• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
5 
6 #include <stdio.h>
7 
8 #include "main.h"
9 #include <unsupported/Eigen/NonLinearOptimization>
10 
11 // This disables some useless Warnings on MSVC.
12 // It is intended to be done for this test only.
13 #include <Eigen/src/Core/util/DisableStupidWarnings.h>
14 
15 using std::sqrt;
16 
fcn_chkder(const VectorXd & x,VectorXd & fvec,MatrixXd & fjac,int iflag)17 int fcn_chkder(const VectorXd &x, VectorXd &fvec, MatrixXd &fjac, int iflag)
18 {
19     /*      subroutine fcn for chkder example. */
20 
21     int i;
22     assert(15 ==  fvec.size());
23     assert(3 ==  x.size());
24     double tmp1, tmp2, tmp3, tmp4;
25     static const double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
26         3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
27 
28 
29     if (iflag == 0)
30         return 0;
31 
32     if (iflag != 2)
33         for (i=0; i<15; i++) {
34             tmp1 = i+1;
35             tmp2 = 16-i-1;
36             tmp3 = tmp1;
37             if (i >= 8) tmp3 = tmp2;
38             fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
39         }
40     else {
41         for (i = 0; i < 15; i++) {
42             tmp1 = i+1;
43             tmp2 = 16-i-1;
44 
45             /* error introduced into next statement for illustration. */
46             /* corrected statement should read    tmp3 = tmp1 . */
47 
48             tmp3 = tmp2;
49             if (i >= 8) tmp3 = tmp2;
50             tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4=tmp4*tmp4;
51             fjac(i,0) = -1.;
52             fjac(i,1) = tmp1*tmp2/tmp4;
53             fjac(i,2) = tmp1*tmp3/tmp4;
54         }
55     }
56     return 0;
57 }
58 
59 
testChkder()60 void testChkder()
61 {
62   const int m=15, n=3;
63   VectorXd x(n), fvec(m), xp, fvecp(m), err;
64   MatrixXd fjac(m,n);
65   VectorXi ipvt;
66 
67   /*      the following values should be suitable for */
68   /*      checking the jacobian matrix. */
69   x << 9.2e-1, 1.3e-1, 5.4e-1;
70 
71   internal::chkder(x, fvec, fjac, xp, fvecp, 1, err);
72   fcn_chkder(x, fvec, fjac, 1);
73   fcn_chkder(x, fvec, fjac, 2);
74   fcn_chkder(xp, fvecp, fjac, 1);
75   internal::chkder(x, fvec, fjac, xp, fvecp, 2, err);
76 
77   fvecp -= fvec;
78 
79   // check those
80   VectorXd fvec_ref(m), fvecp_ref(m), err_ref(m);
81   fvec_ref <<
82       -1.181606, -1.429655, -1.606344,
83       -1.745269, -1.840654, -1.921586,
84       -1.984141, -2.022537, -2.468977,
85       -2.827562, -3.473582, -4.437612,
86       -6.047662, -9.267761, -18.91806;
87   fvecp_ref <<
88       -7.724666e-09, -3.432406e-09, -2.034843e-10,
89       2.313685e-09,  4.331078e-09,  5.984096e-09,
90       7.363281e-09,   8.53147e-09,  1.488591e-08,
91       2.33585e-08,  3.522012e-08,  5.301255e-08,
92       8.26666e-08,  1.419747e-07,   3.19899e-07;
93   err_ref <<
94       0.1141397,  0.09943516,  0.09674474,
95       0.09980447,  0.1073116, 0.1220445,
96       0.1526814, 1, 1,
97       1, 1, 1,
98       1, 1, 1;
99 
100   VERIFY_IS_APPROX(fvec, fvec_ref);
101   VERIFY_IS_APPROX(fvecp, fvecp_ref);
102   VERIFY_IS_APPROX(err, err_ref);
103 }
104 
105 // Generic functor
106 template<typename _Scalar, int NX=Dynamic, int NY=Dynamic>
107 struct Functor
108 {
109   typedef _Scalar Scalar;
110   enum {
111     InputsAtCompileTime = NX,
112     ValuesAtCompileTime = NY
113   };
114   typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
115   typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
116   typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
117 
118   const int m_inputs, m_values;
119 
FunctorFunctor120   Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
FunctorFunctor121   Functor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
122 
inputsFunctor123   int inputs() const { return m_inputs; }
valuesFunctor124   int values() const { return m_values; }
125 
126   // you should define that in the subclass :
127 //  void operator() (const InputType& x, ValueType* v, JacobianType* _j=0) const;
128 };
129 
130 struct lmder_functor : Functor<double>
131 {
lmder_functorlmder_functor132     lmder_functor(void): Functor<double>(3,15) {}
operator ()lmder_functor133     int operator()(const VectorXd &x, VectorXd &fvec) const
134     {
135         double tmp1, tmp2, tmp3;
136         static const double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
137             3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
138 
139         for (int i = 0; i < values(); i++)
140         {
141             tmp1 = i+1;
142             tmp2 = 16 - i - 1;
143             tmp3 = (i>=8)? tmp2 : tmp1;
144             fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
145         }
146         return 0;
147     }
148 
dflmder_functor149     int df(const VectorXd &x, MatrixXd &fjac) const
150     {
151         double tmp1, tmp2, tmp3, tmp4;
152         for (int i = 0; i < values(); i++)
153         {
154             tmp1 = i+1;
155             tmp2 = 16 - i - 1;
156             tmp3 = (i>=8)? tmp2 : tmp1;
157             tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4 = tmp4*tmp4;
158             fjac(i,0) = -1;
159             fjac(i,1) = tmp1*tmp2/tmp4;
160             fjac(i,2) = tmp1*tmp3/tmp4;
161         }
162         return 0;
163     }
164 };
165 
testLmder1()166 void testLmder1()
167 {
168   int n=3, info;
169 
170   VectorXd x;
171 
172   /* the following starting values provide a rough fit. */
173   x.setConstant(n, 1.);
174 
175   // do the computation
176   lmder_functor functor;
177   LevenbergMarquardt<lmder_functor> lm(functor);
178   info = lm.lmder1(x);
179 
180   // check return value
181   VERIFY_IS_EQUAL(info, 1);
182   VERIFY_IS_EQUAL(lm.nfev, 6);
183   VERIFY_IS_EQUAL(lm.njev, 5);
184 
185   // check norm
186   VERIFY_IS_APPROX(lm.fvec.blueNorm(), 0.09063596);
187 
188   // check x
189   VectorXd x_ref(n);
190   x_ref << 0.08241058, 1.133037, 2.343695;
191   VERIFY_IS_APPROX(x, x_ref);
192 }
193 
testLmder()194 void testLmder()
195 {
196   const int m=15, n=3;
197   int info;
198   double fnorm, covfac;
199   VectorXd x;
200 
201   /* the following starting values provide a rough fit. */
202   x.setConstant(n, 1.);
203 
204   // do the computation
205   lmder_functor functor;
206   LevenbergMarquardt<lmder_functor> lm(functor);
207   info = lm.minimize(x);
208 
209   // check return values
210   VERIFY_IS_EQUAL(info, 1);
211   VERIFY_IS_EQUAL(lm.nfev, 6);
212   VERIFY_IS_EQUAL(lm.njev, 5);
213 
214   // check norm
215   fnorm = lm.fvec.blueNorm();
216   VERIFY_IS_APPROX(fnorm, 0.09063596);
217 
218   // check x
219   VectorXd x_ref(n);
220   x_ref << 0.08241058, 1.133037, 2.343695;
221   VERIFY_IS_APPROX(x, x_ref);
222 
223   // check covariance
224   covfac = fnorm*fnorm/(m-n);
225   internal::covar(lm.fjac, lm.permutation.indices()); // TODO : move this as a function of lm
226 
227   MatrixXd cov_ref(n,n);
228   cov_ref <<
229       0.0001531202,   0.002869941,  -0.002656662,
230       0.002869941,    0.09480935,   -0.09098995,
231       -0.002656662,   -0.09098995,    0.08778727;
232 
233 //  std::cout << fjac*covfac << std::endl;
234 
235   MatrixXd cov;
236   cov =  covfac*lm.fjac.topLeftCorner<n,n>();
237   VERIFY_IS_APPROX( cov, cov_ref);
238   // TODO: why isn't this allowed ? :
239   // VERIFY_IS_APPROX( covfac*fjac.topLeftCorner<n,n>() , cov_ref);
240 }
241 
242 struct hybrj_functor : Functor<double>
243 {
hybrj_functorhybrj_functor244     hybrj_functor(void) : Functor<double>(9,9) {}
245 
operator ()hybrj_functor246     int operator()(const VectorXd &x, VectorXd &fvec)
247     {
248         double temp, temp1, temp2;
249         const int n = x.size();
250         assert(fvec.size()==n);
251         for (int k = 0; k < n; k++)
252         {
253             temp = (3. - 2.*x[k])*x[k];
254             temp1 = 0.;
255             if (k) temp1 = x[k-1];
256             temp2 = 0.;
257             if (k != n-1) temp2 = x[k+1];
258             fvec[k] = temp - temp1 - 2.*temp2 + 1.;
259         }
260         return 0;
261     }
dfhybrj_functor262     int df(const VectorXd &x, MatrixXd &fjac)
263     {
264         const int n = x.size();
265         assert(fjac.rows()==n);
266         assert(fjac.cols()==n);
267         for (int k = 0; k < n; k++)
268         {
269             for (int j = 0; j < n; j++)
270                 fjac(k,j) = 0.;
271             fjac(k,k) = 3.- 4.*x[k];
272             if (k) fjac(k,k-1) = -1.;
273             if (k != n-1) fjac(k,k+1) = -2.;
274         }
275         return 0;
276     }
277 };
278 
279 
testHybrj1()280 void testHybrj1()
281 {
282   const int n=9;
283   int info;
284   VectorXd x(n);
285 
286   /* the following starting values provide a rough fit. */
287   x.setConstant(n, -1.);
288 
289   // do the computation
290   hybrj_functor functor;
291   HybridNonLinearSolver<hybrj_functor> solver(functor);
292   info = solver.hybrj1(x);
293 
294   // check return value
295   VERIFY_IS_EQUAL(info, 1);
296   VERIFY_IS_EQUAL(solver.nfev, 11);
297   VERIFY_IS_EQUAL(solver.njev, 1);
298 
299   // check norm
300   VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08);
301 
302 
303 // check x
304   VectorXd x_ref(n);
305   x_ref <<
306      -0.5706545,    -0.6816283,    -0.7017325,
