
853 public:
CGObjCObjFW(CodeGenModule & Mod)854 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
855 // IMP objc_msg_lookup(id, SEL);
856 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, nullptr);
857 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
858 SelectorTy, nullptr);
859 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
860 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
861 PtrToObjCSuperTy, SelectorTy, nullptr);
862 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
863 PtrToObjCSuperTy, SelectorTy, nullptr);
864 }
865 };
866 } // end anonymous namespace
867
868
869 /// Emits a reference to a dummy variable which is emitted with each class.
870 /// This ensures that a linker error will be generated when trying to link
871 /// together modules where a referenced class is not defined.
EmitClassRef(const std::string & className)872 void CGObjCGNU::EmitClassRef(const std::string &className) {
873 std::string symbolRef = "__objc_class_ref_" + className;
874 // Don't emit two copies of the same symbol
875 if (TheModule.getGlobalVariable(symbolRef))
876 return;
877 std::string symbolName = "__objc_class_name_" + className;
878 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
879 if (!ClassSymbol) {
880 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
881 llvm::GlobalValue::ExternalLinkage,
882 nullptr, symbolName);
883 }
884 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
885 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
886 }
887
SymbolNameForMethod(StringRef ClassName,StringRef CategoryName,const Selector MethodName,bool isClassMethod)888 static std::string SymbolNameForMethod( StringRef ClassName,
889 StringRef CategoryName, const Selector MethodName,
890 bool isClassMethod) {
891 std::string MethodNameColonStripped = MethodName.getAsString();
892 std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
893 ':', '_');
894 return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
895 CategoryName + "_" + MethodNameColonStripped).str();
896 }
897
CGObjCGNU(CodeGenModule & cgm,unsigned runtimeABIVersion,unsigned protocolClassVersion)898 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
899 unsigned protocolClassVersion)
900 : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
901 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
902 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
903 ProtocolVersion(protocolClassVersion) {
904
905 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
906
907 CodeGenTypes &Types = CGM.getTypes();
908 IntTy = cast<llvm::IntegerType>(
909 Types.ConvertType(CGM.getContext().IntTy));
910 LongTy = cast<llvm::IntegerType>(
911 Types.ConvertType(CGM.getContext().LongTy));
912 SizeTy = cast<llvm::IntegerType>(
913 Types.ConvertType(CGM.getContext().getSizeType()));
914 PtrDiffTy = cast<llvm::IntegerType>(
915 Types.ConvertType(CGM.getContext().getPointerDiffType()));
916 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
917
918 Int8Ty = llvm::Type::getInt8Ty(VMContext);
919 // C string type. Used in lots of places.
920 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
921
922 Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
923 Zeros[1] = Zeros[0];
924 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
925 // Get the selector Type.
926 QualType selTy = CGM.getContext().getObjCSelType();
927 if (QualType() == selTy) {
928 SelectorTy = PtrToInt8Ty;
929 } else {
930 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
931 }
932
933 PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
934 PtrTy = PtrToInt8Ty;
935
936 Int32Ty = llvm::Type::getInt32Ty(VMContext);
937 Int64Ty = llvm::Type::getInt64Ty(VMContext);
938
939 IntPtrTy =
940 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
941
942 // Object type
943 QualType UnqualIdTy = CGM.getContext().getObjCIdType();
944 ASTIdTy = CanQualType();
945 if (UnqualIdTy != QualType()) {
946 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
947 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
948 } else {
949 IdTy = PtrToInt8Ty;
950 }
951 PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
952
953 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy, nullptr);
954 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
955
956 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
957
958 // void objc_exception_throw(id);
959 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
960 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
961 // int objc_sync_enter(id);
962 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy, nullptr);
963 // int objc_sync_exit(id);
964 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy, nullptr);
965
966 // void objc_enumerationMutation (id)
967 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy,
968 IdTy, nullptr);
969
970 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
971 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
972 PtrDiffTy, BoolTy, nullptr);
973 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
974 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
975 PtrDiffTy, IdTy, BoolTy, BoolTy, nullptr);
976 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
977 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
978 PtrDiffTy, BoolTy, BoolTy, nullptr);
979 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
980 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
981 PtrDiffTy, BoolTy, BoolTy, nullptr);
982
983 // IMP type
984 llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
985 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
986 true));
987
988 const LangOptions &Opts = CGM.getLangOpts();
989 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
990 RuntimeVersion = 10;
991
992 // Don't bother initialising the GC stuff unless we're compiling in GC mode
993 if (Opts.getGC() != LangOptions::NonGC) {
994 // This is a bit of an hack. We should sort this out by having a proper
995 // CGObjCGNUstep subclass for GC, but we may want to really support the old
996 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
997 // Get selectors needed in GC mode
998 RetainSel = GetNullarySelector("retain", CGM.getContext());
999 ReleaseSel = GetNullarySelector("release", CGM.getContext());
1000 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
1001
1002 // Get functions needed in GC mode
1003
1004 // id objc_assign_ivar(id, id, ptrdiff_t);
1005 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy,
1006 nullptr);
1007 // id objc_assign_strongCast (id, id*)
1008 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
1009 PtrToIdTy, nullptr);
1010 // id objc_assign_global(id, id*);
1011 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy,
1012 nullptr);
1013 // id objc_assign_weak(id, id*);
1014 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy, nullptr);
1015 // id objc_read_weak(id*);
1016 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy, nullptr);
1017 // void *objc_memmove_collectable(void*, void *, size_t);
1018 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
1019 SizeTy, nullptr);
1020 }
1021 }
1022
GetClassNamed(CodeGenFunction & CGF,const std::string & Name,bool isWeak)1023 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
1024 const std::string &Name,
1025 bool isWeak) {
1026 llvm::Constant *ClassName = MakeConstantString(Name);
1027 // With the incompatible ABI, this will need to be replaced with a direct
1028 // reference to the class symbol. For the compatible nonfragile ABI we are
1029 // still performing this lookup at run time but emitting the symbol for the
1030 // class externally so that we can make the switch later.
1031 //
1032 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
1033 // with memoized versions or with static references if it's safe to do so.
1034 if (!isWeak)
1035 EmitClassRef(Name);
1036
1037 llvm::Constant *ClassLookupFn =
1038 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true),
1039 "objc_lookup_class");
1040 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
1041 }
1042
1043 // This has to perform the lookup every time, since posing and related
1044 // techniques can modify the name -> class mapping.
GetClass(CodeGenFunction & CGF,const ObjCInterfaceDecl * OID)1045 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
1046 const ObjCInterfaceDecl *OID) {
1047 return GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
1048 }
EmitNSAutoreleasePoolClassRef(CodeGenFunction & CGF)1049 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
1050 return GetClassNamed(CGF, "NSAutoreleasePool", false);
1051 }
1052
GetSelector(CodeGenFunction & CGF,Selector Sel,const std::string & TypeEncoding)1053 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1054 const std::string &TypeEncoding) {
1055
1056 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
1057 llvm::GlobalAlias *SelValue = nullptr;
1058
1059 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
1060 e = Types.end() ; i!=e ; i++) {
1061 if (i->first == TypeEncoding) {
1062 SelValue = i->second;
1063 break;
1064 }
1065 }
1066 if (!SelValue) {
1067 SelValue = llvm::GlobalAlias::create(
1068 SelectorTy->getElementType(), 0, llvm::GlobalValue::PrivateLinkage,
1069 ".objc_selector_" + Sel.getAsString(), &TheModule);
1070 Types.emplace_back(TypeEncoding, SelValue);
1071 }
1072
1073 return SelValue;
1074 }
1075
GetAddrOfSelector(CodeGenFunction & CGF,Selector Sel)1076 Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
1077 llvm::Value *SelValue = GetSelector(CGF, Sel);
1078
1079 // Store it to a temporary. Does this satisfy the semantics of
1080 // GetAddrOfSelector? Hopefully.
1081 Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
1082 CGF.getPointerAlign());
1083 CGF.Builder.CreateStore(SelValue, tmp);
1084 return tmp;
1085 }
1086
GetSelector(CodeGenFunction & CGF,Selector Sel)1087 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
1088 return GetSelector(CGF, Sel, std::string());
1089 }
1090
GetSelector(CodeGenFunction & CGF,const ObjCMethodDecl * Method)1091 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
1092 const ObjCMethodDecl *Method) {
1093 std::string SelTypes;
1094 CGM.getContext().getObjCEncodingForMethodDecl(Method, SelTypes);
1095 return GetSelector(CGF, Method->getSelector(), SelTypes);
1096 }
1097
GetEHType(QualType T)1098 llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
1099 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
1100 // With the old ABI, there was only one kind of catchall, which broke
1101 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as
1102 // a pointer indicating object catchalls, and NULL to indicate real
1103 // catchalls
1104 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
1105 return MakeConstantString("@id");
1106 } else {
1107 return nullptr;
1108 }
1109 }
1110
1111 // All other types should be Objective-C interface pointer types.
1112 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
1113 assert(OPT && "Invalid @catch type.");
1114 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
1115 assert(IDecl && "Invalid @catch type.");
1116 return MakeConstantString(IDecl->getIdentifier()->getName());
1117 }
1118
GetEHType(QualType T)1119 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
1120 if (!CGM.getLangOpts().CPlusPlus)
1121 return CGObjCGNU::GetEHType(T);
1122
1123 // For Objective-C++, we want to provide the ability to catch both C++ and
1124 // Objective-C objects in the same function.
1125
1126 // There's a particular fixed type info for 'id'.
1127 if (T->isObjCIdType() ||
1128 T->isObjCQualifiedIdType()) {
1129 llvm::Constant *IDEHType =
1130 CGM.getModule().getGlobalVariable("__objc_id_type_info");
1131 if (!IDEHType)
1132 IDEHType =
1133 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
1134 false,
1135 llvm::GlobalValue::ExternalLinkage,
1136 nullptr, "__objc_id_type_info");
1137 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
1138 }
1139
1140 const ObjCObjectPointerType *PT =
1141 T->getAs<ObjCObjectPointerType>();
1142 assert(PT && "Invalid @catch type.");
1143 const ObjCInterfaceType *IT = PT->getInterfaceType();
1144 assert(IT && "Invalid @catch type.");
1145 std::string className = IT->getDecl()->getIdentifier()->getName();
1146
1147 std::string typeinfoName = "__objc_eh_typeinfo_" + className;
1148
1149 // Return the existing typeinfo if it exists
1150 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
1151 if (typeinfo)
1152 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
1153
1154 // Otherwise create it.
1155
1156 // vtable for gnustep::libobjc::__objc_class_type_info
1157 // It's quite ugly hard-coding this. Ideally we'd generate it using the host
1158 // platform's name mangling.
