• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_NO_STATIC_ASSERT
11 #define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
12 #endif
13 
14 #include "main.h"
15 
map_class_vector(const VectorType & m)16 template<typename VectorType> void map_class_vector(const VectorType& m)
17 {
18   typedef typename VectorType::Index Index;
19   typedef typename VectorType::Scalar Scalar;
20 
21   Index size = m.size();
22 
23   // test Map.h
24   Scalar* array1 = internal::aligned_new<Scalar>(size);
25   Scalar* array2 = internal::aligned_new<Scalar>(size);
26   Scalar* array3 = new Scalar[size+1];
27   Scalar* array3unaligned = size_t(array3)%16 == 0 ? array3+1 : array3;
28 
29   Map<VectorType, Aligned>(array1, size) = VectorType::Random(size);
30   Map<VectorType, Aligned>(array2, size) = Map<VectorType,Aligned>(array1, size);
31   Map<VectorType>(array3unaligned, size) = Map<VectorType>(array1, size);
32   VectorType ma1 = Map<VectorType, Aligned>(array1, size);
33   VectorType ma2 = Map<VectorType, Aligned>(array2, size);
34   VectorType ma3 = Map<VectorType>(array3unaligned, size);
35   VERIFY_IS_EQUAL(ma1, ma2);
36   VERIFY_IS_EQUAL(ma1, ma3);
37   #ifdef EIGEN_VECTORIZE
38   if(internal::packet_traits<Scalar>::Vectorizable)
39     VERIFY_RAISES_ASSERT((Map<VectorType,Aligned>(array3unaligned, size)))
40   #endif
41 
42   internal::aligned_delete(array1, size);
43   internal::aligned_delete(array2, size);
44   delete[] array3;
45 }
46 
map_class_matrix(const MatrixType & m)47 template<typename MatrixType> void map_class_matrix(const MatrixType& m)
48 {
49   typedef typename MatrixType::Index Index;
50   typedef typename MatrixType::Scalar Scalar;
51 
52   Index rows = m.rows(), cols = m.cols(), size = rows*cols;
53 
54   // test Map.h
55   Scalar* array1 = internal::aligned_new<Scalar>(size);
56   for(int i = 0; i < size; i++) array1[i] = Scalar(1);
57   Scalar* array2 = internal::aligned_new<Scalar>(size);
58   for(int i = 0; i < size; i++) array2[i] = Scalar(1);
59   Scalar* array3 = new Scalar[size+1];
60   for(int i = 0; i < size+1; i++) array3[i] = Scalar(1);
61   Scalar* array3unaligned = size_t(array3)%16 == 0 ? array3+1 : array3;
62   Map<MatrixType, Aligned>(array1, rows, cols) = MatrixType::Ones(rows,cols);
63   Map<MatrixType>(array2, rows, cols) = Map<MatrixType>(array1, rows, cols);
64   Map<MatrixType>(array3unaligned, rows, cols) = Map<MatrixType>(array1, rows, cols);
65   MatrixType ma1 = Map<MatrixType>(array1, rows, cols);
66   MatrixType ma2 = Map<MatrixType, Aligned>(array2, rows, cols);
67   VERIFY_IS_EQUAL(ma1, ma2);
68   MatrixType ma3 = Map<MatrixType>(array3unaligned, rows, cols);
69   VERIFY_IS_EQUAL(ma1, ma3);
70 
71   internal::aligned_delete(array1, size);
72   internal::aligned_delete(array2, size);
73   delete[] array3;
74 }
75 
map_static_methods(const VectorType & m)76 template<typename VectorType> void map_static_methods(const VectorType& m)
77 {
78   typedef typename VectorType::Index Index;
79   typedef typename VectorType::Scalar Scalar;
80 
81   Index size = m.size();
82 
83   // test Map.h
84   Scalar* array1 = internal::aligned_new<Scalar>(size);
85   Scalar* array2 = internal::aligned_new<Scalar>(size);
86   Scalar* array3 = new Scalar[size+1];
87   Scalar* array3unaligned = size_t(array3)%16 == 0 ? array3+1 : array3;
88 
89   VectorType::MapAligned(array1, size) = VectorType::Random(size);
90   VectorType::Map(array2, size) = VectorType::Map(array1, size);
91   VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size);
92   VectorType ma1 = VectorType::Map(array1, size);
93   VectorType ma2 = VectorType::MapAligned(array2, size);
94   VectorType ma3 = VectorType::Map(array3unaligned, size);
95   VERIFY_IS_EQUAL(ma1, ma2);
96   VERIFY_IS_EQUAL(ma1, ma3);
97 
98   internal::aligned_delete(array1, size);
99   internal::aligned_delete(array2, size);
100   delete[] array3;
101 }
102 
check_const_correctness(const PlainObjectType &)103 template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
104 {
105   // there's a lot that we can't test here while still having this test compile!
