• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN2_MATH_FUNCTIONS_H
11 #define EIGEN2_MATH_FUNCTIONS_H
12 
13 namespace Eigen {
14 
ei_real(const T & x)15 template<typename T> inline typename NumTraits<T>::Real ei_real(const T& x) { return numext::real(x); }
ei_imag(const T & x)16 template<typename T> inline typename NumTraits<T>::Real ei_imag(const T& x) { return numext::imag(x); }
ei_conj(const T & x)17 template<typename T> inline T ei_conj(const T& x) { return numext::conj(x); }
ei_abs(const T & x)18 template<typename T> inline typename NumTraits<T>::Real ei_abs (const T& x) { using std::abs; return abs(x); }
ei_abs2(const T & x)19 template<typename T> inline typename NumTraits<T>::Real ei_abs2(const T& x) { return numext::abs2(x); }
ei_sqrt(const T & x)20 template<typename T> inline T ei_sqrt(const T& x) { using std::sqrt; return sqrt(x); }
ei_exp(const T & x)21 template<typename T> inline T ei_exp (const T& x) { using std::exp;  return exp(x); }
ei_log(const T & x)22 template<typename T> inline T ei_log (const T& x) { using std::log;  return log(x); }
ei_sin(const T & x)23 template<typename T> inline T ei_sin (const T& x) { using std::sin;  return sin(x); }
ei_cos(const T & x)24 template<typename T> inline T ei_cos (const T& x) { using std::cos;  return cos(x); }
ei_atan2(const T & x,const T & y)25 template<typename T> inline T ei_atan2(const T& x,const T& y) { using std::atan2; return atan2(x,y); }
ei_pow(const T & x,const T & y)26 template<typename T> inline T ei_pow (const T& x,const T& y) { return numext::pow(x,y); }
ei_random()27 template<typename T> inline T ei_random () { return internal::random<T>(); }
ei_random(const T & x,const T & y)28 template<typename T> inline T ei_random (const T& x, const T& y) { return internal::random(x, y); }
29 
precision()30 template<typename T> inline T precision () { return NumTraits<T>::dummy_precision(); }
machine_epsilon()31 template<typename T> inline T machine_epsilon () { return NumTraits<T>::epsilon(); }
32 
33 
34 template<typename Scalar, typename OtherScalar>
35 inline bool ei_isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
36                                    typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
37 {
38   return internal::isMuchSmallerThan(x, y, precision);
39 }
40 
41 template<typename Scalar>
42 inline bool ei_isApprox(const Scalar& x, const Scalar& y,
43                           typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
44 {
45   return internal::isApprox(x, y, precision);
46 }
47 
48 template<typename Scalar>
49 inline bool ei_isApproxOrLessThan(const Scalar& x, const Scalar& y,
50                                     typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
51 {
52   return internal::isApproxOrLessThan(x, y, precision);
53 }
54 
55 } // end namespace Eigen
56 
57 #endif // EIGEN2_MATH_FUNCTIONS_H
58