1159 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
1160 auto *Vtable = TheModule.getGlobalVariable(vtableName);
1161 if (!Vtable) {
1162 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
1163 llvm::GlobalValue::ExternalLinkage,
1164 nullptr, vtableName);
1165 }
1166 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
1167 auto *BVtable = llvm::ConstantExpr::getBitCast(
1168 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two),
1169 PtrToInt8Ty);
1170
1171 llvm::Constant *typeName =
1172 ExportUniqueString(className, "__objc_eh_typename_");
1173
1174 std::vector<llvm::Constant*> fields;
1175 fields.push_back(BVtable);
1176 fields.push_back(typeName);
1177 llvm::Constant *TI =
1178 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, nullptr),
1179 fields, CGM.getPointerAlign(),
1180 "__objc_eh_typeinfo_" + className,
1181 llvm::GlobalValue::LinkOnceODRLinkage);
1182 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
1183 }
1184
1185 /// Generate an NSConstantString object.
GenerateConstantString(const StringLiteral * SL)1186 ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
1187
1188 std::string Str = SL->getString().str();
1189 CharUnits Align = CGM.getPointerAlign();
1190
1191 // Look for an existing one
1192 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
1193 if (old != ObjCStrings.end())
1194 return ConstantAddress(old->getValue(), Align);
1195
1196 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1197
1198 if (StringClass.empty()) StringClass = "NXConstantString";
1199
1200 std::string Sym = "_OBJC_CLASS_";
1201 Sym += StringClass;
1202
1203 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1204
1205 if (!isa)
1206 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1207 llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
1208 else if (isa->getType() != PtrToIdTy)
1209 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1210
1211 std::vector<llvm::Constant*> Ivars;
1212 Ivars.push_back(isa);
1213 Ivars.push_back(MakeConstantString(Str));
1214 Ivars.push_back(llvm::ConstantInt::get(IntTy, Str.size()));
1215 llvm::Constant *ObjCStr = MakeGlobal(
1216 llvm::StructType::get(PtrToIdTy, PtrToInt8Ty, IntTy, nullptr),
1217 Ivars, Align, ".objc_str");
1218 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
1219 ObjCStrings[Str] = ObjCStr;
1220 ConstantStrings.push_back(ObjCStr);
1221 return ConstantAddress(ObjCStr, Align);
1222 }
1223
1224 ///Generates a message send where the super is the receiver. This is a message
1225 ///send to self with special delivery semantics indicating which class's method
1226 ///should be called.
1227 RValue
GenerateMessageSendSuper(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,const ObjCInterfaceDecl * Class,bool isCategoryImpl,llvm::Value * Receiver,bool IsClassMessage,const CallArgList & CallArgs,const ObjCMethodDecl * Method)1228 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
1229 ReturnValueSlot Return,
1230 QualType ResultType,
1231 Selector Sel,
1232 const ObjCInterfaceDecl *Class,
1233 bool isCategoryImpl,
1234 llvm::Value *Receiver,
1235 bool IsClassMessage,
1236 const CallArgList &CallArgs,
1237 const ObjCMethodDecl *Method) {
1238 CGBuilderTy &Builder = CGF.Builder;
1239 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1240 if (Sel == RetainSel || Sel == AutoreleaseSel) {
1241 return RValue::get(EnforceType(Builder, Receiver,
1242 CGM.getTypes().ConvertType(ResultType)));
1243 }
1244 if (Sel == ReleaseSel) {
1245 return RValue::get(nullptr);
1246 }
1247 }
1248
1249 llvm::Value *cmd = GetSelector(CGF, Sel);
1250
1251
1252 CallArgList ActualArgs;
1253
1254 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
1255 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1256 ActualArgs.addFrom(CallArgs);
1257
1258 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1259
1260 llvm::Value *ReceiverClass = nullptr;
1261 if (isCategoryImpl) {
1262 llvm::Constant *classLookupFunction = nullptr;
1263 if (IsClassMessage) {
1264 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1265 IdTy, PtrTy, true), "objc_get_meta_class");
1266 } else {
1267 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1268 IdTy, PtrTy, true), "objc_get_class");
1269 }
1270 ReceiverClass = Builder.CreateCall(classLookupFunction,
1271 MakeConstantString(Class->getNameAsString()));
1272 } else {
1273 // Set up global aliases for the metaclass or class pointer if they do not
1274 // already exist. These will are forward-references which will be set to
1275 // pointers to the class and metaclass structure created for the runtime
1276 // load function. To send a message to super, we look up the value of the
1277 // super_class pointer from either the class or metaclass structure.
1278 if (IsClassMessage) {
1279 if (!MetaClassPtrAlias) {
1280 MetaClassPtrAlias = llvm::GlobalAlias::create(
1281 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
1282 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
1283 }
1284 ReceiverClass = MetaClassPtrAlias;
1285 } else {
1286 if (!ClassPtrAlias) {
1287 ClassPtrAlias = llvm::GlobalAlias::create(
1288 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
1289 ".objc_class_ref" + Class->getNameAsString(), &TheModule);
1290 }
1291 ReceiverClass = ClassPtrAlias;
1292 }
1293 }
1294 // Cast the pointer to a simplified version of the class structure
1295 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy, nullptr);
1296 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
1297 llvm::PointerType::getUnqual(CastTy));
1298 // Get the superclass pointer
1299 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
1300 // Load the superclass pointer
1301 ReceiverClass =
1302 Builder.CreateAlignedLoad(ReceiverClass, CGF.getPointerAlign());
1303 // Construct the structure used to look up the IMP
1304 llvm::StructType *ObjCSuperTy = llvm::StructType::get(
1305 Receiver->getType(), IdTy, nullptr);
1306
1307 // FIXME: Is this really supposed to be a dynamic alloca?
1308 Address ObjCSuper = Address(Builder.CreateAlloca(ObjCSuperTy),
1309 CGF.getPointerAlign());
1310
1311 Builder.CreateStore(Receiver,
1312 Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero()));
1313 Builder.CreateStore(ReceiverClass,
1314 Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize()));
1315
1316 ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
1317
1318 // Get the IMP
1319 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
1320 imp = EnforceType(Builder, imp, MSI.MessengerType);
1321
1322 llvm::Metadata *impMD[] = {
1323 llvm::MDString::get(VMContext, Sel.getAsString()),
1324 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
1325 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1326 llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
1327 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1328
1329 llvm::Instruction *call;
1330 RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs,
1331 CGCalleeInfo(), &call);
1332 call->setMetadata(msgSendMDKind, node);
1333 return msgRet;
1334 }
1335
1336 /// Generate code for a message send expression.
1337 RValue
GenerateMessageSend(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & CallArgs,const ObjCInterfaceDecl * Class,const ObjCMethodDecl * Method)1338 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
1339 ReturnValueSlot Return,
1340 QualType ResultType,
1341 Selector Sel,
1342 llvm::Value *Receiver,
1343 const CallArgList &CallArgs,
1344 const ObjCInterfaceDecl *Class,
1345 const ObjCMethodDecl *Method) {
1346 CGBuilderTy &Builder = CGF.Builder;
1347
1348 // Strip out message sends to retain / release in GC mode
1349 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1350 if (Sel == RetainSel || Sel == AutoreleaseSel) {
1351 return RValue::get(EnforceType(Builder, Receiver,
1352 CGM.getTypes().ConvertType(ResultType)));
1353 }
1354 if (Sel == ReleaseSel) {
1355 return RValue::get(nullptr);
1356 }
1357 }
1358
1359 // If the return type is something that goes in an integer register, the
1360 // runtime will handle 0 returns. For other cases, we fill in the 0 value
1361 // ourselves.
1362 //
1363 // The language spec says the result of this kind of message send is
1364 // undefined, but lots of people seem to have forgotten to read that
1365 // paragraph and insist on sending messages to nil that have structure
1366 // returns. With GCC, this generates a random return value (whatever happens
1367 // to be on the stack / in those registers at the time) on most platforms,
1368 // and generates an illegal instruction trap on SPARC. With LLVM it corrupts
1369 // the stack.
1370 bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
1371 ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
1372
1373 llvm::BasicBlock *startBB = nullptr;
1374 llvm::BasicBlock *messageBB = nullptr;
1375 llvm::BasicBlock *continueBB = nullptr;
1376
1377 if (!isPointerSizedReturn) {
1378 startBB = Builder.GetInsertBlock();
1379 messageBB = CGF.createBasicBlock("msgSend");
1380 continueBB = CGF.createBasicBlock("continue");
1381
1382 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
1383 llvm::Constant::getNullValue(Receiver->getType()));
1384 Builder.CreateCondBr(isNil, continueBB, messageBB);
1385 CGF.EmitBlock(messageBB);
1386 }
1387
1388 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
1389 llvm::Value *cmd;
1390 if (Method)
1391 cmd = GetSelector(CGF, Method);
1392 else
1393 cmd = GetSelector(CGF, Sel);
1394 cmd = EnforceType(Builder, cmd, SelectorTy);
1395 Receiver = EnforceType(Builder, Receiver, IdTy);
1396
1397 llvm::Metadata *impMD[] = {
1398 llvm::MDString::get(VMContext, Sel.getAsString()),
1399 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
1400 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1401 llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
1402 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1403
1404 CallArgList ActualArgs;
1405 ActualArgs.add(RValue::get(Receiver), ASTIdTy);
1406 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1407 ActualArgs.addFrom(CallArgs);
1408
1409 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1410
1411 // Get the IMP to call
1412 llvm::Value *imp;
1413
1414 // If we have non-legacy dispatch specified, we try using the objc_msgSend()
1415 // functions. These are not supported on all platforms (or all runtimes on a
1416 // given platform), so we
1417 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
1418 case CodeGenOptions::Legacy:
1419 imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
1420 break;
1421 case CodeGenOptions::Mixed:
1422 case CodeGenOptions::NonLegacy:
1423 if (CGM.ReturnTypeUsesFPRet(ResultType)) {
1424 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1425 "objc_msgSend_fpret");
1426 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
1427 // The actual types here don't matter - we're going to bitcast the
1428 // function anyway
1429 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1430 "objc_msgSend_stret");
1431 } else {
1432 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1433 "objc_msgSend");
1434 }
1435 }
1436
1437 // Reset the receiver in case the lookup modified it
1438 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy, false);
1439
1440 imp = EnforceType(Builder, imp, MSI.MessengerType);
1441
1442 llvm::Instruction *call;
1443 RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs,
1444 CGCalleeInfo(), &call);
1445 call->setMetadata(msgSendMDKind, node);
1446
1447
1448 if (!isPointerSizedReturn) {
1449 messageBB = CGF.Builder.GetInsertBlock();
1450 CGF.Builder.CreateBr(continueBB);
1451 CGF.EmitBlock(continueBB);
1452 if (msgRet.isScalar()) {
1453 llvm::Value *v = msgRet.getScalarVal();
1454 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1455 phi->addIncoming(v, messageBB);
1456 phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
1457 msgRet = RValue::get(phi);
1458 } else if (msgRet.isAggregate()) {
1459 Address v = msgRet.getAggregateAddress();
1460 llvm::PHINode *phi = Builder.CreatePHI(v.getType(), 2);
1461 llvm::Type *RetTy = v.getElementType();
1462 Address NullVal = CGF.CreateTempAlloca(RetTy, v.getAlignment(), "null");
1463 CGF.InitTempAlloca(NullVal, llvm::Constant::getNullValue(RetTy));
1464 phi->addIncoming(v.getPointer(), messageBB);
1465 phi->addIncoming(NullVal.getPointer(), startBB);
1466 msgRet = RValue::getAggregate(Address(phi, v.getAlignment()));
1467 } else /* isComplex() */ {
1468 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
1469 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
1470 phi->addIncoming(v.first, messageBB);
1471 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
1472 startBB);
1473 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
1474 phi2->addIncoming(v.second, messageBB);
1475 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
1476 startBB);
1477 msgRet = RValue::getComplex(phi, phi2);
1478 }
1479 }
1480 return msgRet;
1481 }
1482
1483 /// Generates a MethodList. Used in construction of a objc_class and
1484 /// objc_category structures.