106   // the only possible approach would be to run a script trying to compile stuff and checking that it fails.
107   // CMake can help with that.
108 
109   // verify that map-to-const don't have LvalueBit
110   typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
111   VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
112   VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
113   VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
114   VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
115 }
116 
117 template<typename Scalar>
map_not_aligned_on_scalar()118 void map_not_aligned_on_scalar()
119 {
120   typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
121   typedef typename MatrixType::Index Index;
122   Index size = 11;
123   Scalar* array1 = internal::aligned_new<Scalar>((size+1)*(size+1)+1);
124   Scalar* array2 = reinterpret_cast<Scalar*>(sizeof(Scalar)/2+std::size_t(array1));
125   Map<MatrixType,0,OuterStride<> > map2(array2, size, size, OuterStride<>(size+1));
126   MatrixType m2 = MatrixType::Random(size,size);
127   map2 = m2;
128   VERIFY_IS_EQUAL(m2, map2);
129 
130   typedef Matrix<Scalar,Dynamic,1> VectorType;
131   Map<VectorType> map3(array2, size);
132   MatrixType v3 = VectorType::Random(size);
133   map3 = v3;
134   VERIFY_IS_EQUAL(v3, map3);
135 
136   internal::aligned_delete(array1, (size+1)*(size+1)+1);
137 }
138 
test_mapped_matrix()139 void test_mapped_matrix()
140 {
141   for(int i = 0; i < g_repeat; i++) {
142     CALL_SUBTEST_1( map_class_vector(Matrix<float, 1, 1>()) );
143     CALL_SUBTEST_1( check_const_correctness(Matrix<float, 1, 1>()) );
144     CALL_SUBTEST_2( map_class_vector(Vector4d()) );
145     CALL_SUBTEST_2( check_const_correctness(Matrix4d()) );
146     CALL_SUBTEST_3( map_class_vector(RowVector4f()) );
147     CALL_SUBTEST_4( map_class_vector(VectorXcf(8)) );
148     CALL_SUBTEST_5( map_class_vector(VectorXi(12)) );
149     CALL_SUBTEST_5( check_const_correctness(VectorXi(12)) );
150 
151     CALL_SUBTEST_1( map_class_matrix(Matrix<float, 1, 1>()) );
152     CALL_SUBTEST_2( map_class_matrix(Matrix4d()) );
153     CALL_SUBTEST_11( map_class_matrix(Matrix<float,3,5>()) );
154     CALL_SUBTEST_4( map_class_matrix(MatrixXcf(internal::random<int>(1,10),internal::random<int>(1,10))) );
155     CALL_SUBTEST_5( map_class_matrix(MatrixXi(internal::random<int>(1,10),internal::random<int>(1,10))) );
156 
157     CALL_SUBTEST_6( map_static_methods(Matrix<double, 1, 1>()) );
158     CALL_SUBTEST_7( map_static_methods(Vector3f()) );
159     CALL_SUBTEST_8( map_static_methods(RowVector3d()) );
160     CALL_SUBTEST_9( map_static_methods(VectorXcd(8)) );
161     CALL_SUBTEST_10( map_static_methods(VectorXf(12)) );
162 
163     CALL_SUBTEST_11( map_not_aligned_on_scalar<double>() );
164   }
165 }
166