307      -0.7042129,     -0.701369,    -0.6918656,
308      -0.665792,    -0.5960342,    -0.4164121;
309   VERIFY_IS_APPROX(x, x_ref);
310 }
311 
testHybrj()312 void testHybrj()
313 {
314   const int n=9;
315   int info;
316   VectorXd x(n);
317 
318   /* the following starting values provide a rough fit. */
319   x.setConstant(n, -1.);
320 
321 
322   // do the computation
323   hybrj_functor functor;
324   HybridNonLinearSolver<hybrj_functor> solver(functor);
325   solver.diag.setConstant(n, 1.);
326   solver.useExternalScaling = true;
327   info = solver.solve(x);
328 
329   // check return value
330   VERIFY_IS_EQUAL(info, 1);
331   VERIFY_IS_EQUAL(solver.nfev, 11);
332   VERIFY_IS_EQUAL(solver.njev, 1);
333 
334   // check norm
335   VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08);
336 
337 
338 // check x
339   VectorXd x_ref(n);
340   x_ref <<
341      -0.5706545,    -0.6816283,    -0.7017325,
342      -0.7042129,     -0.701369,    -0.6918656,
343      -0.665792,    -0.5960342,    -0.4164121;
344   VERIFY_IS_APPROX(x, x_ref);
345 
346 }
347 
348 struct hybrd_functor : Functor<double>
349 {
hybrd_functorhybrd_functor350     hybrd_functor(void) : Functor<double>(9,9) {}
operator ()hybrd_functor351     int operator()(const VectorXd &x, VectorXd &fvec) const
352     {
353         double temp, temp1, temp2;
354         const int n = x.size();
355 
356         assert(fvec.size()==n);
357         for (int k=0; k < n; k++)
358         {
359             temp = (3. - 2.*x[k])*x[k];
360             temp1 = 0.;
361             if (k) temp1 = x[k-1];
362             temp2 = 0.;
363             if (k != n-1) temp2 = x[k+1];
364             fvec[k] = temp - temp1 - 2.*temp2 + 1.;
365         }
366         return 0;
367     }
368 };
369 
testHybrd1()370 void testHybrd1()
371 {
372   int n=9, info;
373   VectorXd x(n);
374 
375   /* the following starting values provide a rough solution. */
376   x.setConstant(n, -1.);
377 
378   // do the computation
379   hybrd_functor functor;
380   HybridNonLinearSolver<hybrd_functor> solver(functor);
381   info = solver.hybrd1(x);
382 
383   // check return value
384   VERIFY_IS_EQUAL(info, 1);
385   VERIFY_IS_EQUAL(solver.nfev, 20);
386 
387   // check norm
388   VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08);
389 
390   // check x
391   VectorXd x_ref(n);
392   x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121;
393   VERIFY_IS_APPROX(x, x_ref);
394 }
395 
testHybrd()396 void testHybrd()
397 {
398   const int n=9;
399   int info;
400   VectorXd x;
401 
402   /* the following starting values provide a rough fit. */
403   x.setConstant(n, -1.);
404 
405   // do the computation
406   hybrd_functor functor;
407   HybridNonLinearSolver<hybrd_functor> solver(functor);
408   solver.parameters.nb_of_subdiagonals = 1;
409   solver.parameters.nb_of_superdiagonals = 1;
410   solver.diag.setConstant(n, 1.);
411   solver.useExternalScaling = true;
412   info = solver.solveNumericalDiff(x);
413 
414   // check return value
415   VERIFY_IS_EQUAL(info, 1);
416   VERIFY_IS_EQUAL(solver.nfev, 14);
417 
418   // check norm
419   VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08);
420 
421   // check x
422   VectorXd x_ref(n);
423   x_ref <<
424       -0.5706545,    -0.6816283,    -0.7017325,
425       -0.7042129,     -0.701369,    -0.6918656,
426       -0.665792,    -0.5960342,    -0.4164121;
427   VERIFY_IS_APPROX(x, x_ref);
428 }
429 
430 struct lmstr_functor : Functor<double>
431 {
lmstr_functorlmstr_functor432     lmstr_functor(void) : Functor<double>(3,15) {}
operator ()lmstr_functor433     int operator()(const VectorXd &x, VectorXd &fvec)
434     {
435         /*  subroutine fcn for lmstr1 example. */
436         double tmp1, tmp2, tmp3;
437         static const double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
438             3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
439 
440         assert(15==fvec.size());
441         assert(3==x.size());
442 
443         for (int i=0; i<15; i++)
444         {
445             tmp1 = i+1;
446             tmp2 = 16 - i - 1;
447             tmp3 = (i>=8)? tmp2 : tmp1;
448             fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
449         }
450         return 0;
451     }
dflmstr_functor452     int df(const VectorXd &x, VectorXd &jac_row, VectorXd::Index rownb)
453     {
454         assert(x.size()==3);
455         assert(jac_row.size()==x.size());
456         double tmp1, tmp2, tmp3, tmp4;
457 
458         int i = rownb-2;
459         tmp1 = i+1;
460         tmp2 = 16 - i - 1;
461         tmp3 = (i>=8)? tmp2 : tmp1;
462         tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4 = tmp4*tmp4;
463         jac_row[0] = -1;
464         jac_row[1] = tmp1*tmp2/tmp4;
465         jac_row[2] = tmp1*tmp3/tmp4;
466         return 0;
467     }
468 };
469 
testLmstr1()470 void testLmstr1()
471 {
472   const int n=3;
473   int info;
474 
475   VectorXd x(n);
476 
477   /* the following starting values provide a rough fit. */
478   x.setConstant(n, 1.);
479 
480   // do the computation
481   lmstr_functor functor;
482   LevenbergMarquardt<lmstr_functor> lm(functor);
483   info = lm.lmstr1(x);
484 
485   // check return value
486   VERIFY_IS_EQUAL(info, 1);
487   VERIFY_IS_EQUAL(lm.nfev, 6);
488   VERIFY_IS_EQUAL(lm.njev, 5);
489 
490   // check norm
491   VERIFY_IS_APPROX(lm.fvec.blueNorm(), 0.09063596);
492 
493   // check x
494   VectorXd x_ref(n);
495   x_ref << 0.08241058, 1.133037, 2.343695 ;
496   VERIFY_IS_APPROX(x, x_ref);
497 }
498 
testLmstr()499 void testLmstr()
500 {
501   const int n=3;
502   int info;
503   double fnorm;
504   VectorXd x(n);
505 
506   /* the following starting values provide a rough fit. */
507   x.setConstant(n, 1.);
508 
509   // do the computation
510   lmstr_functor functor;
511   LevenbergMarquardt<lmstr_functor> lm(functor);
512   info = lm.minimizeOptimumStorage(x);
513 
514   // check return values
515   VERIFY_IS_EQUAL(info, 1);
516   VERIFY_IS_EQUAL(lm.nfev, 6);
517   VERIFY_IS_EQUAL(lm.njev, 5);
518 
519   // check norm
520   fnorm = lm.fvec.blueNorm();
521   VERIFY_IS_APPROX(fnorm, 0.09063596);
522 
523   // check x
524   VectorXd x_ref(n);
525   x_ref << 0.08241058, 1.133037, 2.343695;
526   VERIFY_IS_APPROX(x, x_ref);
527 
528 }
529 
530 struct lmdif_functor : Functor<double>
531 {
lmdif_functorlmdif_functor532     lmdif_functor(void) : Functor<double>(3,15) {}
operator ()lmdif_functor533     int operator()(const VectorXd &x, VectorXd &fvec) const
534     {
535         int i;
536         double tmp1,tmp2,tmp3;
537         static const double y[15]={1.4e-1,1.8e-1,2.2e-1,2.5e-1,2.9e-1,3.2e-1,3.5e-1,3.9e-1,
538             3.7e-1,5.8e-1,7.3e-1,9.6e-1,1.34e0,2.1e0,4.39e0};
539 
540         assert(x.size()==3);
541         assert(fvec.size()==15);
542         for (i=0; i<15; i++)
543         {
544             tmp1 = i+1;
545             tmp2 = 15 - i;
546             tmp3 = tmp1;
547 
548             if (i >= 8) tmp3 = tmp2;
549             fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
550         }
551         return 0;
552     }
553 };
554 
testLmdif1()555 void testLmdif1()
556 {
557   const int n=3;
558   int info;
559 
560   VectorXd x(n), fvec(15);
561 
562   /* the following starting values provide a rough fit. */
563   x.setConstant(n, 1.);
564 
565   // do the computation
566   lmdif_functor functor;
567   DenseIndex nfev;
568   info = LevenbergMarquardt<lmdif_functor>::lmdif1(functor, x, &nfev);
569 
570   // check return value
571   VERIFY_IS_EQUAL(info, 1);
572   VERIFY_IS_EQUAL(nfev, 26);
573 
574   // check norm
575   functor(x, fvec);
576   VERIFY_IS_APPROX(fvec.blueNorm(), 0.09063596);
577 
578   // check x
579   VectorXd x_ref(n);
580   x_ref << 0.0824106, 1.1330366, 2.3436947;
581   VERIFY_IS_APPROX(x, x_ref);
582 
583 }
584 
testLmdif()585 void testLmdif()
586 {
587   const int m=15, n=3;
588   int info;
589   double fnorm, covfac;
590   VectorXd x(n);
591 
592   /* the following starting values provide a rough fit. */
593   x.setConstant(n, 1.);
594 
595   // do the computation
596   lmdif_functor functor;
597   NumericalDiff<lmdif_functor> numDiff(functor);
598   LevenbergMarquardt<NumericalDiff<lmdif_functor> > lm(numDiff);
599   info = lm.minimize(x);
600 
601   // check return values
602   VERIFY_IS_EQUAL(info, 1);
603   VERIFY_IS_EQUAL(lm.nfev, 26);
604 
605   // check norm
606   fnorm = lm.fvec.blueNorm();
607   VERIFY_IS_APPROX(fnorm, 0.09063596);
608 
609   // check x
610   VectorXd x_ref(n);
611   x_ref << 0.08241058, 1.133037, 2.343695;
612   VERIFY_IS_APPROX(x, x_ref);
613 
614   // check covariance
615   covfac = fnorm*fnorm/(m-n);
616   internal::covar(lm.fjac, lm.permutation.indices()); // TODO : move this as a function of lm
617 
618   MatrixXd cov_ref(n,n);
619   cov_ref <<
620       0.0001531202,   0.002869942,  -0.002656662,
621       0.002869942,    0.09480937,   -0.09098997,
622       -0.002656662,   -0.09098997,    0.08778729;
623 
624 //  std::cout << fjac*covfac << std::endl;
625 
626   MatrixXd cov;
627   cov =  covfac*lm.fjac.topLeftCorner<n,n>();
628   VERIFY_IS_APPROX( cov, cov_ref);
629   // TODO: why isn't this allowed ? :
630   // VERIFY_IS_APPROX( covfac*fjac.topLeftCorner<n,n>() , cov_ref);