1485 llvm::Constant *CGObjCGNU::
GenerateMethodList(StringRef ClassName,StringRef CategoryName,ArrayRef<Selector> MethodSels,ArrayRef<llvm::Constant * > MethodTypes,bool isClassMethodList)1486 GenerateMethodList(StringRef ClassName,
1487 StringRef CategoryName,
1488 ArrayRef<Selector> MethodSels,
1489 ArrayRef<llvm::Constant *> MethodTypes,
1490 bool isClassMethodList) {
1491 if (MethodSels.empty())
1492 return NULLPtr;
1493 // Get the method structure type.
1494 llvm::StructType *ObjCMethodTy = llvm::StructType::get(
1495 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
1496 PtrToInt8Ty, // Method types
1497 IMPTy, //Method pointer
1498 nullptr);
1499 std::vector<llvm::Constant*> Methods;
1500 std::vector<llvm::Constant*> Elements;
1501 for (unsigned int i = 0, e = MethodTypes.size(); i < e; ++i) {
1502 Elements.clear();
1503 llvm::Constant *Method =
1504 TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
1505 MethodSels[i],
1506 isClassMethodList));
1507 assert(Method && "Can't generate metadata for method that doesn't exist");
1508 llvm::Constant *C = MakeConstantString(MethodSels[i].getAsString());
1509 Elements.push_back(C);
1510 Elements.push_back(MethodTypes[i]);
1511 Method = llvm::ConstantExpr::getBitCast(Method,
1512 IMPTy);
1513 Elements.push_back(Method);
1514 Methods.push_back(llvm::ConstantStruct::get(ObjCMethodTy, Elements));
1515 }
1516
1517 // Array of method structures
1518 llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodTy,
1519 Methods.size());
1520 llvm::Constant *MethodArray = llvm::ConstantArray::get(ObjCMethodArrayTy,
1521 Methods);
1522
1523 // Structure containing list pointer, array and array count
1524 llvm::StructType *ObjCMethodListTy = llvm::StructType::create(VMContext);
1525 llvm::Type *NextPtrTy = llvm::PointerType::getUnqual(ObjCMethodListTy);
1526 ObjCMethodListTy->setBody(
1527 NextPtrTy,
1528 IntTy,
1529 ObjCMethodArrayTy,
1530 nullptr);
1531
1532 Methods.clear();
1533 Methods.push_back(llvm::ConstantPointerNull::get(
1534 llvm::PointerType::getUnqual(ObjCMethodListTy)));
1535 Methods.push_back(llvm::ConstantInt::get(Int32Ty, MethodTypes.size()));
1536 Methods.push_back(MethodArray);
1537
1538 // Create an instance of the structure
1539 return MakeGlobal(ObjCMethodListTy, Methods, CGM.getPointerAlign(),
1540 ".objc_method_list");
1541 }
1542
1543 /// Generates an IvarList. Used in construction of a objc_class.
1544 llvm::Constant *CGObjCGNU::
GenerateIvarList(ArrayRef<llvm::Constant * > IvarNames,ArrayRef<llvm::Constant * > IvarTypes,ArrayRef<llvm::Constant * > IvarOffsets)1545 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1546 ArrayRef<llvm::Constant *> IvarTypes,
1547 ArrayRef<llvm::Constant *> IvarOffsets) {
1548 if (IvarNames.size() == 0)
1549 return NULLPtr;
1550 // Get the method structure type.
1551 llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1552 PtrToInt8Ty,
1553 PtrToInt8Ty,
1554 IntTy,
1555 nullptr);
1556 std::vector<llvm::Constant*> Ivars;
1557 std::vector<llvm::Constant*> Elements;
1558 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
1559 Elements.clear();
1560 Elements.push_back(IvarNames[i]);
1561 Elements.push_back(IvarTypes[i]);
1562 Elements.push_back(IvarOffsets[i]);
1563 Ivars.push_back(llvm::ConstantStruct::get(ObjCIvarTy, Elements));
1564 }
1565
1566 // Array of method structures
1567 llvm::ArrayType *ObjCIvarArrayTy = llvm::ArrayType::get(ObjCIvarTy,
1568 IvarNames.size());
1569
1570
1571 Elements.clear();
1572 Elements.push_back(llvm::ConstantInt::get(IntTy, (int)IvarNames.size()));
1573 Elements.push_back(llvm::ConstantArray::get(ObjCIvarArrayTy, Ivars));
1574 // Structure containing array and array count
1575 llvm::StructType *ObjCIvarListTy = llvm::StructType::get(IntTy,
1576 ObjCIvarArrayTy,
1577 nullptr);
1578
1579 // Create an instance of the structure
1580 return MakeGlobal(ObjCIvarListTy, Elements, CGM.getPointerAlign(),
1581 ".objc_ivar_list");
1582 }
1583
1584 /// Generate a class structure
GenerateClassStructure(llvm::Constant * MetaClass,llvm::Constant * SuperClass,unsigned info,const char * Name,llvm::Constant * Version,llvm::Constant * InstanceSize,llvm::Constant * IVars,llvm::Constant * Methods,llvm::Constant * Protocols,llvm::Constant * IvarOffsets,llvm::Constant * Properties,llvm::Constant * StrongIvarBitmap,llvm::Constant * WeakIvarBitmap,bool isMeta)1585 llvm::Constant *CGObjCGNU::GenerateClassStructure(
1586 llvm::Constant *MetaClass,
1587 llvm::Constant *SuperClass,
1588 unsigned info,
1589 const char *Name,
1590 llvm::Constant *Version,
1591 llvm::Constant *InstanceSize,
1592 llvm::Constant *IVars,
1593 llvm::Constant *Methods,
1594 llvm::Constant *Protocols,
1595 llvm::Constant *IvarOffsets,
1596 llvm::Constant *Properties,
1597 llvm::Constant *StrongIvarBitmap,
1598 llvm::Constant *WeakIvarBitmap,
1599 bool isMeta) {
1600 // Set up the class structure
1601 // Note: Several of these are char*s when they should be ids. This is
1602 // because the runtime performs this translation on load.
1603 //
1604 // Fields marked New ABI are part of the GNUstep runtime. We emit them
1605 // anyway; the classes will still work with the GNU runtime, they will just
1606 // be ignored.
1607 llvm::StructType *ClassTy = llvm::StructType::get(
1608 PtrToInt8Ty, // isa
1609 PtrToInt8Ty, // super_class
1610 PtrToInt8Ty, // name
1611 LongTy, // version
1612 LongTy, // info
1613 LongTy, // instance_size
1614 IVars->getType(), // ivars
1615 Methods->getType(), // methods
1616 // These are all filled in by the runtime, so we pretend
1617 PtrTy, // dtable
1618 PtrTy, // subclass_list
1619 PtrTy, // sibling_class
1620 PtrTy, // protocols
1621 PtrTy, // gc_object_type
1622 // New ABI:
1623 LongTy, // abi_version
1624 IvarOffsets->getType(), // ivar_offsets
1625 Properties->getType(), // properties
1626 IntPtrTy, // strong_pointers
1627 IntPtrTy, // weak_pointers
1628 nullptr);
1629 llvm::Constant *Zero = llvm::ConstantInt::get(LongTy, 0);
1630 // Fill in the structure
1631 std::vector<llvm::Constant*> Elements;
1632 Elements.push_back(llvm::ConstantExpr::getBitCast(MetaClass, PtrToInt8Ty));
1633 Elements.push_back(SuperClass);
1634 Elements.push_back(MakeConstantString(Name, ".class_name"));
1635 Elements.push_back(Zero);
1636 Elements.push_back(llvm::ConstantInt::get(LongTy, info));
1637 if (isMeta) {
1638 llvm::DataLayout td(&TheModule);
1639 Elements.push_back(
1640 llvm::ConstantInt::get(LongTy,
1641 td.getTypeSizeInBits(ClassTy) /
1642 CGM.getContext().getCharWidth()));
1643 } else
1644 Elements.push_back(InstanceSize);
1645 Elements.push_back(IVars);
1646 Elements.push_back(Methods);
1647 Elements.push_back(NULLPtr);
1648 Elements.push_back(NULLPtr);
1649 Elements.push_back(NULLPtr);
1650 Elements.push_back(llvm::ConstantExpr::getBitCast(Protocols, PtrTy));
1651 Elements.push_back(NULLPtr);
1652 Elements.push_back(llvm::ConstantInt::get(LongTy, 1));
1653 Elements.push_back(IvarOffsets);
1654 Elements.push_back(Properties);
1655 Elements.push_back(StrongIvarBitmap);
1656 Elements.push_back(WeakIvarBitmap);
1657 // Create an instance of the structure
1658 // This is now an externally visible symbol, so that we can speed up class
1659 // messages in the next ABI. We may already have some weak references to
1660 // this, so check and fix them properly.
