• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
matrixRedux(const MatrixType & m)12 template<typename MatrixType> void matrixRedux(const MatrixType& m)
13 {
14   typedef typename MatrixType::Index Index;
15   typedef typename MatrixType::Scalar Scalar;
16   typedef typename MatrixType::RealScalar RealScalar;
17 
18   Index rows = m.rows();
19   Index cols = m.cols();
20 
21   MatrixType m1 = MatrixType::Random(rows, cols);
22 
23   // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test
24   // failures if we underflow into denormals. Thus, we scale so that entires are close to 1.
25   MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1;
26 
27   VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
28   VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
29   Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0)));
30   for(int j = 0; j < cols; j++)
31   for(int i = 0; i < rows; i++)
32   {
33     s += m1(i,j);
34     p *= m1_for_prod(i,j);
35     minc = (std::min)(numext::real(minc), numext::real(m1(i,j)));
36     maxc = (std::max)(numext::real(maxc), numext::real(m1(i,j)));
37   }
38   const Scalar mean = s/Scalar(RealScalar(rows*cols));
39 
40   VERIFY_IS_APPROX(m1.sum(), s);
41   VERIFY_IS_APPROX(m1.mean(), mean);
42   VERIFY_IS_APPROX(m1_for_prod.prod(), p);
43   VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc));
44   VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc));
45 
46   // test slice vectorization assuming assign is ok
47   Index r0 = internal::random<Index>(0,rows-1);
48   Index c0 = internal::random<Index>(0,cols-1);
49   Index r1 = internal::random<Index>(r0+1,rows)-r0;
50   Index c1 = internal::random<Index>(c0+1,cols)-c0;
51   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum());
52   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean());
53   VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod());
54   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff());
55   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff());
56 
57   // test empty objects
58   VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(),   Scalar(0));
59   VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(),  Scalar(1));
60 }
61 
vectorRedux(const VectorType & w)62 template<typename VectorType> void vectorRedux(const VectorType& w)
63 {
64   using std::abs;
65   typedef typename VectorType::Index Index;
66   typedef typename VectorType::Scalar Scalar;
67   typedef typename NumTraits<Scalar>::Real RealScalar;
68   Index size = w.size();
69 
70   VectorType v = VectorType::Random(size);
71   VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod
72 
73   for(int i = 1; i < size; i++)
74   {
75     Scalar s(0), p(1);
76     RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0)));
77     for(int j = 0; j < i; j++)
78     {
79       s += v[j];
80       p *= v_for_prod[j];
81       minc = (std::min)(minc, numext::real(v[j]));
82       maxc = (std::max)(maxc, numext::real(v[j]));
83     }
84     VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1));
85     VERIFY_IS_APPROX(p, v_for_prod.head(i).prod());
86     VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff());
87     VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff());
88   }
89 
90   for(int i = 0; i < size-1; i++)
91   {
92     Scalar s(0), p(1);
93     RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i)));
94     for(int j = i; j < size; j++)
95     {
96       s += v[j];
97       p *= v_for_prod[j];
98       minc = (std::min)(minc, numext::real(v[j]));
99       maxc = (std::max)(maxc, numext::real(v[j]));
100     }
101     VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size-i).sum()), Scalar(1));
102     VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod());
103     VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff());
104     VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff());
105   }
106 
107   for(int i = 0; i < size/2; i++)
108   {
109     Scalar s(0), p(1);
110     RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i)));
111     for(int j = i; j < size-i; j++)
112     {
113       s += v[j];
114       p *= v_for_prod[j];
115       minc = (std::min)(minc, numext::real(v[j]));
116       maxc = (std::max)(maxc, numext::real(v[j]));
117     }
118     VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size-2*i).sum()), Scalar(1));
119     VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod());
120     VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff());
121     VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff());
122   }
123 
124   // test empty objects
125   VERIFY_IS_APPROX(v.head(0).sum(),   Scalar(0));
126   VERIFY_IS_APPROX(v.tail(0).prod(),  Scalar(1));
127   VERIFY_RAISES_ASSERT(v.head(0).mean());
128   VERIFY_RAISES_ASSERT(v.head(0).minCoeff());
129   VERIFY_RAISES_ASSERT(v.head(0).maxCoeff());
130 }
131 
test_redux()132 void test_redux()
133 {
134   // the max size cannot be too large, otherwise reduxion operations obviously generate large errors.
135   int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE);
136   TEST_SET_BUT_UNUSED_VARIABLE(maxsize);
137   for(int i = 0; i < g_repeat; i++) {
138     CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) );
139     CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) );
140     CALL_SUBTEST_2( matrixRedux(Matrix2f()) );
141     CALL_SUBTEST_2( matrixRedux(Array2f()) );
142     CALL_SUBTEST_3( matrixRedux(Matrix4d()) );
143     CALL_SUBTEST_3( matrixRedux(Array4d()) );
144     CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
145     CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
146     CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
147     CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
148     CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
149     CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
150   }
151   for(int i = 0; i < g_repeat; i++) {
152     CALL_SUBTEST_7( vectorRedux(Vector4f()) );
153     CALL_SUBTEST_7( vectorRedux(Array4f()) );
154     CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random<int>(1,maxsize))) );
155     CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random<int>(1,maxsize))) );
156     CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random<int>(1,maxsize))) );
157     CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random<int>(1,maxsize))) );
158   }
159 }
160