631 }
632 
633 struct chwirut2_functor : Functor<double>
634 {
chwirut2_functorchwirut2_functor635     chwirut2_functor(void) : Functor<double>(3,54) {}
636     static const double m_x[54];
637     static const double m_y[54];
operator ()chwirut2_functor638     int operator()(const VectorXd &b, VectorXd &fvec)
639     {
640         int i;
641 
642         assert(b.size()==3);
643         assert(fvec.size()==54);
644         for(i=0; i<54; i++) {
645             double x = m_x[i];
646             fvec[i] = exp(-b[0]*x)/(b[1]+b[2]*x) - m_y[i];
647         }
648         return 0;
649     }
dfchwirut2_functor650     int df(const VectorXd &b, MatrixXd &fjac)
651     {
652         assert(b.size()==3);
653         assert(fjac.rows()==54);
654         assert(fjac.cols()==3);
655         for(int i=0; i<54; i++) {
656             double x = m_x[i];
657             double factor = 1./(b[1]+b[2]*x);
658             double e = exp(-b[0]*x);
659             fjac(i,0) = -x*e*factor;
660             fjac(i,1) = -e*factor*factor;
661             fjac(i,2) = -x*e*factor*factor;
662         }
663         return 0;
664     }
665 };
666 const double chwirut2_functor::m_x[54] = { 0.500E0, 1.000E0, 1.750E0, 3.750E0, 5.750E0, 0.875E0, 2.250E0, 3.250E0, 5.250E0, 0.750E0, 1.750E0, 2.750E0, 4.750E0, 0.625E0, 1.250E0, 2.250E0, 4.250E0, .500E0, 3.000E0, .750E0, 3.000E0, 1.500E0, 6.000E0, 3.000E0, 6.000E0, 1.500E0, 3.000E0, .500E0, 2.000E0, 4.000E0, .750E0, 2.000E0, 5.000E0, .750E0, 2.250E0, 3.750E0, 5.750E0, 3.000E0, .750E0, 2.500E0, 4.000E0, .750E0, 2.500E0, 4.000E0, .750E0, 2.500E0, 4.000E0, .500E0, 6.000E0, 3.000E0, .500E0, 2.750E0, .500E0, 1.750E0};
667 const double chwirut2_functor::m_y[54] = { 92.9000E0 ,57.1000E0 ,31.0500E0 ,11.5875E0 ,8.0250E0 ,63.6000E0 ,21.4000E0 ,14.2500E0 ,8.4750E0 ,63.8000E0 ,26.8000E0 ,16.4625E0 ,7.1250E0 ,67.3000E0 ,41.0000E0 ,21.1500E0 ,8.1750E0 ,81.5000E0 ,13.1200E0 ,59.9000E0 ,14.6200E0 ,32.9000E0 ,5.4400E0 ,12.5600E0 ,5.4400E0 ,32.0000E0 ,13.9500E0 ,75.8000E0 ,20.0000E0 ,10.4200E0 ,59.5000E0 ,21.6700E0 ,8.5500E0 ,62.0000E0 ,20.2000E0 ,7.7600E0 ,3.7500E0 ,11.8100E0 ,54.7000E0 ,23.7000E0 ,11.5500E0 ,61.3000E0 ,17.7000E0 ,8.7400E0 ,59.2000E0 ,16.3000E0 ,8.6200E0 ,81.0000E0 ,4.8700E0 ,14.6200E0 ,81.7000E0 ,17.1700E0 ,81.3000E0 ,28.9000E0  };
668 
669 // http://www.itl.nist.gov/div898/strd/nls/data/chwirut2.shtml
testNistChwirut2(void)670 void testNistChwirut2(void)
671 {
672   const int n=3;
673   int info;
674 
675   VectorXd x(n);
676 
677   /*
678    * First try
679    */
680   x<< 0.1, 0.01, 0.02;
681   // do the computation
682   chwirut2_functor functor;
683   LevenbergMarquardt<chwirut2_functor> lm(functor);
684   info = lm.minimize(x);
685 
686   // check return value
687   VERIFY_IS_EQUAL(info, 1);
688   VERIFY_IS_EQUAL(lm.nfev, 10);
689   VERIFY_IS_EQUAL(lm.njev, 8);
690   // check norm^2
691   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.1304802941E+02);
692   // check x
693   VERIFY_IS_APPROX(x[0], 1.6657666537E-01);
694   VERIFY_IS_APPROX(x[1], 5.1653291286E-03);
695   VERIFY_IS_APPROX(x[2], 1.2150007096E-02);
696 
697   /*
698    * Second try
699    */
700   x<< 0.15, 0.008, 0.010;
701   // do the computation
702   lm.resetParameters();
703   lm.parameters.ftol = 1.E6*NumTraits<double>::epsilon();
704   lm.parameters.xtol = 1.E6*NumTraits<double>::epsilon();
705   info = lm.minimize(x);
706 
707   // check return value
708   VERIFY_IS_EQUAL(info, 1);
709   VERIFY_IS_EQUAL(lm.nfev, 7);
710   VERIFY_IS_EQUAL(lm.njev, 6);
711   // check norm^2
712   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.1304802941E+02);
713   // check x
714   VERIFY_IS_APPROX(x[0], 1.6657666537E-01);
715   VERIFY_IS_APPROX(x[1], 5.1653291286E-03);
716   VERIFY_IS_APPROX(x[2], 1.2150007096E-02);
717 }
718 
719 
720 struct misra1a_functor : Functor<double>
721 {
misra1a_functormisra1a_functor722     misra1a_functor(void) : Functor<double>(2,14) {}
723     static const double m_x[14];
724     static const double m_y[14];
operator ()misra1a_functor725     int operator()(const VectorXd &b, VectorXd &fvec)
726     {
727         assert(b.size()==2);
728         assert(fvec.size()==14);
729         for(int i=0; i<14; i++) {
730             fvec[i] = b[0]*(1.-exp(-b[1]*m_x[i])) - m_y[i] ;
731         }
732         return 0;
733     }
dfmisra1a_functor734     int df(const VectorXd &b, MatrixXd &fjac)
735     {
736         assert(b.size()==2);
737         assert(fjac.rows()==14);
738         assert(fjac.cols()==2);
739         for(int i=0; i<14; i++) {
740             fjac(i,0) = (1.-exp(-b[1]*m_x[i]));
741             fjac(i,1) = (b[0]*m_x[i]*exp(-b[1]*m_x[i]));
742         }
743         return 0;
744     }
745 };
746 const double misra1a_functor::m_x[14] = { 77.6E0, 114.9E0, 141.1E0, 190.8E0, 239.9E0, 289.0E0, 332.8E0, 378.4E0, 434.8E0, 477.3E0, 536.8E0, 593.1E0, 689.1E0, 760.0E0};
747 const double misra1a_functor::m_y[14] = { 10.07E0, 14.73E0, 17.94E0, 23.93E0, 29.61E0, 35.18E0, 40.02E0, 44.82E0, 50.76E0, 55.05E0, 61.01E0, 66.40E0, 75.47E0, 81.78E0};
748 
749 // http://www.itl.nist.gov/div898/strd/nls/data/misra1a.shtml
testNistMisra1a(void)750 void testNistMisra1a(void)
751 {
752   const int n=2;
753   int info;
754 
755   VectorXd x(n);
756 
757   /*
758    * First try
759    */
760   x<< 500., 0.0001;
761   // do the computation
762   misra1a_functor functor;
763   LevenbergMarquardt<misra1a_functor> lm(functor);
764   info = lm.minimize(x);
765 
766   // check return value
767   VERIFY_IS_EQUAL(info, 1);
768   VERIFY_IS_EQUAL(lm.nfev, 19);
769   VERIFY_IS_EQUAL(lm.njev, 15);
770   // check norm^2
771   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.2455138894E-01);
772   // check x
773   VERIFY_IS_APPROX(x[0], 2.3894212918E+02);
774   VERIFY_IS_APPROX(x[1], 5.5015643181E-04);
775 
776   /*
777    * Second try
778    */
779   x<< 250., 0.0005;
780   // do the computation
781   info = lm.minimize(x);
782 
783   // check return value
784   VERIFY_IS_EQUAL(info, 1);
785   VERIFY_IS_EQUAL(lm.nfev, 5);
786   VERIFY_IS_EQUAL(lm.njev, 4);
787   // check norm^2
788   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.2455138894E-01);
789   // check x
790   VERIFY_IS_APPROX(x[0], 2.3894212918E+02);
791   VERIFY_IS_APPROX(x[1], 5.5015643181E-04);
792 }
793 
794 struct hahn1_functor : Functor<double>
795 {
hahn1_functorhahn1_functor796     hahn1_functor(void) : Functor<double>(7,236) {}
797     static const double m_x[236];
operator ()hahn1_functor798     int operator()(const VectorXd &b, VectorXd &fvec)
799     {
800         static const double m_y[236] = { .591E0 , 1.547E0 , 2.902E0 , 2.894E0 , 4.703E0 , 6.307E0 , 7.03E0  , 7.898E0 , 9.470E0 , 9.484E0 , 10.072E0 , 10.163E0 , 11.615E0 , 12.005E0 , 12.478E0 , 12.982E0 , 12.970E0 , 13.926E0 , 14.452E0 , 14.404E0 , 15.190E0 , 15.550E0 , 15.528E0 , 15.499E0 , 16.131E0 , 16.438E0 , 16.387E0 , 16.549E0 , 16.872E0 , 16.830E0 , 16.926E0 , 16.907E0 , 16.966E0 , 17.060E0 , 17.122E0 , 17.311E0 , 17.355E0 , 17.668E0 , 17.767E0 , 17.803E0 , 17.765E0 , 17.768E0 , 17.736E0 , 17.858E0 , 17.877E0 , 17.912E0 , 18.046E0 , 18.085E0 , 18.291E0 , 18.357E0 , 18.426E0 , 18.584E0 , 18.610E0 , 18.870E0 , 18.795E0 , 19.111E0 , .367E0 , .796E0 , 0.892E0 , 1.903E0 , 2.150E0 , 3.697E0 , 5.870E0 , 6.421E0 , 7.422E0 , 9.944E0 , 11.023E0 , 11.87E0  , 12.786E0 , 14.067E0 , 13.974E0 , 14.462E0 , 14.464E0 , 15.381E0 , 15.483E0 , 15.59E0  , 16.075E0 , 16.347E0 , 16.181E0 , 16.915E0 , 17.003E0 , 16.978E0 , 17.756E0 , 17.808E0 , 17.868E0 , 18.481E0 , 18.486E0 , 19.090E0 , 16.062E0 , 16.337E0 , 16.345E0 ,
801         16.388E0 , 17.159E0 , 17.116E0 , 17.164E0 , 17.123E0 , 17.979E0 , 17.974E0 , 18.007E0 , 17.993E0 , 18.523E0 , 18.669E0 , 18.617E0 , 19.371E0 , 19.330E0 , 0.080E0 , 0.248E0 , 1.089E0 , 1.418E0 , 2.278E0 , 3.624E0 , 4.574E0 , 5.556E0 , 7.267E0 , 7.695E0 , 9.136E0 , 9.959E0 , 9.957E0 , 11.600E0 , 13.138E0 , 13.564E0 , 13.871E0 , 13.994E0 , 14.947E0 , 15.473E0 , 15.379E0 , 15.455E0 , 15.908E0 , 16.114E0 , 17.071E0 , 17.135E0 , 17.282E0 , 17.368E0 , 17.483E0 , 17.764E0 , 18.185E0 , 18.271E0 , 18.236E0 , 18.237E0 , 18.523E0 , 18.627E0 , 18.665E0 , 19.086E0 , 0.214E0 , 0.943E0 , 1.429E0 , 2.241E0 , 2.951E0 , 3.782E0 , 4.757E0 , 5.602E0 , 7.169E0 , 8.920E0 , 10.055E0 , 12.035E0 , 12.861E0 , 13.436E0 , 14.167E0 , 14.755E0 , 15.168E0 , 15.651E0 , 15.746E0 , 16.216E0 , 16.445E0 , 16.965E0 , 17.121E0 , 17.206E0 , 17.250E0 , 17.339E0 , 17.793E0 , 18.123E0 , 18.49E0  , 18.566E0 , 18.645E0 , 18.706E0 , 18.924E0 , 19.1E0   , 0.375E0 , 0.471E0 , 1.504E0 , 2.204E0 , 2.813E0 , 4.765E0 , 9.835E0 , 10.040E0 , 11.946E0 , 12.596E0 ,
802 13.303E0 , 13.922E0 , 14.440E0 , 14.951E0 , 15.627E0 , 15.639E0 , 15.814E0 , 16.315E0 , 16.334E0 , 16.430E0 , 16.423E0 , 17.024E0 , 17.009E0 , 17.165E0 , 17.134E0 , 17.349E0 , 17.576E0 , 17.848E0 , 18.090E0 , 18.276E0 , 18.404E0 , 18.519E0 , 19.133E0 , 19.074E0 , 19.239E0 , 19.280E0 , 19.101E0 , 19.398E0 , 19.252E0 , 19.89E0  , 20.007E0 , 19.929E0 , 19.268E0 , 19.324E0 , 20.049E0 , 20.107E0 , 20.062E0 , 20.065E0 , 19.286E0 , 19.972E0 , 20.088E0 , 20.743E0 , 20.83E0  , 20.935E0 , 21.035E0 , 20.93E0  , 21.074E0 , 21.085E0 , 20.935E0 };
803 
804         //        int called=0; printf("call hahn1_functor with  iflag=%d, called=%d\n", iflag, called); if (iflag==1) called++;
805 