1661 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
1662 std::string(Name));
1663 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
1664 llvm::Constant *Class =
1665 MakeGlobal(ClassTy, Elements, CGM.getPointerAlign(), ClassSym,
1666 llvm::GlobalValue::ExternalLinkage);
1667 if (ClassRef) {
1668 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
1669 ClassRef->getType()));
1670 ClassRef->removeFromParent();
1671 Class->setName(ClassSym);
1672 }
1673 return Class;
1674 }
1675
1676 llvm::Constant *CGObjCGNU::
GenerateProtocolMethodList(ArrayRef<llvm::Constant * > MethodNames,ArrayRef<llvm::Constant * > MethodTypes)1677 GenerateProtocolMethodList(ArrayRef<llvm::Constant *> MethodNames,
1678 ArrayRef<llvm::Constant *> MethodTypes) {
1679 // Get the method structure type.
1680 llvm::StructType *ObjCMethodDescTy = llvm::StructType::get(
1681 PtrToInt8Ty, // Really a selector, but the runtime does the casting for us.
1682 PtrToInt8Ty,
1683 nullptr);
1684 std::vector<llvm::Constant*> Methods;
1685 std::vector<llvm::Constant*> Elements;
1686 for (unsigned int i = 0, e = MethodTypes.size() ; i < e ; i++) {
1687 Elements.clear();
1688 Elements.push_back(MethodNames[i]);
1689 Elements.push_back(MethodTypes[i]);
1690 Methods.push_back(llvm::ConstantStruct::get(ObjCMethodDescTy, Elements));
1691 }
1692 llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodDescTy,
1693 MethodNames.size());
1694 llvm::Constant *Array = llvm::ConstantArray::get(ObjCMethodArrayTy,
1695 Methods);
1696 llvm::StructType *ObjCMethodDescListTy = llvm::StructType::get(
1697 IntTy, ObjCMethodArrayTy, nullptr);
1698 Methods.clear();
1699 Methods.push_back(llvm::ConstantInt::get(IntTy, MethodNames.size()));
1700 Methods.push_back(Array);
1701 return MakeGlobal(ObjCMethodDescListTy, Methods, CGM.getPointerAlign(),
1702 ".objc_method_list");
1703 }
1704
1705 // Create the protocol list structure used in classes, categories and so on
GenerateProtocolList(ArrayRef<std::string> Protocols)1706 llvm::Constant *CGObjCGNU::GenerateProtocolList(ArrayRef<std::string>Protocols){
1707 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
1708 Protocols.size());
1709 llvm::StructType *ProtocolListTy = llvm::StructType::get(
1710 PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1711 SizeTy,
1712 ProtocolArrayTy,
1713 nullptr);
1714 std::vector<llvm::Constant*> Elements;
1715 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
1716 iter != endIter ; iter++) {
1717 llvm::Constant *protocol = nullptr;
1718 llvm::StringMap<llvm::Constant*>::iterator value =
1719 ExistingProtocols.find(*iter);
1720 if (value == ExistingProtocols.end()) {
1721 protocol = GenerateEmptyProtocol(*iter);
1722 } else {
1723 protocol = value->getValue();
1724 }
1725 llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(protocol,
1726 PtrToInt8Ty);
1727 Elements.push_back(Ptr);
1728 }
1729 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1730 Elements);
1731 Elements.clear();
1732 Elements.push_back(NULLPtr);
1733 Elements.push_back(llvm::ConstantInt::get(LongTy, Protocols.size()));
1734 Elements.push_back(ProtocolArray);
1735 return MakeGlobal(ProtocolListTy, Elements, CGM.getPointerAlign(),
1736 ".objc_protocol_list");
1737 }
1738
GenerateProtocolRef(CodeGenFunction & CGF,const ObjCProtocolDecl * PD)1739 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
1740 const ObjCProtocolDecl *PD) {
1741 llvm::Value *protocol = ExistingProtocols[PD->getNameAsString()];
1742 llvm::Type *T =
1743 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
1744 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
1745 }
1746
GenerateEmptyProtocol(const std::string & ProtocolName)1747 llvm::Constant *CGObjCGNU::GenerateEmptyProtocol(
1748 const std::string &ProtocolName) {
1749 SmallVector<std::string, 0> EmptyStringVector;
1750 SmallVector<llvm::Constant*, 0> EmptyConstantVector;
1751
1752 llvm::Constant *ProtocolList = GenerateProtocolList(EmptyStringVector);
1753 llvm::Constant *MethodList =
1754 GenerateProtocolMethodList(EmptyConstantVector, EmptyConstantVector);
1755 // Protocols are objects containing lists of the methods implemented and
1756 // protocols adopted.
1757 llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1758 PtrToInt8Ty,
1759 ProtocolList->getType(),
1760 MethodList->getType(),
1761 MethodList->getType(),
1762 MethodList->getType(),
1763 MethodList->getType(),
1764 nullptr);
1765 std::vector<llvm::Constant*> Elements;
1766 // The isa pointer must be set to a magic number so the runtime knows it's
1767 // the correct layout.
1768 Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1769 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1770 Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1771 Elements.push_back(ProtocolList);
1772 Elements.push_back(MethodList);
1773 Elements.push_back(MethodList);
1774 Elements.push_back(MethodList);
1775 Elements.push_back(MethodList);
1776 return MakeGlobal(ProtocolTy, Elements, CGM.getPointerAlign(),
1777 ".objc_protocol");
1778 }
1779
GenerateProtocol(const ObjCProtocolDecl * PD)1780 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
1781 ASTContext &Context = CGM.getContext();
1782 std::string ProtocolName = PD->getNameAsString();
1783
1784 // Use the protocol definition, if there is one.
1785 if (const ObjCProtocolDecl *Def = PD->getDefinition())
1786 PD = Def;
1787
1788 SmallVector<std::string, 16> Protocols;
1789 for (const auto *PI : PD->protocols())
1790 Protocols.push_back(PI->getNameAsString());
1791 SmallVector<llvm::Constant*, 16> InstanceMethodNames;
1792 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
1793 SmallVector<llvm::Constant*, 16> OptionalInstanceMethodNames;
1794 SmallVector<llvm::Constant*, 16> OptionalInstanceMethodTypes;
1795 for (const auto *I : PD->instance_methods()) {
1796 std::string TypeStr;
1797 Context.getObjCEncodingForMethodDecl(I, TypeStr);
1798 if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1799 OptionalInstanceMethodNames.push_back(
1800 MakeConstantString(I->getSelector().getAsString()));
1801 OptionalInstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1802 } else {
1803 InstanceMethodNames.push_back(
1804 MakeConstantString(I->getSelector().getAsString()));
1805 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1806 }
1807 }
1808 // Collect information about class methods:
1809 SmallVector<llvm::Constant*, 16> ClassMethodNames;
1810 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
1811 SmallVector<llvm::Constant*, 16> OptionalClassMethodNames;
1812 SmallVector<llvm::Constant*, 16> OptionalClassMethodTypes;
1813 for (const auto *I : PD->class_methods()) {
1814 std::string TypeStr;
1815 Context.getObjCEncodingForMethodDecl(I,TypeStr);
1816 if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1817 OptionalClassMethodNames.push_back(
1818 MakeConstantString(I->getSelector().getAsString()));
1819 OptionalClassMethodTypes.push_back(MakeConstantString(TypeStr));
1820 } else {
1821 ClassMethodNames.push_back(
1822 MakeConstantString(I->getSelector().getAsString()));
1823 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
1824 }
1825 }
1826
1827 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1828 llvm::Constant *InstanceMethodList =
1829 GenerateProtocolMethodList(InstanceMethodNames, InstanceMethodTypes);
1830 llvm::Constant *ClassMethodList =
1831 GenerateProtocolMethodList(ClassMethodNames, ClassMethodTypes);
1832 llvm::Constant *OptionalInstanceMethodList =
1833 GenerateProtocolMethodList(OptionalInstanceMethodNames,
1834 OptionalInstanceMethodTypes);
1835 llvm::Constant *OptionalClassMethodList =
1836 GenerateProtocolMethodList(OptionalClassMethodNames,
1837 OptionalClassMethodTypes);
1838
1839 // Property metadata: name, attributes, isSynthesized, setter name, setter
1840 // types, getter name, getter types.
1841 // The isSynthesized value is always set to 0 in a protocol. It exists to
1842 // simplify the runtime library by allowing it to use the same data
1843 // structures for protocol metadata everywhere.
1844 llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
1845 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
1846 PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
1847 std::vector<llvm::Constant*> Properties;
1848 std::vector<llvm::Constant*> OptionalProperties;
1849
1850 // Add all of the property methods need adding to the method list and to the
1851 // property metadata list.
1852 for (auto *property : PD->properties()) {
1853 std::vector<llvm::Constant*> Fields;
1854
1855 Fields.push_back(MakePropertyEncodingString(property, nullptr));
1856 PushPropertyAttributes(Fields, property);
1857
1858 if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
1859 std::string TypeStr;
1860 Context.getObjCEncodingForMethodDecl(getter,TypeStr);
1861 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1862 InstanceMethodTypes.push_back(TypeEncoding);
1863 Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
1864 Fields.push_back(TypeEncoding);
1865 } else {
1866 Fields.push_back(NULLPtr);
1867 Fields.push_back(NULLPtr);
1868 }
1869 if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
1870 std::string TypeStr;
1871 Context.getObjCEncodingForMethodDecl(setter,TypeStr);
1872 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1873 InstanceMethodTypes.push_back(TypeEncoding);
1874 Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
1875 Fields.push_back(TypeEncoding);
1876 } else {
1877 Fields.push_back(NULLPtr);
1878 Fields.push_back(NULLPtr);
1879 }
1880 if (property->getPropertyImplementation() == ObjCPropertyDecl::Optional) {
1881 OptionalProperties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1882 } else {
1883 Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1884 }
1885 }
1886 llvm::Constant *PropertyArray = llvm::ConstantArray::get(
1887 llvm::ArrayType::get(PropertyMetadataTy, Properties.size()), Properties);
1888 llvm::Constant* PropertyListInitFields[] =
1889 {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
1890
1891 llvm::Constant *PropertyListInit =
1892 llvm::ConstantStruct::getAnon(PropertyListInitFields);
1893 llvm::Constant *PropertyList = new llvm::GlobalVariable(TheModule,
1894 PropertyListInit->getType(), false, llvm::GlobalValue::InternalLinkage,
1895 PropertyListInit, ".objc_property_list");
1896
1897 llvm::Constant *OptionalPropertyArray =
1898 llvm::ConstantArray::get(llvm::ArrayType::get(PropertyMetadataTy,
1899 OptionalProperties.size()) , OptionalProperties);
1900 llvm::Constant* OptionalPropertyListInitFields[] = {
1901 llvm::ConstantInt::get(IntTy, OptionalProperties.size()), NULLPtr,
1902 OptionalPropertyArray };
1903
1904 llvm::Constant *OptionalPropertyListInit =
1905 llvm::ConstantStruct::getAnon(OptionalPropertyListInitFields);
1906 llvm::Constant *OptionalPropertyList = new llvm::GlobalVariable(TheModule,
1907 OptionalPropertyListInit->getType(), false,
1908 llvm::GlobalValue::InternalLinkage, OptionalPropertyListInit,
1909 ".objc_property_list");
1910
1911 // Protocols are objects containing lists of the methods implemented and
1912 // protocols adopted.
