• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "common.h"
11 
12 struct scalar_norm1_op {
13   typedef RealScalar result_type;
EIGEN_EMPTY_STRUCT_CTORscalar_norm1_op14   EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op)
15   inline RealScalar operator() (const Scalar& a) const { return numext::norm1(a); }
16 };
17 namespace Eigen {
18   namespace internal {
19     template<> struct functor_traits<scalar_norm1_op >
20     {
21       enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
22     };
23   }
24 }
25 
26 // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
27 // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
28 RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx)
29 {
30 //   std::cerr << "__asum " << *n << " " << *incx << "\n";
31   Complex* x = reinterpret_cast<Complex*>(px);
32 
33   if(*n<=0) return 0;
34 
35   if(*incx==1)  return vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
36   else          return vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
37 }
38 
39 // computes a dot product of a conjugated vector with another vector.
40 int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
41 {
42 //   std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
43 
44   if(*n<=0) return 0;
45 
46   Scalar* x = reinterpret_cast<Scalar*>(px);
47   Scalar* y = reinterpret_cast<Scalar*>(py);
48   Scalar* res = reinterpret_cast<Scalar*>(pres);
49 
50   if(*incx==1 && *incy==1)    *res = (vector(x,*n).dot(vector(y,*n)));
51   else if(*incx>0 && *incy>0) *res = (vector(x,*n,*incx).dot(vector(y,*n,*incy)));
52   else if(*incx<0 && *incy>0) *res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,*incy)));
53   else if(*incx>0 && *incy<0) *res = (vector(x,*n,*incx).dot(vector(y,*n,-*incy).reverse()));
54   else if(*incx<0 && *incy<0) *res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,-*incy).reverse()));
55   return 0;
56 }
57 
58 // computes a vector-vector dot product without complex conjugation.
59 int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
60 {
61 //   std::cerr << "_dotu " << *n << " " << *incx << " " << *incy << "\n";
62 
63   if(*n<=0) return 0;
64 
65   Scalar* x = reinterpret_cast<Scalar*>(px);
66   Scalar* y = reinterpret_cast<Scalar*>(py);
67   Scalar* res = reinterpret_cast<Scalar*>(pres);
68 
69   if(*incx==1 && *incy==1)    *res = (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
70   else if(*incx>0 && *incy>0) *res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
71   else if(*incx<0 && *incy>0) *res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum();
72   else if(*incx>0 && *incy<0) *res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
73   else if(*incx<0 && *incy<0) *res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
74   return 0;
75 }
76 
77 RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx)
78 {
79 //   std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
80   if(*n<=0) return 0;
81 
82   Scalar* x = reinterpret_cast<Scalar*>(px);
83 
84   if(*incx==1)
85     return vector(x,*n).stableNorm();
86 
87   return vector(x,*n,*incx).stableNorm();
88 }
89 
90 int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
91 {
92   if(*n<=0) return 0;
93 
94   Scalar* x = reinterpret_cast<Scalar*>(px);
95   Scalar* y = reinterpret_cast<Scalar*>(py);
96   RealScalar c = *pc;
97   RealScalar s = *ps;
98 
99   StridedVectorType vx(vector(x,*n,std::abs(*incx)));
100   StridedVectorType vy(vector(y,*n,std::abs(*incy)));
101 
102   Reverse<StridedVectorType> rvx(vx);
103   Reverse<StridedVectorType> rvy(vy);
104 
105   // TODO implement mixed real-scalar rotations
106        if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
107   else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
108   else                        internal::apply_rotation_in_the_plane(vx, vy,  JacobiRotation<Scalar>(c,s));
109 
110   return 0;
111 }
112 
113 int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
114 {
115   if(*n<=0) return 0;
116 
117   Scalar* x = reinterpret_cast<Scalar*>(px);
118   RealScalar alpha = *palpha;
119 
120 //   std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
121 
122   if(*incx==1)  vector(x,*n) *= alpha;
123   else          vector(x,*n,std::abs(*incx)) *= alpha;
124 
125   return 0;
126 }
127 
128