806         assert(b.size()==7);
807         assert(fvec.size()==236);
808         for(int i=0; i<236; i++) {
809             double x=m_x[i], xx=x*x, xxx=xx*x;
810             fvec[i] = (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) / (1.+b[4]*x+b[5]*xx+b[6]*xxx) - m_y[i];
811         }
812         return 0;
813     }
814 
dfhahn1_functor815     int df(const VectorXd &b, MatrixXd &fjac)
816     {
817         assert(b.size()==7);
818         assert(fjac.rows()==236);
819         assert(fjac.cols()==7);
820         for(int i=0; i<236; i++) {
821             double x=m_x[i], xx=x*x, xxx=xx*x;
822             double fact = 1./(1.+b[4]*x+b[5]*xx+b[6]*xxx);
823             fjac(i,0) = 1.*fact;
824             fjac(i,1) = x*fact;
825             fjac(i,2) = xx*fact;
826             fjac(i,3) = xxx*fact;
827             fact = - (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) * fact * fact;
828             fjac(i,4) = x*fact;
829             fjac(i,5) = xx*fact;
830             fjac(i,6) = xxx*fact;
831         }
832         return 0;
833     }
834 };
835 const double hahn1_functor::m_x[236] = { 24.41E0 , 34.82E0 , 44.09E0 , 45.07E0 , 54.98E0 , 65.51E0 , 70.53E0 , 75.70E0 , 89.57E0 , 91.14E0 , 96.40E0 , 97.19E0 , 114.26E0 , 120.25E0 , 127.08E0 , 133.55E0 , 133.61E0 , 158.67E0 , 172.74E0 , 171.31E0 , 202.14E0 , 220.55E0 , 221.05E0 , 221.39E0 , 250.99E0 , 268.99E0 , 271.80E0 , 271.97E0 , 321.31E0 , 321.69E0 , 330.14E0 , 333.03E0 , 333.47E0 , 340.77E0 , 345.65E0 , 373.11E0 , 373.79E0 , 411.82E0 , 419.51E0 , 421.59E0 , 422.02E0 , 422.47E0 , 422.61E0 , 441.75E0 , 447.41E0 , 448.7E0  , 472.89E0 , 476.69E0 , 522.47E0 , 522.62E0 , 524.43E0 , 546.75E0 , 549.53E0 , 575.29E0 , 576.00E0 , 625.55E0 , 20.15E0 , 28.78E0 , 29.57E0 , 37.41E0 , 39.12E0 , 50.24E0 , 61.38E0 , 66.25E0 , 73.42E0 , 95.52E0 , 107.32E0 , 122.04E0 , 134.03E0 , 163.19E0 , 163.48E0 , 175.70E0 , 179.86E0 , 211.27E0 , 217.78E0 , 219.14E0 , 262.52E0 , 268.01E0 , 268.62E0 , 336.25E0 , 337.23E0 , 339.33E0 , 427.38E0 , 428.58E0 , 432.68E0 , 528.99E0 , 531.08E0 , 628.34E0 , 253.24E0 , 273.13E0 , 273.66E0 ,
836 282.10E0 , 346.62E0 , 347.19E0 , 348.78E0 , 351.18E0 , 450.10E0 , 450.35E0 , 451.92E0 , 455.56E0 , 552.22E0 , 553.56E0 , 555.74E0 , 652.59E0 , 656.20E0 , 14.13E0 , 20.41E0 , 31.30E0 , 33.84E0 , 39.70E0 , 48.83E0 , 54.50E0 , 60.41E0 , 72.77E0 , 75.25E0 , 86.84E0 , 94.88E0 , 96.40E0 , 117.37E0 , 139.08E0 , 147.73E0 , 158.63E0 , 161.84E0 , 192.11E0 , 206.76E0 , 209.07E0 , 213.32E0 , 226.44E0 , 237.12E0 , 330.90E0 , 358.72E0 , 370.77E0 , 372.72E0 , 396.24E0 , 416.59E0 , 484.02E0 , 495.47E0 , 514.78E0 , 515.65E0 , 519.47E0 , 544.47E0 , 560.11E0 , 620.77E0 , 18.97E0 , 28.93E0 , 33.91E0 , 40.03E0 , 44.66E0 , 49.87E0 , 55.16E0 , 60.90E0 , 72.08E0 , 85.15E0 , 97.06E0 , 119.63E0 , 133.27E0 , 143.84E0 , 161.91E0 , 180.67E0 , 198.44E0 , 226.86E0 , 229.65E0 , 258.27E0 , 273.77E0 , 339.15E0 , 350.13E0 , 362.75E0 , 371.03E0 , 393.32E0 , 448.53E0 , 473.78E0 , 511.12E0 , 524.70E0 , 548.75E0 , 551.64E0 , 574.02E0 , 623.86E0 , 21.46E0 , 24.33E0 , 33.43E0 , 39.22E0 , 44.18E0 , 55.02E0 , 94.33E0 , 96.44E0 , 118.82E0 , 128.48E0 ,
837 141.94E0 , 156.92E0 , 171.65E0 , 190.00E0 , 223.26E0 , 223.88E0 , 231.50E0 , 265.05E0 , 269.44E0 , 271.78E0 , 273.46E0 , 334.61E0 , 339.79E0 , 349.52E0 , 358.18E0 , 377.98E0 , 394.77E0 , 429.66E0 , 468.22E0 , 487.27E0 , 519.54E0 , 523.03E0 , 612.99E0 , 638.59E0 , 641.36E0 , 622.05E0 , 631.50E0 , 663.97E0 , 646.9E0  , 748.29E0 , 749.21E0 , 750.14E0 , 647.04E0 , 646.89E0 , 746.9E0  , 748.43E0 , 747.35E0 , 749.27E0 , 647.61E0 , 747.78E0 , 750.51E0 , 851.37E0 , 845.97E0 , 847.54E0 , 849.93E0 , 851.61E0 , 849.75E0 , 850.98E0 , 848.23E0};
838 
839 // http://www.itl.nist.gov/div898/strd/nls/data/hahn1.shtml
testNistHahn1(void)840 void testNistHahn1(void)
841 {
842   const int  n=7;
843   int info;
844 
845   VectorXd x(n);
846 
847   /*
848    * First try
849    */
850   x<< 10., -1., .05, -.00001, -.05, .001, -.000001;
851   // do the computation
852   hahn1_functor functor;
853   LevenbergMarquardt<hahn1_functor> lm(functor);
854   info = lm.minimize(x);
855 
856   // check return value
857   VERIFY_IS_EQUAL(info, 1);
858   VERIFY_IS_EQUAL(lm.nfev, 11);
859   VERIFY_IS_EQUAL(lm.njev, 10);
860   // check norm^2
861   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.5324382854E+00);
862   // check x
863   VERIFY_IS_APPROX(x[0], 1.0776351733E+00);
864   VERIFY_IS_APPROX(x[1],-1.2269296921E-01);
865   VERIFY_IS_APPROX(x[2], 4.0863750610E-03);
866   VERIFY_IS_APPROX(x[3],-1.426264e-06); // shoulde be : -1.4262662514E-06
867   VERIFY_IS_APPROX(x[4],-5.7609940901E-03);
868   VERIFY_IS_APPROX(x[5], 2.4053735503E-04);
869   VERIFY_IS_APPROX(x[6],-1.2314450199E-07);
870 
871   /*
872    * Second try
873    */
874   x<< .1, -.1, .005, -.000001, -.005, .0001, -.0000001;
875   // do the computation
876   info = lm.minimize(x);
877 
878   // check return value
879   VERIFY_IS_EQUAL(info, 1);
880   VERIFY_IS_EQUAL(lm.nfev, 11);
881   VERIFY_IS_EQUAL(lm.njev, 10);
882   // check norm^2
883   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.5324382854E+00);
884   // check x
885   VERIFY_IS_APPROX(x[0], 1.077640); // should be :  1.0776351733E+00
886   VERIFY_IS_APPROX(x[1], -0.1226933); // should be : -1.2269296921E-01
887   VERIFY_IS_APPROX(x[2], 0.004086383); // should be : 4.0863750610E-03
888   VERIFY_IS_APPROX(x[3], -1.426277e-06); // shoulde be : -1.4262662514E-06
889   VERIFY_IS_APPROX(x[4],-5.7609940901E-03);
890   VERIFY_IS_APPROX(x[5], 0.00024053772); // should be : 2.4053735503E-04
891   VERIFY_IS_APPROX(x[6], -1.231450e-07); // should be : -1.2314450199E-07
892 
893 }
894 
895 struct misra1d_functor : Functor<double>
896 {
misra1d_functormisra1d_functor897     misra1d_functor(void) : Functor<double>(2,14) {}
898     static const double x[14];
899     static const double y[14];
operator ()misra1d_functor900     int operator()(const VectorXd &b, VectorXd &fvec)
901     {
902         assert(b.size()==2);
903         assert(fvec.size()==14);
904         for(int i=0; i<14; i++) {
905             fvec[i] = b[0]*b[1]*x[i]/(1.+b[1]*x[i]) - y[i];
906         }
907         return 0;
908     }
dfmisra1d_functor909     int df(const VectorXd &b, MatrixXd &fjac)
910     {
911         assert(b.size()==2);
912         assert(fjac.rows()==14);
913         assert(fjac.cols()==2);
914         for(int i=0; i<14; i++) {
915             double den = 1.+b[1]*x[i];
916             fjac(i,0) = b[1]*x[i] / den;
917             fjac(i,1) = b[0]*x[i]*(den-b[1]*x[i])/den/den;
918         }
919         return 0;
920     }
921 };
922 const double misra1d_functor::x[14] = { 77.6E0, 114.9E0, 141.1E0, 190.8E0, 239.9E0, 289.0E0, 332.8E0, 378.4E0, 434.8E0, 477.3E0, 536.8E0, 593.1E0, 689.1E0, 760.0E0};
923 const double misra1d_functor::y[14] = { 10.07E0, 14.73E0, 17.94E0, 23.93E0, 29.61E0, 35.18E0, 40.02E0, 44.82E0, 50.76E0, 55.05E0, 61.01E0, 66.40E0, 75.47E0, 81.78E0};
924 
925 // http://www.itl.nist.gov/div898/strd/nls/data/misra1d.shtml
testNistMisra1d(void)926 void testNistMisra1d(void)
927 {
928   const int n=2;
929   int info;
930 
931   VectorXd x(n);
932 
933   /*
934    * First try
935    */
936   x<< 500., 0.0001;
937   // do the computation
938   misra1d_functor functor;
939   LevenbergMarquardt<misra1d_functor> lm(functor);
940   info = lm.minimize(x);
941 
942   // check return value
943   VERIFY_IS_EQUAL(info, 3);
944   VERIFY_IS_EQUAL(lm.nfev, 9);
945   VERIFY_IS_EQUAL(lm.njev, 7);
946   // check norm^2
947   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6419295283E-02);
948   // check x
949   VERIFY_IS_APPROX(x[0], 4.3736970754E+02);
950   VERIFY_IS_APPROX(x[1], 3.0227324449E-04);
951 
952   /*
953    * Second try
954    */
955   x<< 450., 0.0003;
956   // do the computation
957   info = lm.minimize(x);
958 
959   // check return value
960   VERIFY_IS_EQUAL(info, 1);
961   VERIFY_IS_EQUAL(lm.nfev, 4);
962   VERIFY_IS_EQUAL(lm.njev, 3);
963   // check norm^2
964   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6419295283E-02);
965   // check x
966   VERIFY_IS_APPROX(x[0], 4.3736970754E+02);
967   VERIFY_IS_APPROX(x[1], 3.0227324449E-04);
968 }
969 
970 
971 struct lanczos1_functor : Functor<double>
972 {
lanczos1_functorlanczos1_functor973     lanczos1_functor(void) : Functor<double>(6,24) {}
974     static const double x[24];
975     static const double y[24];
operator ()lanczos1_functor976     int operator()(const VectorXd &b, VectorXd &fvec)
977     {
978         assert(b.size()==6);
979         assert(fvec.size()==24);
980         for(int i=0; i<24; i++)
981             fvec[i] = b[0]*exp(-b[1]*x[i]) + b[2]*exp(-b[3]*x[i]) + b[4]*exp(-b[5]*x[i])  - y[i];
982         return 0;
983     }
dflanczos1_functor984     int df(const VectorXd &b, MatrixXd &fjac)
985     {
986         assert(b.size()==6);
987         assert(fjac.rows()==24);
988         assert(fjac.cols()==6);
989         for(int i=0; i<24; i++) {
990             fjac(i,0) = exp(-b[1]*x[i]);
991             fjac(i,1) = -b[0]*x[i]*exp(-b[1]*x[i]);
992             fjac(i,2) = exp(-b[3]*x[i]);
993             fjac(i,3) = -b[2]*x[i]*exp(-b[3]*x[i]);
994             fjac(i,4) = exp(-b[5]*x[i]);
995             fjac(i,5) = -b[4]*x[i]*exp(-b[5]*x[i]);
996         }
997         return 0;
998     }