1913 llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1914 PtrToInt8Ty,
1915 ProtocolList->getType(),
1916 InstanceMethodList->getType(),
1917 ClassMethodList->getType(),
1918 OptionalInstanceMethodList->getType(),
1919 OptionalClassMethodList->getType(),
1920 PropertyList->getType(),
1921 OptionalPropertyList->getType(),
1922 nullptr);
1923 std::vector<llvm::Constant*> Elements;
1924 // The isa pointer must be set to a magic number so the runtime knows it's
1925 // the correct layout.
1926 Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1927 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1928 Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1929 Elements.push_back(ProtocolList);
1930 Elements.push_back(InstanceMethodList);
1931 Elements.push_back(ClassMethodList);
1932 Elements.push_back(OptionalInstanceMethodList);
1933 Elements.push_back(OptionalClassMethodList);
1934 Elements.push_back(PropertyList);
1935 Elements.push_back(OptionalPropertyList);
1936 ExistingProtocols[ProtocolName] =
1937 llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolTy, Elements,
1938 CGM.getPointerAlign(), ".objc_protocol"), IdTy);
1939 }
GenerateProtocolHolderCategory()1940 void CGObjCGNU::GenerateProtocolHolderCategory() {
1941 // Collect information about instance methods
1942 SmallVector<Selector, 1> MethodSels;
1943 SmallVector<llvm::Constant*, 1> MethodTypes;
1944
1945 std::vector<llvm::Constant*> Elements;
1946 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
1947 const std::string CategoryName = "AnotherHack";
1948 Elements.push_back(MakeConstantString(CategoryName));
1949 Elements.push_back(MakeConstantString(ClassName));
1950 // Instance method list
1951 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1952 ClassName, CategoryName, MethodSels, MethodTypes, false), PtrTy));
1953 // Class method list
1954 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1955 ClassName, CategoryName, MethodSels, MethodTypes, true), PtrTy));
1956 // Protocol list
1957 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrTy,
1958 ExistingProtocols.size());
1959 llvm::StructType *ProtocolListTy = llvm::StructType::get(
1960 PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1961 SizeTy,
1962 ProtocolArrayTy,
1963 nullptr);
1964 std::vector<llvm::Constant*> ProtocolElements;
1965 for (llvm::StringMapIterator<llvm::Constant*> iter =
1966 ExistingProtocols.begin(), endIter = ExistingProtocols.end();
1967 iter != endIter ; iter++) {
1968 llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(iter->getValue(),
1969 PtrTy);
1970 ProtocolElements.push_back(Ptr);
1971 }
1972 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1973 ProtocolElements);
1974 ProtocolElements.clear();
1975 ProtocolElements.push_back(NULLPtr);
1976 ProtocolElements.push_back(llvm::ConstantInt::get(LongTy,
1977 ExistingProtocols.size()));
1978 ProtocolElements.push_back(ProtocolArray);
1979 Elements.push_back(llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolListTy,
1980 ProtocolElements, CGM.getPointerAlign(),
1981 ".objc_protocol_list"), PtrTy));
1982 Categories.push_back(llvm::ConstantExpr::getBitCast(
1983 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1984 PtrTy, PtrTy, PtrTy, nullptr), Elements, CGM.getPointerAlign()),
1985 PtrTy));
1986 }
1987
1988 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
1989 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
1990 /// bits set to their values, LSB first, while larger ones are stored in a
1991 /// structure of this / form:
1992 ///
1993 /// struct { int32_t length; int32_t values[length]; };
1994 ///
1995 /// The values in the array are stored in host-endian format, with the least
1996 /// significant bit being assumed to come first in the bitfield. Therefore, a
1997 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
1998 /// bitfield / with the 63rd bit set will be 1<<64.
MakeBitField(ArrayRef<bool> bits)1999 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
2000 int bitCount = bits.size();
2001 int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
2002 if (bitCount < ptrBits) {
2003 uint64_t val = 1;
2004 for (int i=0 ; i<bitCount ; ++i) {
2005 if (bits[i]) val |= 1ULL<<(i+1);
2006 }
2007 return llvm::ConstantInt::get(IntPtrTy, val);
2008 }
2009 SmallVector<llvm::Constant *, 8> values;
2010 int v=0;
2011 while (v < bitCount) {
2012 int32_t word = 0;
2013 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) {
2014 if (bits[v]) word |= 1<<i;
2015 v++;
2016 }
2017 values.push_back(llvm::ConstantInt::get(Int32Ty, word));
2018 }
2019 llvm::ArrayType *arrayTy = llvm::ArrayType::get(Int32Ty, values.size());
2020 llvm::Constant *array = llvm::ConstantArray::get(arrayTy, values);
2021 llvm::Constant *fields[2] = {
2022 llvm::ConstantInt::get(Int32Ty, values.size()),
2023 array };
2024 llvm::Constant *GS = MakeGlobal(llvm::StructType::get(Int32Ty, arrayTy,
2025 nullptr), fields, CharUnits::fromQuantity(4));
2026 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
2027 return ptr;
2028 }
2029
GenerateCategory(const ObjCCategoryImplDecl * OCD)2030 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
2031 std::string ClassName = OCD->getClassInterface()->getNameAsString();
2032 std::string CategoryName = OCD->getNameAsString();
2033 // Collect information about instance methods
2034 SmallVector<Selector, 16> InstanceMethodSels;
2035 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2036 for (const auto *I : OCD->instance_methods()) {
2037 InstanceMethodSels.push_back(I->getSelector());
2038 std::string TypeStr;
2039 CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2040 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2041 }
2042
2043 // Collect information about class methods
2044 SmallVector<Selector, 16> ClassMethodSels;
2045 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2046 for (const auto *I : OCD->class_methods()) {
2047 ClassMethodSels.push_back(I->getSelector());
2048 std::string TypeStr;
2049 CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2050 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2051 }
2052
2053 // Collect the names of referenced protocols
2054 SmallVector<std::string, 16> Protocols;
2055 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
2056 const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols();
2057 for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(),
2058 E = Protos.end(); I != E; ++I)
2059 Protocols.push_back((*I)->getNameAsString());
2060
2061 std::vector<llvm::Constant*> Elements;
2062 Elements.push_back(MakeConstantString(CategoryName));
2063 Elements.push_back(MakeConstantString(ClassName));
2064 // Instance method list
2065 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2066 ClassName, CategoryName, InstanceMethodSels, InstanceMethodTypes,
2067 false), PtrTy));
2068 // Class method list
2069 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2070 ClassName, CategoryName, ClassMethodSels, ClassMethodTypes, true),
2071 PtrTy));
2072 // Protocol list
2073 Elements.push_back(llvm::ConstantExpr::getBitCast(
2074 GenerateProtocolList(Protocols), PtrTy));
2075 Categories.push_back(llvm::ConstantExpr::getBitCast(
2076 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
2077 PtrTy, PtrTy, PtrTy, nullptr), Elements, CGM.getPointerAlign()),
2078 PtrTy));
2079 }
2080
GeneratePropertyList(const ObjCImplementationDecl * OID,SmallVectorImpl<Selector> & InstanceMethodSels,SmallVectorImpl<llvm::Constant * > & InstanceMethodTypes)2081 llvm::Constant *CGObjCGNU::GeneratePropertyList(const ObjCImplementationDecl *OID,
2082 SmallVectorImpl<Selector> &InstanceMethodSels,
2083 SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes) {
2084 ASTContext &Context = CGM.getContext();
2085 // Property metadata: name, attributes, attributes2, padding1, padding2,
2086 // setter name, setter types, getter name, getter types.
2087 llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
2088 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
2089 PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
2090 std::vector<llvm::Constant*> Properties;
2091
2092 // Add all of the property methods need adding to the method list and to the
2093 // property metadata list.
2094 for (auto *propertyImpl : OID->property_impls()) {
2095 std::vector<llvm::Constant*> Fields;
2096 ObjCPropertyDecl *property = propertyImpl->getPropertyDecl();
2097 bool isSynthesized = (propertyImpl->getPropertyImplementation() ==
2098 ObjCPropertyImplDecl::Synthesize);
2099 bool isDynamic = (propertyImpl->getPropertyImplementation() ==
2100 ObjCPropertyImplDecl::Dynamic);
2101
2102 Fields.push_back(MakePropertyEncodingString(property, OID));
2103 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
2104 if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
2105 std::string TypeStr;
2106 Context.getObjCEncodingForMethodDecl(getter,TypeStr);
2107 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2108 if (isSynthesized) {
2109 InstanceMethodTypes.push_back(TypeEncoding);
2110 InstanceMethodSels.push_back(getter->getSelector());
2111 }
2112 Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
2113 Fields.push_back(TypeEncoding);
2114 } else {
2115 Fields.push_back(NULLPtr);
2116 Fields.push_back(NULLPtr);
2117 }
2118 if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
2119 std::string TypeStr;
2120 Context.getObjCEncodingForMethodDecl(setter,TypeStr);
2121 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2122 if (isSynthesized) {
2123 InstanceMethodTypes.push_back(TypeEncoding);
2124 InstanceMethodSels.push_back(setter->getSelector());
2125 }
2126 Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
2127 Fields.push_back(TypeEncoding);
2128 } else {
2129 Fields.push_back(NULLPtr);
2130 Fields.push_back(NULLPtr);
2131 }
2132 Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
2133 }
2134 llvm::ArrayType *PropertyArrayTy =
2135 llvm::ArrayType::get(PropertyMetadataTy, Properties.size());
2136 llvm::Constant *PropertyArray = llvm::ConstantArray::get(PropertyArrayTy,
2137 Properties);
2138 llvm::Constant* PropertyListInitFields[] =
2139 {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
2140
2141 llvm::Constant *PropertyListInit =
2142 llvm::ConstantStruct::getAnon(PropertyListInitFields);
2143 return new llvm::GlobalVariable(TheModule, PropertyListInit->getType(), false,
2144 llvm::GlobalValue::InternalLinkage, PropertyListInit,
2145 ".objc_property_list");
2146 }
2147
RegisterAlias(const ObjCCompatibleAliasDecl * OAD)2148 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
2149 // Get the class declaration for which the alias is specified.