999 };
1000 const double lanczos1_functor::x[24] = { 0.000000000000E+00, 5.000000000000E-02, 1.000000000000E-01, 1.500000000000E-01, 2.000000000000E-01, 2.500000000000E-01, 3.000000000000E-01, 3.500000000000E-01, 4.000000000000E-01, 4.500000000000E-01, 5.000000000000E-01, 5.500000000000E-01, 6.000000000000E-01, 6.500000000000E-01, 7.000000000000E-01, 7.500000000000E-01, 8.000000000000E-01, 8.500000000000E-01, 9.000000000000E-01, 9.500000000000E-01, 1.000000000000E+00, 1.050000000000E+00, 1.100000000000E+00, 1.150000000000E+00 };
1001 const double lanczos1_functor::y[24] = { 2.513400000000E+00 ,2.044333373291E+00 ,1.668404436564E+00 ,1.366418021208E+00 ,1.123232487372E+00 ,9.268897180037E-01 ,7.679338563728E-01 ,6.388775523106E-01 ,5.337835317402E-01 ,4.479363617347E-01 ,3.775847884350E-01 ,3.197393199326E-01 ,2.720130773746E-01 ,2.324965529032E-01 ,1.996589546065E-01 ,1.722704126914E-01 ,1.493405660168E-01 ,1.300700206922E-01 ,1.138119324644E-01 ,1.000415587559E-01 ,8.833209084540E-02 ,7.833544019350E-02 ,6.976693743449E-02 ,6.239312536719E-02 };
1002 
1003 // http://www.itl.nist.gov/div898/strd/nls/data/lanczos1.shtml
testNistLanczos1(void)1004 void testNistLanczos1(void)
1005 {
1006   const int n=6;
1007   int info;
1008 
1009   VectorXd x(n);
1010 
1011   /*
1012    * First try
1013    */
1014   x<< 1.2, 0.3, 5.6, 5.5, 6.5, 7.6;
1015   // do the computation
1016   lanczos1_functor functor;
1017   LevenbergMarquardt<lanczos1_functor> lm(functor);
1018   info = lm.minimize(x);
1019 
1020   // check return value
1021   VERIFY_IS_EQUAL(info, 2);
1022   VERIFY_IS_EQUAL(lm.nfev, 79);
1023   VERIFY_IS_EQUAL(lm.njev, 72);
1024   // check norm^2
1025   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.430899764097e-25);  // should be 1.4307867721E-25, but nist results are on 128-bit floats
1026   // check x
1027   VERIFY_IS_APPROX(x[0], 9.5100000027E-02);
1028   VERIFY_IS_APPROX(x[1], 1.0000000001E+00);
1029   VERIFY_IS_APPROX(x[2], 8.6070000013E-01);
1030   VERIFY_IS_APPROX(x[3], 3.0000000002E+00);
1031   VERIFY_IS_APPROX(x[4], 1.5575999998E+00);
1032   VERIFY_IS_APPROX(x[5], 5.0000000001E+00);
1033 
1034   /*
1035    * Second try
1036    */
1037   x<< 0.5, 0.7, 3.6, 4.2, 4., 6.3;
1038   // do the computation
1039   info = lm.minimize(x);
1040 
1041   // check return value
1042   VERIFY_IS_EQUAL(info, 2);
1043   VERIFY_IS_EQUAL(lm.nfev, 9);
1044   VERIFY_IS_EQUAL(lm.njev, 8);
1045   // check norm^2
1046   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.428595533845e-25);  // should be 1.4307867721E-25, but nist results are on 128-bit floats
1047   // check x
1048   VERIFY_IS_APPROX(x[0], 9.5100000027E-02);
1049   VERIFY_IS_APPROX(x[1], 1.0000000001E+00);
1050   VERIFY_IS_APPROX(x[2], 8.6070000013E-01);
1051   VERIFY_IS_APPROX(x[3], 3.0000000002E+00);
1052   VERIFY_IS_APPROX(x[4], 1.5575999998E+00);
1053   VERIFY_IS_APPROX(x[5], 5.0000000001E+00);
1054 
1055 }
1056 
1057 struct rat42_functor : Functor<double>
1058 {
rat42_functorrat42_functor1059     rat42_functor(void) : Functor<double>(3,9) {}
1060     static const double x[9];
1061     static const double y[9];
operator ()rat42_functor1062     int operator()(const VectorXd &b, VectorXd &fvec)
1063     {
1064         assert(b.size()==3);
1065         assert(fvec.size()==9);
1066         for(int i=0; i<9; i++) {
1067             fvec[i] = b[0] / (1.+exp(b[1]-b[2]*x[i])) - y[i];
1068         }
1069         return 0;
1070     }
1071 
dfrat42_functor1072     int df(const VectorXd &b, MatrixXd &fjac)
1073     {
1074         assert(b.size()==3);
1075         assert(fjac.rows()==9);
1076         assert(fjac.cols()==3);
1077         for(int i=0; i<9; i++) {
1078             double e = exp(b[1]-b[2]*x[i]);
1079             fjac(i,0) = 1./(1.+e);
1080             fjac(i,1) = -b[0]*e/(1.+e)/(1.+e);
1081             fjac(i,2) = +b[0]*e*x[i]/(1.+e)/(1.+e);
1082         }
1083         return 0;
1084     }
1085 };
1086 const double rat42_functor::x[9] = { 9.000E0, 14.000E0, 21.000E0, 28.000E0, 42.000E0, 57.000E0, 63.000E0, 70.000E0, 79.000E0 };
1087 const double rat42_functor::y[9] = { 8.930E0 ,10.800E0 ,18.590E0 ,22.330E0 ,39.350E0 ,56.110E0 ,61.730E0 ,64.620E0 ,67.080E0 };
1088 
1089 // http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky2.shtml
testNistRat42(void)1090 void testNistRat42(void)
1091 {
1092   const int n=3;
1093   int info;
1094 
1095   VectorXd x(n);
1096 
1097   /*
1098    * First try
1099    */
1100   x<< 100., 1., 0.1;
1101   // do the computation
1102   rat42_functor functor;
1103   LevenbergMarquardt<rat42_functor> lm(functor);
1104   info = lm.minimize(x);
1105 
1106   // check return value
1107   VERIFY_IS_EQUAL(info, 1);
1108   VERIFY_IS_EQUAL(lm.nfev, 10);
1109   VERIFY_IS_EQUAL(lm.njev, 8);
1110   // check norm^2
1111   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.0565229338E+00);
1112   // check x
1113   VERIFY_IS_APPROX(x[0], 7.2462237576E+01);
1114   VERIFY_IS_APPROX(x[1], 2.6180768402E+00);
1115   VERIFY_IS_APPROX(x[2], 6.7359200066E-02);
1116 
1117   /*
1118    * Second try
1119    */
1120   x<< 75., 2.5, 0.07;
1121   // do the computation
1122   info = lm.minimize(x);
1123 
1124   // check return value
1125   VERIFY_IS_EQUAL(info, 1);
1126   VERIFY_IS_EQUAL(lm.nfev, 6);
1127   VERIFY_IS_EQUAL(lm.njev, 5);
1128   // check norm^2
1129   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.0565229338E+00);
1130   // check x
1131   VERIFY_IS_APPROX(x[0], 7.2462237576E+01);
1132   VERIFY_IS_APPROX(x[1], 2.6180768402E+00);
1133   VERIFY_IS_APPROX(x[2], 6.7359200066E-02);
1134 }
1135 
1136 struct MGH10_functor : Functor<double>
1137 {
MGH10_functorMGH10_functor1138     MGH10_functor(void) : Functor<double>(3,16) {}
1139     static const double x[16];
1140     static const double y[16];
operator ()MGH10_functor1141     int operator()(const VectorXd &b, VectorXd &fvec)
1142     {
1143         assert(b.size()==3);
1144         assert(fvec.size()==16);
1145         for(int i=0; i<16; i++)
1146             fvec[i] =  b[0] * exp(b[1]/(x[i]+b[2])) - y[i];
1147         return 0;
1148     }
dfMGH10_functor1149     int df(const VectorXd &b, MatrixXd &fjac)
1150     {
1151         assert(b.size()==3);
1152         assert(fjac.rows()==16);
1153         assert(fjac.cols()==3);
1154         for(int i=0; i<16; i++) {
1155             double factor = 1./(x[i]+b[2]);
1156             double e = exp(b[1]*factor);
1157             fjac(i,0) = e;
1158             fjac(i,1) = b[0]*factor*e;
1159             fjac(i,2) = -b[1]*b[0]*factor*factor*e;
1160         }
1161         return 0;
1162     }
1163 };
1164 const double MGH10_functor::x[16] = { 5.000000E+01, 5.500000E+01, 6.000000E+01, 6.500000E+01, 7.000000E+01, 7.500000E+01, 8.000000E+01, 8.500000E+01, 9.000000E+01, 9.500000E+01, 1.000000E+02, 1.050000E+02, 1.100000E+02, 1.150000E+02, 1.200000E+02, 1.250000E+02 };
1165 const double MGH10_functor::y[16] = { 3.478000E+04, 2.861000E+04, 2.365000E+04, 1.963000E+04, 1.637000E+04, 1.372000E+04, 1.154000E+04, 9.744000E+03, 8.261000E+03, 7.030000E+03, 6.005000E+03, 5.147000E+03, 4.427000E+03, 3.820000E+03, 3.307000E+03, 2.872000E+03 };
1166 
1167 // http://www.itl.nist.gov/div898/strd/nls/data/mgh10.shtml
testNistMGH10(void)1168 void testNistMGH10(void)
1169 {
1170   const int n=3;
1171   int info;
1172 
1173   VectorXd x(n);
1174 
1175   /*
1176    * First try
1177    */
1178   x<< 2., 400000., 25000.;
1179   // do the computation
1180   MGH10_functor functor;
1181   LevenbergMarquardt<MGH10_functor> lm(functor);
1182   info = lm.minimize(x);
1183 
1184   // check return value
1185   VERIFY_IS_EQUAL(info, 2);
1186   VERIFY_IS_EQUAL(lm.nfev, 284 );
1187   VERIFY_IS_EQUAL(lm.njev, 249 );
1188   // check norm^2
1189   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7945855171E+01);
1190   // check x
1191   VERIFY_IS_APPROX(x[0], 5.6096364710E-03);
1192   VERIFY_IS_APPROX(x[1], 6.1813463463E+03);
1193   VERIFY_IS_APPROX(x[2], 3.4522363462E+02);
1194 
1195   /*
1196    * Second try
1197    */
1198   x<< 0.02, 4000., 250.;
1199   // do the computation
1200   info = lm.minimize(x);
1201 
1202   // check return value
1203   VERIFY_IS_EQUAL(info, 3);
1204   VERIFY_IS_EQUAL(lm.nfev, 126);
1205   VERIFY_IS_EQUAL(lm.njev, 116);
1206   // check norm^2
1207   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7945855171E+01);
1208   // check x
1209   VERIFY_IS_APPROX(x[0], 5.6096364710E-03);
1210   VERIFY_IS_APPROX(x[1], 6.1813463463E+03);
1211   VERIFY_IS_APPROX(x[2], 3.4522363462E+02);
1212 }
1213 
1214 
1215 struct BoxBOD_functor : Functor<double>
1216 {
BoxBOD_functorBoxBOD_functor1217     BoxBOD_functor(void) : Functor<double>(2,6) {}
1218     static const double x[6];
operator ()BoxBOD_functor1219     int operator()(const VectorXd &b, VectorXd &fvec)
1220     {
1221         static const double y[6] = { 109., 149., 149., 191., 213., 224. };
1222         assert(b.size()==2);
1223         assert(fvec.size()==6);
1224         for(int i=0; i<6; i++)
1225             fvec[i] =  b[0]*(1.-exp(-b[1]*x[i])) - y[i];
1226         return 0;
1227     }
dfBoxBOD_functor1228     int df(const VectorXd &b, MatrixXd &fjac)
1229     {
1230         assert(b.size()==2);
1231         assert(fjac.rows()==6);
1232         assert(fjac.cols()==2);
1233         for(int i=0; i<6; i++) {
1234             double e = exp(-b[1]*x[i]);
1235             fjac(i,0) = 1.-e;
1236             fjac(i,1) = b[0]*x[i]*e;
1237         }
1238         return 0;
1239     }
1240 };
1241 const double BoxBOD_functor::x[6] = { 1., 2., 3., 5., 7., 10. };
1242 
1243 // http://www.itl.nist.gov/div898/strd/nls/data/boxbod.shtml
testNistBoxBOD(void)1244 void testNistBoxBOD(void)
1245 {
1246   const int n=2;
1247   int info;
1248 
1249   VectorXd x(n);
1250 
1251   /*
1252    * First try
1253    */
1254   x<< 1., 1.;
1255   // do the computation
1256   BoxBOD_functor functor;
1257   LevenbergMarquardt<BoxBOD_functor> lm(functor);
1258   lm.parameters.ftol = 1.E6*NumTraits<double>::epsilon();
1259   lm.parameters.xtol = 1.E6*NumTraits<double>::epsilon();
1260   lm.parameters.factor = 10.;
1261   info = lm.minimize(x);
1262 
1263   // check return value
1264   VERIFY_IS_EQUAL(info, 1);
1265   VERIFY_IS_EQUAL(lm.nfev, 31);
1266   VERIFY_IS_EQUAL(lm.njev, 25);
1267   // check norm^2
1268   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.1680088766E+03);
1269   // check x
1270   VERIFY_IS_APPROX(x[0], 2.1380940889E+02);
1271   VERIFY_IS_APPROX(x[1], 5.4723748542E-01);
1272 
1273   /*
1274    * Second try
1275    */
1276   x<< 100., 0.75;
1277   // do the computation
1278   lm.resetParameters();
1279   lm.parameters.ftol = NumTraits<double>::epsilon();
1280   lm.parameters.xtol = NumTraits<double>::epsilon();
1281   info = lm.minimize(x);
1282 
1283   // check return value
1284   VERIFY_IS_EQUAL(info, 1);
1285   VERIFY_IS_EQUAL(lm.nfev, 15 );
1286   VERIFY_IS_EQUAL(lm.njev, 14 );
1287   // check norm^2
1288   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.1680088766E+03);
1289   // check x
1290   VERIFY_IS_APPROX(x[0], 2.1380940889E+02);
1291   VERIFY_IS_APPROX(x[1], 5.4723748542E-01);
1292 }
1293 
1294 struct MGH17_functor : Functor<double>
1295 {
MGH17_functorMGH17_functor1296     MGH17_functor(void) : Functor<double>(5,33) {}
1297     static const double x[33];
1298     static const double y[33];
operator ()MGH17_functor1299     int operator()(const VectorXd &b, VectorXd &fvec)
1300     {
1301         assert(b.size()==5);
1302         assert(fvec.size()==33);
1303         for(int i=0; i<33; i++)
1304             fvec[i] =  b[0] + b[1]*exp(-b[3]*x[i]) +  b[2]*exp(-b[4]*x[i]) - y[i];
1305         return 0;
1306     }
dfMGH17_functor1307     int df(const VectorXd &b, MatrixXd &fjac)
1308     {
1309         assert(b.size()==5);
1310         assert(fjac.rows()==33);
1311         assert(fjac.cols()==5);
1312         for(int i=0; i<33; i++) {
1313             fjac(i,0) = 1.;
1314             fjac(i,1) = exp(-b[3]*x[i]);
1315             fjac(i,2) = exp(-b[4]*x[i]);
1316             fjac(i,3) = -x[i]*b[1]*exp(-b[3]*x[i]);
1317             fjac(i,4) = -x[i]*b[2]*exp(-b[4]*x[i]);
1318         }
1319         return 0;
1320     }
1321 };
1322 const double MGH17_functor::x[33] = { 0.000000E+00, 1.000000E+01, 2.000000E+01, 3.000000E+01, 4.000000E+01, 5.000000E+01, 6.000000E+01, 7.000000E+01, 8.000000E+01, 9.000000E+01, 1.000000E+02, 1.100000E+02, 1.200000E+02, 1.300000E+02, 1.400000E+02, 1.500000E+02, 1.600000E+02, 1.700000E+02, 1.800000E+02, 1.900000E+02, 2.000000E+02, 2.100000E+02, 2.200000E+02, 2.300000E+02, 2.400000E+02, 2.500000E+02, 2.600000E+02, 2.700000E+02, 2.800000E+02, 2.900000E+02, 3.000000E+02, 3.100000E+02, 3.200000E+02 };
1323 const double MGH17_functor::y[33] = { 8.440000E-01, 9.080000E-01, 9.320000E-01, 9.360000E-01, 9.250000E-01, 9.080000E-01, 8.810000E-01, 8.500000E-01, 8.180000E-01, 7.840000E-01, 7.510000E-01, 7.180000E-01, 6.850000E-01, 6.580000E-01, 6.280000E-01, 6.030000E-01, 5.800000E-01, 5.580000E-01, 5.380000E-01, 5.220000E-01, 5.060000E-01, 4.900000E-01, 4.780000E-01, 4.670000E-01, 4.570000E-01, 4.480000E-01, 4.380000E-01, 4.310000E-01, 4.240000E-01, 4.200000E-01, 4.140000E-01, 4.110000E-01, 4.060000E-01 };
1324 
1325 // http://www.itl.nist.gov/div898/strd/nls/data/mgh17.shtml
testNistMGH17(void)1326 void testNistMGH17(void)
1327 {
1328   const int n=5;
1329   int info;
1330 
1331   VectorXd x(n);
1332 
1333   /*
1334    * First try
1335    */
1336   x<< 50., 150., -100., 1., 2.;
1337   // do the computation
1338   MGH17_functor functor;
1339   LevenbergMarquardt<MGH17_functor> lm(functor);
1340   lm.parameters.ftol = NumTraits<double>::epsilon();
1341   lm.parameters.xtol = NumTraits<double>::epsilon();
1342   lm.parameters.maxfev = 1000;
1343   info = lm.minimize(x);
1344 
1345   // check return value
1346   VERIFY_IS_EQUAL(info, 2);
1347   VERIFY_IS_EQUAL(lm.nfev, 602 );
1348   VERIFY_IS_EQUAL(lm.njev, 545 );
1349   // check norm^2
1350   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.4648946975E-05);
1351   // check x
1352   VERIFY_IS_APPROX(x[0], 3.7541005211E-01);
1353   VERIFY_IS_APPROX(x[1], 1.9358469127E+00);
1354   VERIFY_IS_APPROX(x[2], -1.4646871366E+00);
1355   VERIFY_IS_APPROX(x[3], 1.2867534640E-02);
1356   VERIFY_IS_APPROX(x[4], 2.2122699662E-02);
1357 
1358   /*
1359    * Second try
1360    */
1361   x<< 0.5  ,1.5  ,-1   ,0.01 ,0.02;
1362   // do the computation
1363   lm.resetParameters();
1364   info = lm.minimize(x);
1365 
1366   // check return value
1367   VERIFY_IS_EQUAL(info, 1);
1368   VERIFY_IS_EQUAL(lm.nfev, 18);
1369   VERIFY_IS_EQUAL(lm.njev, 15);
1370   // check norm^2
1371   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.4648946975E-05);
1372   // check x
1373   VERIFY_IS_APPROX(x[0], 3.7541005211E-01);
1374   VERIFY_IS_APPROX(x[1], 1.9358469127E+00);
1375   VERIFY_IS_APPROX(x[2], -1.4646871366E+00);
1376   VERIFY_IS_APPROX(x[3], 1.2867534640E-02);
1377   VERIFY_IS_APPROX(x[4], 2.2122699662E-02);
1378 }
1379 
1380 struct MGH09_functor : Functor<double>
1381 {
MGH09_functorMGH09_functor1382     MGH09_functor(void) : Functor<double>(4,11) {}
1383     static const double _x[11];
1384     static const double y[11];
operator ()MGH09_functor1385     int operator()(const VectorXd &b, VectorXd &fvec)
1386     {
1387         assert(b.size()==4);
1388         assert(fvec.size()==11);
1389         for(int i=0; i<11; i++) {
1390             double x = _x[i], xx=x*x;
1391             fvec[i] = b[0]*(xx+x*b[1])/(xx+x*b[2]+b[3]) - y[i];
1392         }
1393         return 0;
1394     }
dfMGH09_functor1395     int df(const VectorXd &b, MatrixXd &fjac)
1396     {
1397         assert(b.size()==4);
1398         assert(fjac.rows()==11);
1399         assert(fjac.cols()==4);
1400         for(int i=0; i<11; i++) {
1401             double x = _x[i], xx=x*x;
1402             double factor = 1./(xx+x*b[2]+b[3]);
1403             fjac(i,0) = (xx+x*b[1]) * factor;
1404             fjac(i,1) = b[0]*x* factor;
1405             fjac(i,2) = - b[0]*(xx+x*b[1]) * x * factor * factor;
1406             fjac(i,3) = - b[0]*(xx+x*b[1]) * factor * factor;
1407         }
1408         return 0;
1409     }
1410 };
1411 const double MGH09_functor::_x[11] = { 4., 2., 1., 5.E-1 , 2.5E-01, 1.670000E-01, 1.250000E-01,  1.E-01, 8.330000E-02, 7.140000E-02, 6.250000E-02 };
1412 const double MGH09_functor::y[11] = { 1.957000E-01, 1.947000E-01, 1.735000E-01, 1.600000E-01, 8.440000E-02, 6.270000E-02, 4.560000E-02, 3.420000E-02, 3.230000E-02, 2.350000E-02, 2.460000E-02 };
1413 
1414 // http://www.itl.nist.gov/div898/strd/nls/data/mgh09.shtml
testNistMGH09(void)1415 void testNistMGH09(void)
1416 {
1417   const int n=4;
1418   int info;
1419 
1420   VectorXd x(n);
1421 
1422   /*
1423    * First try
1424    */
1425   x<< 25., 39, 41.5, 39.;
1426   // do the computation
1427   MGH09_functor functor;
1428   LevenbergMarquardt<MGH09_functor> lm(functor);
1429   lm.parameters.maxfev = 1000;
1430   info = lm.minimize(x);
1431 
1432   // check return value
1433   VERIFY_IS_EQUAL(info, 1);
1434   VERIFY_IS_EQUAL(lm.nfev, 490 );
1435   VERIFY_IS_EQUAL(lm.njev, 376 );
1436   // check norm^2
1437   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 3.0750560385E-04);
1438   // check x
1439   VERIFY_IS_APPROX(x[0], 0.1928077089); // should be 1.9280693458E-01
1440   VERIFY_IS_APPROX(x[1], 0.19126423573); // should be 1.9128232873E-01
1441   VERIFY_IS_APPROX(x[2], 0.12305309914); // should be 1.2305650693E-01
1442   VERIFY_IS_APPROX(x[3], 0.13605395375); // should be 1.3606233068E-01
1443 
1444   /*
1445    * Second try
1446    */
1447   x<< 0.25, 0.39, 0.415, 0.39;
1448   // do the computation
1449   lm.resetParameters();
1450   info = lm.minimize(x);
1451 
1452   // check return value
1453   VERIFY_IS_EQUAL(info, 1);
1454   VERIFY_IS_EQUAL(lm.nfev, 18);
1455   VERIFY_IS_EQUAL(lm.njev, 16);
1456   // check norm^2
1457   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 3.0750560385E-04);
1458   // check x
1459   VERIFY_IS_APPROX(x[0], 0.19280781); // should be 1.9280693458E-01
1460   VERIFY_IS_APPROX(x[1], 0.19126265); // should be 1.9128232873E-01
1461   VERIFY_IS_APPROX(x[2], 0.12305280); // should be 1.2305650693E-01
1462   VERIFY_IS_APPROX(x[3], 0.13605322); // should be 1.3606233068E-01
1463 }
1464 
1465 
1466 
1467 struct Bennett5_functor : Functor<double>
1468 {
Bennett5_functorBennett5_functor1469     Bennett5_functor(void) : Functor<double>(3,154) {}
1470     static const double x[154];
1471     static const double y[154];
operator ()Bennett5_functor1472     int operator()(const VectorXd &b, VectorXd &fvec)