2150 ObjCInterfaceDecl *ClassDecl =
2151 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
2152 ClassAliases.emplace_back(ClassDecl->getNameAsString(),
2153 OAD->getNameAsString());
2154 }
2155
GenerateClass(const ObjCImplementationDecl * OID)2156 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
2157 ASTContext &Context = CGM.getContext();
2158
2159 // Get the superclass name.
2160 const ObjCInterfaceDecl * SuperClassDecl =
2161 OID->getClassInterface()->getSuperClass();
2162 std::string SuperClassName;
2163 if (SuperClassDecl) {
2164 SuperClassName = SuperClassDecl->getNameAsString();
2165 EmitClassRef(SuperClassName);
2166 }
2167
2168 // Get the class name
2169 ObjCInterfaceDecl *ClassDecl =
2170 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
2171 std::string ClassName = ClassDecl->getNameAsString();
2172 // Emit the symbol that is used to generate linker errors if this class is
2173 // referenced in other modules but not declared.
2174 std::string classSymbolName = "__objc_class_name_" + ClassName;
2175 if (llvm::GlobalVariable *symbol =
2176 TheModule.getGlobalVariable(classSymbolName)) {
2177 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
2178 } else {
2179 new llvm::GlobalVariable(TheModule, LongTy, false,
2180 llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0),
2181 classSymbolName);
2182 }
2183
2184 // Get the size of instances.
2185 int instanceSize =
2186 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
2187
2188 // Collect information about instance variables.
2189 SmallVector<llvm::Constant*, 16> IvarNames;
2190 SmallVector<llvm::Constant*, 16> IvarTypes;
2191 SmallVector<llvm::Constant*, 16> IvarOffsets;
2192
2193 std::vector<llvm::Constant*> IvarOffsetValues;
2194 SmallVector<bool, 16> WeakIvars;
2195 SmallVector<bool, 16> StrongIvars;
2196
2197 int superInstanceSize = !SuperClassDecl ? 0 :
2198 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
2199 // For non-fragile ivars, set the instance size to 0 - {the size of just this
2200 // class}. The runtime will then set this to the correct value on load.
2201 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2202 instanceSize = 0 - (instanceSize - superInstanceSize);
2203 }
2204
2205 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2206 IVD = IVD->getNextIvar()) {
2207 // Store the name
2208 IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
2209 // Get the type encoding for this ivar
2210 std::string TypeStr;
2211 Context.getObjCEncodingForType(IVD->getType(), TypeStr);
2212 IvarTypes.push_back(MakeConstantString(TypeStr));
2213 // Get the offset
2214 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
2215 uint64_t Offset = BaseOffset;
2216 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2217 Offset = BaseOffset - superInstanceSize;
2218 }
2219 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
2220 // Create the direct offset value
2221 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
2222 IVD->getNameAsString();
2223 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
2224 if (OffsetVar) {
2225 OffsetVar->setInitializer(OffsetValue);
2226 // If this is the real definition, change its linkage type so that
2227 // different modules will use this one, rather than their private
2228 // copy.
2229 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
2230 } else
2231 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
2232 false, llvm::GlobalValue::ExternalLinkage,
2233 OffsetValue,
2234 "__objc_ivar_offset_value_" + ClassName +"." +
2235 IVD->getNameAsString());
2236 IvarOffsets.push_back(OffsetValue);
2237 IvarOffsetValues.push_back(OffsetVar);
2238 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
2239 switch (lt) {
2240 case Qualifiers::OCL_Strong:
2241 StrongIvars.push_back(true);
2242 WeakIvars.push_back(false);
2243 break;
2244 case Qualifiers::OCL_Weak:
2245 StrongIvars.push_back(false);
2246 WeakIvars.push_back(true);
2247 break;
2248 default:
2249 StrongIvars.push_back(false);
2250 WeakIvars.push_back(false);
2251 }
2252 }
2253 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
2254 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
2255 llvm::GlobalVariable *IvarOffsetArray =
2256 MakeGlobalArray(PtrToIntTy, IvarOffsetValues, CGM.getPointerAlign(),
2257 ".ivar.offsets");
2258
2259
2260 // Collect information about instance methods
2261 SmallVector<Selector, 16> InstanceMethodSels;
2262 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2263 for (const auto *I : OID->instance_methods()) {
2264 InstanceMethodSels.push_back(I->getSelector());
2265 std::string TypeStr;
2266 Context.getObjCEncodingForMethodDecl(I,TypeStr);
2267 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2268 }
2269
2270 llvm::Constant *Properties = GeneratePropertyList(OID, InstanceMethodSels,
2271 InstanceMethodTypes);
2272
2273
2274 // Collect information about class methods
2275 SmallVector<Selector, 16> ClassMethodSels;
2276 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2277 for (const auto *I : OID->class_methods()) {
2278 ClassMethodSels.push_back(I->getSelector());
2279 std::string TypeStr;
2280 Context.getObjCEncodingForMethodDecl(I,TypeStr);
2281 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2282 }
2283 // Collect the names of referenced protocols
2284 SmallVector<std::string, 16> Protocols;
2285 for (const auto *I : ClassDecl->protocols())
2286 Protocols.push_back(I->getNameAsString());
2287
2288 // Get the superclass pointer.
2289 llvm::Constant *SuperClass;
2290 if (!SuperClassName.empty()) {
2291 SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
2292 } else {
2293 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2294 }
2295 // Empty vector used to construct empty method lists
2296 SmallVector<llvm::Constant*, 1> empty;
2297 // Generate the method and instance variable lists
2298 llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
2299 InstanceMethodSels, InstanceMethodTypes, false);
2300 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
2301 ClassMethodSels, ClassMethodTypes, true);
2302 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
2303 IvarOffsets);
2304 // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
2305 // we emit a symbol containing the offset for each ivar in the class. This
2306 // allows code compiled for the non-Fragile ABI to inherit from code compiled
2307 // for the legacy ABI, without causing problems. The converse is also
2308 // possible, but causes all ivar accesses to be fragile.
2309
2310 // Offset pointer for getting at the correct field in the ivar list when
2311 // setting up the alias. These are: The base address for the global, the
2312 // ivar array (second field), the ivar in this list (set for each ivar), and
2313 // the offset (third field in ivar structure)
2314 llvm::Type *IndexTy = Int32Ty;
2315 llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
2316 llvm::ConstantInt::get(IndexTy, 1), nullptr,
2317 llvm::ConstantInt::get(IndexTy, 2) };
2318
2319 unsigned ivarIndex = 0;
2320 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2321 IVD = IVD->getNextIvar()) {
2322 const std::string Name = "__objc_ivar_offset_" + ClassName + '.'
2323 + IVD->getNameAsString();
2324 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
2325 // Get the correct ivar field
2326 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
2327 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
2328 offsetPointerIndexes);
2329 // Get the existing variable, if one exists.
2330 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
2331 if (offset) {
2332 offset->setInitializer(offsetValue);
2333 // If this is the real definition, change its linkage type so that
2334 // different modules will use this one, rather than their private
2335 // copy.
2336 offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
2337 } else {
2338 // Add a new alias if there isn't one already.
2339 offset = new llvm::GlobalVariable(TheModule, offsetValue->getType(),
2340 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
2341 (void) offset; // Silence dead store warning.
2342 }
2343 ++ivarIndex;
2344 }
2345 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
2346 //Generate metaclass for class methods
2347 llvm::Constant *MetaClassStruct = GenerateClassStructure(NULLPtr,
2348 NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], GenerateIvarList(
2349 empty, empty, empty), ClassMethodList, NULLPtr,
2350 NULLPtr, NULLPtr, ZeroPtr, ZeroPtr, true);
2351
2352 // Generate the class structure
2353 llvm::Constant *ClassStruct =
2354 GenerateClassStructure(MetaClassStruct, SuperClass, 0x11L,
2355 ClassName.c_str(), nullptr,
2356 llvm::ConstantInt::get(LongTy, instanceSize), IvarList,
2357 MethodList, GenerateProtocolList(Protocols), IvarOffsetArray,
2358 Properties, StrongIvarBitmap, WeakIvarBitmap);
2359
2360 // Resolve the class aliases, if they exist.
2361 if (ClassPtrAlias) {
2362 ClassPtrAlias->replaceAllUsesWith(
2363 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
2364 ClassPtrAlias->eraseFromParent();
2365 ClassPtrAlias = nullptr;
2366 }
2367 if (MetaClassPtrAlias) {
2368 MetaClassPtrAlias->replaceAllUsesWith(
2369 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
2370 MetaClassPtrAlias->eraseFromParent();
2371 MetaClassPtrAlias = nullptr;
2372 }
2373
2374 // Add class structure to list to be added to the symtab later
2375 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
2376 Classes.push_back(ClassStruct);
2377 }
2378
2379
ModuleInitFunction()2380 llvm::Function *CGObjCGNU::ModuleInitFunction() {
2381 // Only emit an ObjC load function if no Objective-C stuff has been called
2382 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
2383 ExistingProtocols.empty() && SelectorTable.empty())
2384 return nullptr;
2385
2386 // Add all referenced protocols to a category.
2387 GenerateProtocolHolderCategory();
2388
2389 llvm::StructType *SelStructTy = dyn_cast<llvm::StructType>(
2390 SelectorTy->getElementType());
2391 llvm::Type *SelStructPtrTy = SelectorTy;
2392 if (!SelStructTy) {
2393 SelStructTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, nullptr);
2394 SelStructPtrTy = llvm::PointerType::getUnqual(SelStructTy);
2395 }
2396
2397 std::vector<llvm::Constant*> Elements;
2398 llvm::Constant *Statics = NULLPtr;
2399 // Generate statics list:
2400 if (!ConstantStrings.empty()) {
2401 llvm::ArrayType *StaticsArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
2402 ConstantStrings.size() + 1);
2403 ConstantStrings.push_back(NULLPtr);
2404
2405 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2406
2407 if (StringClass.empty()) StringClass = "NXConstantString";
2408
2409 Elements.push_back(MakeConstantString(StringClass,
2410 ".objc_static_class_name"));
2411 Elements.push_back(llvm::ConstantArray::get(StaticsArrayTy,
2412 ConstantStrings));
2413 llvm::StructType *StaticsListTy =
2414 llvm::StructType::get(PtrToInt8Ty, StaticsArrayTy, nullptr);
2415 llvm::Type *StaticsListPtrTy =
2416 llvm::PointerType::getUnqual(StaticsListTy);
2417 Statics = MakeGlobal(StaticsListTy, Elements, CGM.getPointerAlign(),
2418 ".objc_statics");
2419 llvm::ArrayType *StaticsListArrayTy =
2420 llvm::ArrayType::get(StaticsListPtrTy, 2);
2421 Elements.clear();
2422 Elements.push_back(Statics);
2423 Elements.push_back(llvm::Constant::getNullValue(StaticsListPtrTy));
2424 Statics = MakeGlobal(StaticsListArrayTy, Elements,
2425 CGM.getPointerAlign(), ".objc_statics_ptr");
2426 Statics = llvm::ConstantExpr::getBitCast(Statics, PtrTy);
2427 }
2428 // Array of classes, categories, and constant objects
2429 llvm::ArrayType *ClassListTy = llvm::ArrayType::get(PtrToInt8Ty,
2430 Classes.size() + Categories.size() + 2);
2431 llvm::StructType *SymTabTy = llvm::StructType::get(LongTy, SelStructPtrTy,
2432 llvm::Type::getInt16Ty(VMContext),
2433 llvm::Type::getInt16Ty(VMContext),
2434 ClassListTy, nullptr);
2435
2436 Elements.clear();
2437 // Pointer to an array of selectors used in this module.