1473     {
1474         assert(b.size()==3);
1475         assert(fvec.size()==154);
1476         for(int i=0; i<154; i++)
1477             fvec[i] = b[0]* pow(b[1]+x[i],-1./b[2]) - y[i];
1478         return 0;
1479     }
dfBennett5_functor1480     int df(const VectorXd &b, MatrixXd &fjac)
1481     {
1482         assert(b.size()==3);
1483         assert(fjac.rows()==154);
1484         assert(fjac.cols()==3);
1485         for(int i=0; i<154; i++) {
1486             double e = pow(b[1]+x[i],-1./b[2]);
1487             fjac(i,0) = e;
1488             fjac(i,1) = - b[0]*e/b[2]/(b[1]+x[i]);
1489             fjac(i,2) = b[0]*e*log(b[1]+x[i])/b[2]/b[2];
1490         }
1491         return 0;
1492     }
1493 };
1494 const double Bennett5_functor::x[154] = { 7.447168E0, 8.102586E0, 8.452547E0, 8.711278E0, 8.916774E0, 9.087155E0, 9.232590E0, 9.359535E0, 9.472166E0, 9.573384E0, 9.665293E0, 9.749461E0, 9.827092E0, 9.899128E0, 9.966321E0, 10.029280E0, 10.088510E0, 10.144430E0, 10.197380E0, 10.247670E0, 10.295560E0, 10.341250E0, 10.384950E0, 10.426820E0, 10.467000E0, 10.505640E0, 10.542830E0, 10.578690E0, 10.613310E0, 10.646780E0, 10.679150E0, 10.710520E0, 10.740920E0, 10.770440E0, 10.799100E0, 10.826970E0, 10.854080E0, 10.880470E0, 10.906190E0, 10.931260E0, 10.955720E0, 10.979590E0, 11.002910E0, 11.025700E0, 11.047980E0, 11.069770E0, 11.091100E0, 11.111980E0, 11.132440E0, 11.152480E0, 11.172130E0, 11.191410E0, 11.210310E0, 11.228870E0, 11.247090E0, 11.264980E0, 11.282560E0, 11.299840E0, 11.316820E0, 11.333520E0, 11.349940E0, 11.366100E0, 11.382000E0, 11.397660E0, 11.413070E0, 11.428240E0, 11.443200E0, 11.457930E0, 11.472440E0, 11.486750E0, 11.500860E0, 11.514770E0, 11.528490E0, 11.542020E0, 11.555380E0, 11.568550E0,
1495 11.581560E0, 11.594420E0, 11.607121E0, 11.619640E0, 11.632000E0, 11.644210E0, 11.656280E0, 11.668200E0, 11.679980E0, 11.691620E0, 11.703130E0, 11.714510E0, 11.725760E0, 11.736880E0, 11.747890E0, 11.758780E0, 11.769550E0, 11.780200E0, 11.790730E0, 11.801160E0, 11.811480E0, 11.821700E0, 11.831810E0, 11.841820E0, 11.851730E0, 11.861550E0, 11.871270E0, 11.880890E0, 11.890420E0, 11.899870E0, 11.909220E0, 11.918490E0, 11.927680E0, 11.936780E0, 11.945790E0, 11.954730E0, 11.963590E0, 11.972370E0, 11.981070E0, 11.989700E0, 11.998260E0, 12.006740E0, 12.015150E0, 12.023490E0, 12.031760E0, 12.039970E0, 12.048100E0, 12.056170E0, 12.064180E0, 12.072120E0, 12.080010E0, 12.087820E0, 12.095580E0, 12.103280E0, 12.110920E0, 12.118500E0, 12.126030E0, 12.133500E0, 12.140910E0, 12.148270E0, 12.155570E0, 12.162830E0, 12.170030E0, 12.177170E0, 12.184270E0, 12.191320E0, 12.198320E0, 12.205270E0, 12.212170E0, 12.219030E0, 12.225840E0, 12.232600E0, 12.239320E0, 12.245990E0, 12.252620E0, 12.259200E0, 12.265750E0, 12.272240E0 };
1496 const double Bennett5_functor::y[154] = { -34.834702E0 ,-34.393200E0 ,-34.152901E0 ,-33.979099E0 ,-33.845901E0 ,-33.732899E0 ,-33.640301E0 ,-33.559200E0 ,-33.486801E0 ,-33.423100E0 ,-33.365101E0 ,-33.313000E0 ,-33.260899E0 ,-33.217400E0 ,-33.176899E0 ,-33.139198E0 ,-33.101601E0 ,-33.066799E0 ,-33.035000E0 ,-33.003101E0 ,-32.971298E0 ,-32.942299E0 ,-32.916302E0 ,-32.890202E0 ,-32.864101E0 ,-32.841000E0 ,-32.817799E0 ,-32.797501E0 ,-32.774300E0 ,-32.757000E0 ,-32.733799E0 ,-32.716400E0 ,-32.699100E0 ,-32.678799E0 ,-32.661400E0 ,-32.644001E0 ,-32.626701E0 ,-32.612202E0 ,-32.597698E0 ,-32.583199E0 ,-32.568699E0 ,-32.554298E0 ,-32.539799E0 ,-32.525299E0 ,-32.510799E0 ,-32.499199E0 ,-32.487598E0 ,-32.473202E0 ,-32.461601E0 ,-32.435501E0 ,-32.435501E0 ,-32.426800E0 ,-32.412300E0 ,-32.400799E0 ,-32.392101E0 ,-32.380501E0 ,-32.366001E0 ,-32.357300E0 ,-32.348598E0 ,-32.339901E0 ,-32.328400E0 ,-32.319698E0 ,-32.311001E0 ,-32.299400E0 ,-32.290699E0 ,-32.282001E0 ,-32.273300E0 ,-32.264599E0 ,-32.256001E0 ,-32.247299E0
1497 ,-32.238602E0 ,-32.229900E0 ,-32.224098E0 ,-32.215401E0 ,-32.203800E0 ,-32.198002E0 ,-32.189400E0 ,-32.183601E0 ,-32.174900E0 ,-32.169102E0 ,-32.163300E0 ,-32.154598E0 ,-32.145901E0 ,-32.140099E0 ,-32.131401E0 ,-32.125599E0 ,-32.119801E0 ,-32.111198E0 ,-32.105400E0 ,-32.096699E0 ,-32.090900E0 ,-32.088001E0 ,-32.079300E0 ,-32.073502E0 ,-32.067699E0 ,-32.061901E0 ,-32.056099E0 ,-32.050301E0 ,-32.044498E0 ,-32.038799E0 ,-32.033001E0 ,-32.027199E0 ,-32.024300E0 ,-32.018501E0 ,-32.012699E0 ,-32.004002E0 ,-32.001099E0 ,-31.995300E0 ,-31.989500E0 ,-31.983700E0 ,-31.977900E0 ,-31.972099E0 ,-31.969299E0 ,-31.963501E0 ,-31.957701E0 ,-31.951900E0 ,-31.946100E0 ,-31.940300E0 ,-31.937401E0 ,-31.931601E0 ,-31.925800E0 ,-31.922899E0 ,-31.917101E0 ,-31.911301E0 ,-31.908400E0 ,-31.902599E0 ,-31.896900E0 ,-31.893999E0 ,-31.888201E0 ,-31.885300E0 ,-31.882401E0 ,-31.876600E0 ,-31.873699E0 ,-31.867901E0 ,-31.862101E0 ,-31.859200E0 ,-31.856300E0 ,-31.850500E0 ,-31.844700E0 ,-31.841801E0 ,-31.838900E0 ,-31.833099E0 ,-31.830200E0 ,
1498 -31.827299E0 ,-31.821600E0 ,-31.818701E0 ,-31.812901E0 ,-31.809999E0 ,-31.807100E0 ,-31.801300E0 ,-31.798401E0 ,-31.795500E0 ,-31.789700E0 ,-31.786800E0 };
1499 
1500 // http://www.itl.nist.gov/div898/strd/nls/data/bennett5.shtml
testNistBennett5(void)1501 void testNistBennett5(void)
1502 {
1503   const int  n=3;
1504   int info;
1505 
1506   VectorXd x(n);
1507 
1508   /*
1509    * First try
1510    */
1511   x<< -2000., 50., 0.8;
1512   // do the computation
1513   Bennett5_functor functor;
1514   LevenbergMarquardt<Bennett5_functor> lm(functor);
1515   lm.parameters.maxfev = 1000;
1516   info = lm.minimize(x);
1517 
1518   // check return value
1519   VERIFY_IS_EQUAL(info, 1);
1520   VERIFY_IS_EQUAL(lm.nfev, 758);
1521   VERIFY_IS_EQUAL(lm.njev, 744);
1522   // check norm^2
1523   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.2404744073E-04);
1524   // check x
1525   VERIFY_IS_APPROX(x[0], -2.5235058043E+03);
1526   VERIFY_IS_APPROX(x[1], 4.6736564644E+01);
1527   VERIFY_IS_APPROX(x[2], 9.3218483193E-01);
1528   /*
1529    * Second try
1530    */
1531   x<< -1500., 45., 0.85;
1532   // do the computation
1533   lm.resetParameters();
1534   info = lm.minimize(x);
1535 
1536   // check return value
1537   VERIFY_IS_EQUAL(info, 1);
1538   VERIFY_IS_EQUAL(lm.nfev, 203);
1539   VERIFY_IS_EQUAL(lm.njev, 192);
1540   // check norm^2
1541   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.2404744073E-04);
1542   // check x
1543   VERIFY_IS_APPROX(x[0], -2523.3007865); // should be -2.5235058043E+03
1544   VERIFY_IS_APPROX(x[1], 46.735705771); // should be 4.6736564644E+01);
1545   VERIFY_IS_APPROX(x[2], 0.93219881891); // should be 9.3218483193E-01);
1546 }
1547 
1548 struct thurber_functor : Functor<double>
1549 {
thurber_functorthurber_functor1550     thurber_functor(void) : Functor<double>(7,37) {}
1551     static const double _x[37];
1552     static const double _y[37];
operator ()thurber_functor1553     int operator()(const VectorXd &b, VectorXd &fvec)
1554     {
1555         //        int called=0; printf("call hahn1_functor with  iflag=%d, called=%d\n", iflag, called); if (iflag==1) called++;
1556         assert(b.size()==7);
1557         assert(fvec.size()==37);
1558         for(int i=0; i<37; i++) {
1559             double x=_x[i], xx=x*x, xxx=xx*x;
1560             fvec[i] = (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) / (1.+b[4]*x+b[5]*xx+b[6]*xxx) - _y[i];
1561         }
1562         return 0;
1563     }
dfthurber_functor1564     int df(const VectorXd &b, MatrixXd &fjac)
1565     {
1566         assert(b.size()==7);
1567         assert(fjac.rows()==37);
1568         assert(fjac.cols()==7);
1569         for(int i=0; i<37; i++) {
1570             double x=_x[i], xx=x*x, xxx=xx*x;
1571             double fact = 1./(1.+b[4]*x+b[5]*xx+b[6]*xxx);
1572             fjac(i,0) = 1.*fact;
1573             fjac(i,1) = x*fact;
1574             fjac(i,2) = xx*fact;
1575             fjac(i,3) = xxx*fact;
1576             fact = - (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) * fact * fact;
1577             fjac(i,4) = x*fact;
1578             fjac(i,5) = xx*fact;
1579             fjac(i,6) = xxx*fact;
1580         }
1581         return 0;
1582     }
1583 };
1584 const double thurber_functor::_x[37] = { -3.067E0, -2.981E0, -2.921E0, -2.912E0, -2.840E0, -2.797E0, -2.702E0, -2.699E0, -2.633E0, -2.481E0, -2.363E0, -2.322E0, -1.501E0, -1.460E0, -1.274E0, -1.212E0, -1.100E0, -1.046E0, -0.915E0, -0.714E0, -0.566E0, -0.545E0, -0.400E0, -0.309E0, -0.109E0, -0.103E0, 0.010E0, 0.119E0, 0.377E0, 0.790E0, 0.963E0, 1.006E0, 1.115E0, 1.572E0, 1.841E0, 2.047E0, 2.200E0 };
1585 const double thurber_functor::_y[37] = { 80.574E0, 84.248E0, 87.264E0, 87.195E0, 89.076E0, 89.608E0, 89.868E0, 90.101E0, 92.405E0, 95.854E0, 100.696E0, 101.060E0, 401.672E0, 390.724E0, 567.534E0, 635.316E0, 733.054E0, 759.087E0, 894.206E0, 990.785E0, 1090.109E0, 1080.914E0, 1122.643E0, 1178.351E0, 1260.531E0, 1273.514E0, 1288.339E0, 1327.543E0, 1353.863E0, 1414.509E0, 1425.208E0, 1421.384E0, 1442.962E0, 1464.350E0, 1468.705E0, 1447.894E0, 1457.628E0};
1586 
1587 // http://www.itl.nist.gov/div898/strd/nls/data/thurber.shtml
testNistThurber(void)1588 void testNistThurber(void)
1589 {
1590   const int n=7;
1591   int info;
1592 
1593   VectorXd x(n);
1594 
1595   /*
1596    * First try
1597    */
1598   x<< 1000 ,1000 ,400 ,40 ,0.7,0.3,0.0 ;
1599   // do the computation
1600   thurber_functor functor;