2438 std::vector<llvm::Constant*> Selectors;
2439 std::vector<llvm::GlobalAlias*> SelectorAliases;
2440 for (SelectorMap::iterator iter = SelectorTable.begin(),
2441 iterEnd = SelectorTable.end(); iter != iterEnd ; ++iter) {
2442
2443 std::string SelNameStr = iter->first.getAsString();
2444 llvm::Constant *SelName = ExportUniqueString(SelNameStr, ".objc_sel_name");
2445
2446 SmallVectorImpl<TypedSelector> &Types = iter->second;
2447 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2448 e = Types.end() ; i!=e ; i++) {
2449
2450 llvm::Constant *SelectorTypeEncoding = NULLPtr;
2451 if (!i->first.empty())
2452 SelectorTypeEncoding = MakeConstantString(i->first, ".objc_sel_types");
2453
2454 Elements.push_back(SelName);
2455 Elements.push_back(SelectorTypeEncoding);
2456 Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2457 Elements.clear();
2458
2459 // Store the selector alias for later replacement
2460 SelectorAliases.push_back(i->second);
2461 }
2462 }
2463 unsigned SelectorCount = Selectors.size();
2464 // NULL-terminate the selector list. This should not actually be required,
2465 // because the selector list has a length field. Unfortunately, the GCC
2466 // runtime decides to ignore the length field and expects a NULL terminator,
2467 // and GCC cooperates with this by always setting the length to 0.
2468 Elements.push_back(NULLPtr);
2469 Elements.push_back(NULLPtr);
2470 Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2471 Elements.clear();
2472
2473 // Number of static selectors
2474 Elements.push_back(llvm::ConstantInt::get(LongTy, SelectorCount));
2475 llvm::GlobalVariable *SelectorList =
2476 MakeGlobalArray(SelStructTy, Selectors, CGM.getPointerAlign(),
2477 ".objc_selector_list");
2478 Elements.push_back(llvm::ConstantExpr::getBitCast(SelectorList,
2479 SelStructPtrTy));
2480
2481 // Now that all of the static selectors exist, create pointers to them.
2482 for (unsigned int i=0 ; i<SelectorCount ; i++) {
2483
2484 llvm::Constant *Idxs[] = {Zeros[0],
2485 llvm::ConstantInt::get(Int32Ty, i), Zeros[0]};
2486 // FIXME: We're generating redundant loads and stores here!
2487 llvm::Constant *SelPtr = llvm::ConstantExpr::getGetElementPtr(
2488 SelectorList->getValueType(), SelectorList, makeArrayRef(Idxs, 2));
2489 // If selectors are defined as an opaque type, cast the pointer to this
2490 // type.
2491 SelPtr = llvm::ConstantExpr::getBitCast(SelPtr, SelectorTy);
2492 SelectorAliases[i]->replaceAllUsesWith(SelPtr);
2493 SelectorAliases[i]->eraseFromParent();
2494 }
2495
2496 // Number of classes defined.
2497 Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2498 Classes.size()));
2499 // Number of categories defined
2500 Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2501 Categories.size()));
2502 // Create an array of classes, then categories, then static object instances
2503 Classes.insert(Classes.end(), Categories.begin(), Categories.end());
2504 // NULL-terminated list of static object instances (mainly constant strings)
2505 Classes.push_back(Statics);
2506 Classes.push_back(NULLPtr);
2507 llvm::Constant *ClassList = llvm::ConstantArray::get(ClassListTy, Classes);
2508 Elements.push_back(ClassList);
2509 // Construct the symbol table
2510 llvm::Constant *SymTab =
2511 MakeGlobal(SymTabTy, Elements, CGM.getPointerAlign());
2512
2513 // The symbol table is contained in a module which has some version-checking
2514 // constants
2515 llvm::StructType * ModuleTy = llvm::StructType::get(LongTy, LongTy,
2516 PtrToInt8Ty, llvm::PointerType::getUnqual(SymTabTy),
2517 (RuntimeVersion >= 10) ? IntTy : nullptr, nullptr);
2518 Elements.clear();
2519 // Runtime version, used for ABI compatibility checking.
2520 Elements.push_back(llvm::ConstantInt::get(LongTy, RuntimeVersion));
2521 // sizeof(ModuleTy)
2522 llvm::DataLayout td(&TheModule);
2523 Elements.push_back(
2524 llvm::ConstantInt::get(LongTy,
2525 td.getTypeSizeInBits(ModuleTy) /
2526 CGM.getContext().getCharWidth()));
2527
2528 // The path to the source file where this module was declared
2529 SourceManager &SM = CGM.getContext().getSourceManager();
2530 const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
2531 std::string path =
2532 std::string(mainFile->getDir()->getName()) + '/' + mainFile->getName();
2533 Elements.push_back(MakeConstantString(path, ".objc_source_file_name"));
2534 Elements.push_back(SymTab);
2535
2536 if (RuntimeVersion >= 10)
2537 switch (CGM.getLangOpts().getGC()) {
2538 case LangOptions::GCOnly:
2539 Elements.push_back(llvm::ConstantInt::get(IntTy, 2));
2540 break;
2541 case LangOptions::NonGC:
2542 if (CGM.getLangOpts().ObjCAutoRefCount)
2543 Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2544 else
2545 Elements.push_back(llvm::ConstantInt::get(IntTy, 0));
2546 break;
2547 case LangOptions::HybridGC:
2548 Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2549 break;
2550 }
2551
2552 llvm::Value *Module = MakeGlobal(ModuleTy, Elements, CGM.getPointerAlign());
2553
2554 // Create the load function calling the runtime entry point with the module
2555 // structure
2556 llvm::Function * LoadFunction = llvm::Function::Create(
2557 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
2558 llvm::GlobalValue::InternalLinkage, ".objc_load_function",
2559 &TheModule);
2560 llvm::BasicBlock *EntryBB =
2561 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
2562 CGBuilderTy Builder(CGM, VMContext);
2563 Builder.SetInsertPoint(EntryBB);
2564
2565 llvm::FunctionType *FT =
2566 llvm::FunctionType::get(Builder.getVoidTy(),
2567 llvm::PointerType::getUnqual(ModuleTy), true);
2568 llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
2569 Builder.CreateCall(Register, Module);
2570
2571 if (!ClassAliases.empty()) {
2572 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
2573 llvm::FunctionType *RegisterAliasTy =
2574 llvm::FunctionType::get(Builder.getVoidTy(),
2575 ArgTypes, false);
2576 llvm::Function *RegisterAlias = llvm::Function::Create(
2577 RegisterAliasTy,
2578 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
2579 &TheModule);
2580 llvm::BasicBlock *AliasBB =
2581 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
2582 llvm::BasicBlock *NoAliasBB =
2583 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
2584
2585 // Branch based on whether the runtime provided class_registerAlias_np()
2586 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
2587 llvm::Constant::getNullValue(RegisterAlias->getType()));
2588 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
2589
2590 // The true branch (has alias registration function):
2591 Builder.SetInsertPoint(AliasBB);
2592 // Emit alias registration calls:
2593 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
2594 iter != ClassAliases.end(); ++iter) {
2595 llvm::Constant *TheClass =
2596 TheModule.getGlobalVariable(("_OBJC_CLASS_" + iter->first).c_str(),
2597 true);
2598 if (TheClass) {
2599 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
2600 Builder.CreateCall(RegisterAlias,
2601 {TheClass, MakeConstantString(iter->second)});
2602 }
2603 }
2604 // Jump to end:
2605 Builder.CreateBr(NoAliasBB);
2606
2607 // Missing alias registration function, just return from the function:
2608 Builder.SetInsertPoint(NoAliasBB);
2609 }
2610 Builder.CreateRetVoid();
2611
2612 return LoadFunction;
2613 }
2614
GenerateMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)2615 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
2616 const ObjCContainerDecl *CD) {
2617 const ObjCCategoryImplDecl *OCD =
2618 dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
2619 StringRef CategoryName = OCD ? OCD->getName() : "";
2620 StringRef ClassName = CD->getName();
2621 Selector MethodName = OMD->getSelector();
2622 bool isClassMethod = !OMD->isInstanceMethod();
2623
2624 CodeGenTypes &Types = CGM.getTypes();
2625 llvm::FunctionType *MethodTy =
2626 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
2627 std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
2628 MethodName, isClassMethod);
2629
2630 llvm::Function *Method
2631 = llvm::Function::Create(MethodTy,
2632 llvm::GlobalValue::InternalLinkage,
2633 FunctionName,
2634 &TheModule);
2635 return Method;
2636 }
2637
GetPropertyGetFunction()2638 llvm::Constant *CGObjCGNU::GetPropertyGetFunction() {
2639 return GetPropertyFn;
2640 }
2641
GetPropertySetFunction()2642 llvm::Constant *CGObjCGNU::GetPropertySetFunction() {
2643 return SetPropertyFn;
2644 }
2645
GetOptimizedPropertySetFunction(bool atomic,bool copy)2646 llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
2647 bool copy) {
2648 return nullptr;
2649 }
2650
GetGetStructFunction()2651 llvm::Constant *CGObjCGNU::GetGetStructFunction() {
2652 return GetStructPropertyFn;
2653 }
GetSetStructFunction()2654 llvm::Constant *CGObjCGNU::GetSetStructFunction() {
2655 return SetStructPropertyFn;
2656 }
GetCppAtomicObjectGetFunction()2657 llvm::Constant *CGObjCGNU::GetCppAtomicObjectGetFunction() {
2658 return nullptr;
2659 }
GetCppAtomicObjectSetFunction()2660 llvm::Constant *CGObjCGNU::GetCppAtomicObjectSetFunction() {
2661 return nullptr;
2662 }
2663
EnumerationMutationFunction()2664 llvm::Constant *CGObjCGNU::EnumerationMutationFunction() {
2665 return EnumerationMutationFn;
2666 }
2667
EmitSynchronizedStmt(CodeGenFunction & CGF,const ObjCAtSynchronizedStmt & S)2668 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
2669 const ObjCAtSynchronizedStmt &S) {
2670 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
2671 }
2672
2673
EmitTryStmt(CodeGenFunction & CGF,const ObjCAtTryStmt & S)2674 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
2675 const ObjCAtTryStmt &S) {
2676 // Unlike the Apple non-fragile runtimes, which also uses
2677 // unwind-based zero cost exceptions, the GNU Objective C runtime's
2678 // EH support isn't a veneer over C++ EH. Instead, exception
2679 // objects are created by objc_exception_throw and destroyed by
2680 // the personality function; this avoids the need for bracketing
2681 // catch handlers with calls to __blah_begin_catch/__blah_end_catch
2682 // (or even _Unwind_DeleteException), but probably doesn't
2683 // interoperate very well with foreign exceptions.
2684 //
2685 // In Objective-C++ mode, we actually emit something equivalent to the C++
2686 // exception handler.
2687 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
2688 return ;
2689 }
2690
EmitThrowStmt(CodeGenFunction & CGF,const ObjCAtThrowStmt & S,bool ClearInsertionPoint)2691 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
2692 const ObjCAtThrowStmt &S,
2693 bool ClearInsertionPoint) {
2694 llvm::Value *ExceptionAsObject;
2695
2696 if (const Expr *ThrowExpr = S.getThrowExpr()) {
2697 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
2698 ExceptionAsObject = Exception;
2699 } else {
2700 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
2701 "Unexpected rethrow outside @catch block.");
2702 ExceptionAsObject = CGF.ObjCEHValueStack.back();
2703 }
2704 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
2705 llvm::CallSite Throw =
2706 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
2707 Throw.setDoesNotReturn();
2708 CGF.Builder.CreateUnreachable();
2709 if (ClearInsertionPoint)
2710 CGF.Builder.ClearInsertionPoint();
2711 }
2712
EmitObjCWeakRead(CodeGenFunction & CGF,Address AddrWeakObj)2713 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
2714 Address AddrWeakObj) {
2715 CGBuilderTy &B = CGF.Builder;
2716 AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
2717 return B.CreateCall(WeakReadFn.getType(), WeakReadFn,
2718 AddrWeakObj.getPointer());
2719 }
2720
EmitObjCWeakAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst)2721 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
2722 llvm::Value *src, Address dst) {
2723 CGBuilderTy &B = CGF.Builder;
2724 src = EnforceType(B, src, IdTy);
2725 dst = EnforceType(B, dst, PtrToIdTy);
2726 B.CreateCall(WeakAssignFn.getType(), WeakAssignFn,
2727 {src, dst.getPointer()});
2728 }
2729
EmitObjCGlobalAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst,bool threadlocal)2730 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
2731 llvm::Value *src, Address dst,
2732 bool threadlocal) {
2733 CGBuilderTy &B = CGF.Builder;
2734 src = EnforceType(B, src, IdTy);
2735 dst = EnforceType(B, dst, PtrToIdTy);
2736 // FIXME. Add threadloca assign API
2737 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
2738 B.CreateCall(GlobalAssignFn.getType(), GlobalAssignFn,
2739 {src, dst.getPointer()});
2740 }
2741
EmitObjCIvarAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst,llvm::Value * ivarOffset)2742 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
2743 llvm::Value *src, Address dst,
2744 llvm::Value *ivarOffset) {
2745 CGBuilderTy &B = CGF.Builder;
2746 src = EnforceType(B, src, IdTy);
2747 dst = EnforceType(B, dst, IdTy);
2748 B.CreateCall(IvarAssignFn.getType(), IvarAssignFn,
2749 {src, dst.getPointer(), ivarOffset});
2750 }
2751
EmitObjCStrongCastAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst)2752 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
2753 llvm::Value *src, Address dst) {
2754 CGBuilderTy &B = CGF.Builder;
2755 src = EnforceType(B, src, IdTy);
2756 dst = EnforceType(B, dst, PtrToIdTy);
2757 B.CreateCall(StrongCastAssignFn.getType(), StrongCastAssignFn,
2758 {src, dst.getPointer()});
2759 }
2760
EmitGCMemmoveCollectable(CodeGenFunction & CGF,Address DestPtr,Address SrcPtr,llvm::Value * Size)2761 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
2762 Address DestPtr,
2763 Address SrcPtr,
2764 llvm::Value *Size) {
2765 CGBuilderTy &B = CGF.Builder;
2766 DestPtr = EnforceType(B, DestPtr, PtrTy);
2767 SrcPtr = EnforceType(B, SrcPtr, PtrTy);
2768
2769 B.CreateCall(MemMoveFn.getType(), MemMoveFn,
2770 {DestPtr.getPointer(), SrcPtr.getPointer(), Size});
2771 }
2772
ObjCIvarOffsetVariable(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar)2773 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
2774 const ObjCInterfaceDecl *ID,
2775 const ObjCIvarDecl *Ivar) {
2776 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
2777 + '.' + Ivar->getNameAsString();
2778 // Emit the variable and initialize it with what we think the correct value
2779 // is. This allows code compiled with non-fragile ivars to work correctly
2780 // when linked against code which isn't (most of the time).
2781 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
2782 if (!IvarOffsetPointer) {
2783 // This will cause a run-time crash if we accidentally use it. A value of
2784 // 0 would seem more sensible, but will silently overwrite the isa pointer
2785 // causing a great deal of confusion.
2786 uint64_t Offset = -1;
2787 // We can't call ComputeIvarBaseOffset() here if we have the
2788 // implementation, because it will create an invalid ASTRecordLayout object
2789 // that we are then stuck with forever, so we only initialize the ivar
2790 // offset variable with a guess if we only have the interface. The
2791 // initializer will be reset later anyway, when we are generating the class
2792 // description.
2793 if (!CGM.getContext().getObjCImplementation(
2794 const_cast<ObjCInterfaceDecl *>(ID)))
2795 Offset = ComputeIvarBaseOffset(CGM, ID, Ivar);
2796
2797 llvm::ConstantInt *OffsetGuess = llvm::ConstantInt::get(Int32Ty, Offset,
2798 /*isSigned*/true);
2799 // Don't emit the guess in non-PIC code because the linker will not be able
2800 // to replace it with the real version for a library. In non-PIC code you
2801 // must compile with the fragile ABI if you want to use ivars from a
2802 // GCC-compiled class.
2803 if (CGM.getLangOpts().PICLevel || CGM.getLangOpts().PIELevel) {
2804 llvm::GlobalVariable *IvarOffsetGV = new llvm::GlobalVariable(TheModule,
2805 Int32Ty, false,
2806 llvm::GlobalValue::PrivateLinkage, OffsetGuess, Name+".guess");
2807 IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2808 IvarOffsetGV->getType(), false, llvm::GlobalValue::LinkOnceAnyLinkage,
2809 IvarOffsetGV, Name);
2810 } else {
2811 IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2812 llvm::Type::getInt32PtrTy(VMContext), false,
2813 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
2814 }
2815 }
2816 return IvarOffsetPointer;
2817 }
2818
EmitObjCValueForIvar(CodeGenFunction & CGF,QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)2819 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
2820 QualType ObjectTy,
2821 llvm::Value *BaseValue,
2822 const ObjCIvarDecl *Ivar,
2823 unsigned CVRQualifiers) {
2824 const ObjCInterfaceDecl *ID =
2825 ObjectTy->getAs<ObjCObjectType>()->getInterface();
2826 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
2827 EmitIvarOffset(CGF, ID, Ivar));
2828 }
2829
FindIvarInterface(ASTContext & Context,const ObjCInterfaceDecl * OID,const ObjCIvarDecl * OIVD)2830 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
2831 const ObjCInterfaceDecl *OID,
2832 const ObjCIvarDecl *OIVD) {
2833 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
2834 next = next->getNextIvar()) {
2835 if (OIVD == next)
2836 return OID;
2837 }
2838
2839 // Otherwise check in the super class.
2840 if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
2841 return FindIvarInterface(Context, Super, OIVD);
2842
2843 return nullptr;
2844 }
2845
EmitIvarOffset(CodeGenFunction & CGF,const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)2846 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
2847 const ObjCInterfaceDecl *Interface,
2848 const ObjCIvarDecl *Ivar) {
2849 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2850 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
2851 if (RuntimeVersion < 10)
2852 return CGF.Builder.CreateZExtOrBitCast(
2853 CGF.Builder.CreateDefaultAlignedLoad(CGF.Builder.CreateAlignedLoad(
2854 ObjCIvarOffsetVariable(Interface, Ivar),
2855 CGF.getPointerAlign(), "ivar")),
2856 PtrDiffTy);
2857 std::string name = "__objc_ivar_offset_value_" +
2858 Interface->getNameAsString() +"." + Ivar->getNameAsString();
2859 CharUnits Align = CGM.getIntAlign();
2860 llvm::Value *Offset = TheModule.getGlobalVariable(name);
2861 if (!Offset) {
2862 auto GV = new llvm::GlobalVariable(TheModule, IntTy,
2863 false, llvm::GlobalValue::LinkOnceAnyLinkage,
2864 llvm::Constant::getNullValue(IntTy), name);
2865 GV->setAlignment(Align.getQuantity());
2866 Offset = GV;
2867 }
2868 Offset = CGF.Builder.CreateAlignedLoad(Offset, Align);
2869 if (Offset->getType() != PtrDiffTy)
2870 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
2871 return Offset;
2872 }
2873 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
2874 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
2875 }
2876
2877 CGObjCRuntime *
CreateGNUObjCRuntime(CodeGenModule & CGM)2878 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
2879 switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
2880 case ObjCRuntime::GNUstep:
2881 return new CGObjCGNUstep(CGM);
2882
2883 case ObjCRuntime::GCC:
2884 return new CGObjCGCC(CGM);
2885
2886 case ObjCRuntime::ObjFW:
2887 return new CGObjCObjFW(CGM);
2888
2889 case ObjCRuntime::FragileMacOSX:
2890 case ObjCRuntime::MacOSX:
2891 case ObjCRuntime::iOS:
2892 case ObjCRuntime::WatchOS:
2893 llvm_unreachable("these runtimes are not GNU runtimes");
2894 }
2895 llvm_unreachable("bad runtime");
2896 }
2897