1601   LevenbergMarquardt<thurber_functor> lm(functor);
1602   lm.parameters.ftol = 1.E4*NumTraits<double>::epsilon();
1603   lm.parameters.xtol = 1.E4*NumTraits<double>::epsilon();
1604   info = lm.minimize(x);
1605 
1606   // check return value
1607   VERIFY_IS_EQUAL(info, 1);
1608   VERIFY_IS_EQUAL(lm.nfev, 39);
1609   VERIFY_IS_EQUAL(lm.njev, 36);
1610   // check norm^2
1611   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6427082397E+03);
1612   // check x
1613   VERIFY_IS_APPROX(x[0], 1.2881396800E+03);
1614   VERIFY_IS_APPROX(x[1], 1.4910792535E+03);
1615   VERIFY_IS_APPROX(x[2], 5.8323836877E+02);
1616   VERIFY_IS_APPROX(x[3], 7.5416644291E+01);
1617   VERIFY_IS_APPROX(x[4], 9.6629502864E-01);
1618   VERIFY_IS_APPROX(x[5], 3.9797285797E-01);
1619   VERIFY_IS_APPROX(x[6], 4.9727297349E-02);
1620 
1621   /*
1622    * Second try
1623    */
1624   x<< 1300 ,1500 ,500  ,75   ,1    ,0.4  ,0.05  ;
1625   // do the computation
1626   lm.resetParameters();
1627   lm.parameters.ftol = 1.E4*NumTraits<double>::epsilon();
1628   lm.parameters.xtol = 1.E4*NumTraits<double>::epsilon();
1629   info = lm.minimize(x);
1630 
1631   // check return value
1632   VERIFY_IS_EQUAL(info, 1);
1633   VERIFY_IS_EQUAL(lm.nfev, 29);
1634   VERIFY_IS_EQUAL(lm.njev, 28);
1635   // check norm^2
1636   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6427082397E+03);
1637   // check x
1638   VERIFY_IS_APPROX(x[0], 1.2881396800E+03);
1639   VERIFY_IS_APPROX(x[1], 1.4910792535E+03);
1640   VERIFY_IS_APPROX(x[2], 5.8323836877E+02);
1641   VERIFY_IS_APPROX(x[3], 7.5416644291E+01);
1642   VERIFY_IS_APPROX(x[4], 9.6629502864E-01);
1643   VERIFY_IS_APPROX(x[5], 3.9797285797E-01);
1644   VERIFY_IS_APPROX(x[6], 4.9727297349E-02);
1645 }
1646 
1647 struct rat43_functor : Functor<double>
1648 {
rat43_functorrat43_functor1649     rat43_functor(void) : Functor<double>(4,15) {}
1650     static const double x[15];
1651     static const double y[15];
operator ()rat43_functor1652     int operator()(const VectorXd &b, VectorXd &fvec)
1653     {
1654         assert(b.size()==4);
1655         assert(fvec.size()==15);
1656         for(int i=0; i<15; i++)
1657             fvec[i] = b[0] * pow(1.+exp(b[1]-b[2]*x[i]),-1./b[3]) - y[i];
1658         return 0;
1659     }
dfrat43_functor1660     int df(const VectorXd &b, MatrixXd &fjac)
1661     {
1662         assert(b.size()==4);
1663         assert(fjac.rows()==15);
1664         assert(fjac.cols()==4);
1665         for(int i=0; i<15; i++) {
1666             double e = exp(b[1]-b[2]*x[i]);
1667             double power = -1./b[3];
1668             fjac(i,0) = pow(1.+e, power);
1669             fjac(i,1) = power*b[0]*e*pow(1.+e, power-1.);
1670             fjac(i,2) = -power*b[0]*e*x[i]*pow(1.+e, power-1.);
1671             fjac(i,3) = b[0]*power*power*log(1.+e)*pow(1.+e, power);
1672         }
1673         return 0;
1674     }
1675 };
1676 const double rat43_functor::x[15] = { 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15. };
1677 const double rat43_functor::y[15] = { 16.08, 33.83, 65.80, 97.20, 191.55, 326.20, 386.87, 520.53, 590.03, 651.92, 724.93, 699.56, 689.96, 637.56, 717.41 };
1678 
1679 // http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky3.shtml
testNistRat43(void)1680 void testNistRat43(void)
1681 {
1682   const int n=4;
1683   int info;
1684 
1685   VectorXd x(n);
1686 
1687   /*
1688    * First try
1689    */
1690   x<< 100., 10., 1., 1.;
1691   // do the computation
1692   rat43_functor functor;
1693   LevenbergMarquardt<rat43_functor> lm(functor);
1694   lm.parameters.ftol = 1.E6*NumTraits<double>::epsilon();
1695   lm.parameters.xtol = 1.E6*NumTraits<double>::epsilon();
1696   info = lm.minimize(x);
1697 
1698   // check return value
1699   VERIFY_IS_EQUAL(info, 1);
1700   VERIFY_IS_EQUAL(lm.nfev, 27);
1701   VERIFY_IS_EQUAL(lm.njev, 20);
1702   // check norm^2
1703   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7864049080E+03);
1704   // check x
1705   VERIFY_IS_APPROX(x[0], 6.9964151270E+02);
1706   VERIFY_IS_APPROX(x[1], 5.2771253025E+00);
1707   VERIFY_IS_APPROX(x[2], 7.5962938329E-01);
1708   VERIFY_IS_APPROX(x[3], 1.2792483859E+00);
1709 
1710   /*
1711    * Second try
1712    */
1713   x<< 700., 5., 0.75, 1.3;
1714   // do the computation
1715   lm.resetParameters();
1716   lm.parameters.ftol = 1.E5*NumTraits<double>::epsilon();
1717   lm.parameters.xtol = 1.E5*NumTraits<double>::epsilon();
1718   info = lm.minimize(x);
1719 
1720   // check return value
1721   VERIFY_IS_EQUAL(info, 1);
1722   VERIFY_IS_EQUAL(lm.nfev, 9);
1723   VERIFY_IS_EQUAL(lm.njev, 8);
1724   // check norm^2
1725   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7864049080E+03);
1726   // check x
1727   VERIFY_IS_APPROX(x[0], 6.9964151270E+02);
1728   VERIFY_IS_APPROX(x[1], 5.2771253025E+00);
1729   VERIFY_IS_APPROX(x[2], 7.5962938329E-01);
1730   VERIFY_IS_APPROX(x[3], 1.2792483859E+00);
1731 }
1732 
1733 
1734 
1735 struct eckerle4_functor : Functor<double>
1736 {
eckerle4_functoreckerle4_functor1737     eckerle4_functor(void) : Functor<double>(3,35) {}
1738     static const double x[35];
1739     static const double y[35];
operator ()eckerle4_functor1740     int operator()(const VectorXd &b, VectorXd &fvec)
1741     {
1742         assert(b.size()==3);
1743         assert(fvec.size()==35);
1744         for(int i=0; i<35; i++)
1745             fvec[i] = b[0]/b[1] * exp(-0.5*(x[i]-b[2])*(x[i]-b[2])/(b[1]*b[1])) - y[i];
1746         return 0;
1747     }
dfeckerle4_functor1748     int df(const VectorXd &b, MatrixXd &fjac)
1749     {
1750         assert(b.size()==3);
1751         assert(fjac.rows()==35);
1752         assert(fjac.cols()==3);
1753         for(int i=0; i<35; i++) {
1754             double b12 = b[1]*b[1];
1755             double e = exp(-0.5*(x[i]-b[2])*(x[i]-b[2])/b12);
1756             fjac(i,0) = e / b[1];
1757             fjac(i,1) = ((x[i]-b[2])*(x[i]-b[2])/b12-1.) * b[0]*e/b12;
1758             fjac(i,2) = (x[i]-b[2])*e*b[0]/b[1]/b12;
1759         }
1760         return 0;
1761     }
1762 };
1763 const double eckerle4_functor::x[35] = { 400.0, 405.0, 410.0, 415.0, 420.0, 425.0, 430.0, 435.0, 436.5, 438.0, 439.5, 441.0, 442.5, 444.0, 445.5, 447.0, 448.5, 450.0, 451.5, 453.0, 454.5, 456.0, 457.5, 459.0, 460.5, 462.0, 463.5, 465.0, 470.0, 475.0, 480.0, 485.0, 490.0, 495.0, 500.0};
1764 const double eckerle4_functor::y[35] = { 0.0001575, 0.0001699, 0.0002350, 0.0003102, 0.0004917, 0.0008710, 0.0017418, 0.0046400, 0.0065895, 0.0097302, 0.0149002, 0.0237310, 0.0401683, 0.0712559, 0.1264458, 0.2073413, 0.2902366, 0.3445623, 0.3698049, 0.3668534, 0.3106727, 0.2078154, 0.1164354, 0.0616764, 0.0337200, 0.0194023, 0.0117831, 0.0074357, 0.0022732, 0.0008800, 0.0004579, 0.0002345, 0.0001586, 0.0001143, 0.0000710 };
1765 
1766 // http://www.itl.nist.gov/div898/strd/nls/data/eckerle4.shtml
testNistEckerle4(void)1767 void testNistEckerle4(void)
1768 {
1769   const int n=3;
1770   int info;
1771 
1772   VectorXd x(n);
1773 
1774   /*
1775    * First try
1776    */
1777   x<< 1., 10., 500.;
1778   // do the computation
1779   eckerle4_functor functor;
1780   LevenbergMarquardt<eckerle4_functor> lm(functor);
1781   info = lm.minimize(x);
1782 
1783   // check return value
1784   VERIFY_IS_EQUAL(info, 1);
1785   VERIFY_IS_EQUAL(lm.nfev, 18);
1786   VERIFY_IS_EQUAL(lm.njev, 15);
1787   // check norm^2
1788   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.4635887487E-03);
1789   // check x
1790   VERIFY_IS_APPROX(x[0], 1.5543827178);
1791   VERIFY_IS_APPROX(x[1], 4.0888321754);
1792   VERIFY_IS_APPROX(x[2], 4.5154121844E+02);
1793 
1794   /*
1795    * Second try
1796    */
1797   x<< 1.5, 5., 450.;
1798   // do the computation
1799   info = lm.minimize(x);
1800 
1801   // check return value
1802   VERIFY_IS_EQUAL(info, 1);
1803   VERIFY_IS_EQUAL(lm.nfev, 7);
1804   VERIFY_IS_EQUAL(lm.njev, 6);
1805   // check norm^2
1806   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.4635887487E-03);
1807   // check x
1808   VERIFY_IS_APPROX(x[0], 1.5543827178);
1809   VERIFY_IS_APPROX(x[1], 4.0888321754);
1810   VERIFY_IS_APPROX(x[2], 4.5154121844E+02);
1811 }
1812 
test_NonLinearOptimization()1813 void test_NonLinearOptimization()
1814 {
1815     // Tests using the examples provided by (c)minpack
1816     CALL_SUBTEST/*_1*/(testChkder());
1817     CALL_SUBTEST/*_1*/(testLmder1());
1818     CALL_SUBTEST/*_1*/(testLmder());
1819     CALL_SUBTEST/*_2*/(testHybrj1());
1820     CALL_SUBTEST/*_2*/(testHybrj());
1821     CALL_SUBTEST/*_2*/(testHybrd1());
1822     CALL_SUBTEST/*_2*/(testHybrd());
1823     CALL_SUBTEST/*_3*/(testLmstr1());
1824     CALL_SUBTEST/*_3*/(testLmstr());
1825     CALL_SUBTEST/*_3*/(testLmdif1());
1826     CALL_SUBTEST/*_3*/(testLmdif());
1827 
1828     // NIST tests, level of difficulty = "Lower"
1829     CALL_SUBTEST/*_4*/(testNistMisra1a());
1830     CALL_SUBTEST/*_4*/(testNistChwirut2());
1831 
1832     // NIST tests, level of difficulty = "Average"
1833     CALL_SUBTEST/*_5*/(testNistHahn1());
1834     CALL_SUBTEST/*_6*/(testNistMisra1d());
1835 //     CALL_SUBTEST/*_7*/(testNistMGH17());
1836 //     CALL_SUBTEST/*_8*/(testNistLanczos1());
1837 
1838 //     // NIST tests, level of difficulty = "Higher"
1839     CALL_SUBTEST/*_9*/(testNistRat42());
1840 //     CALL_SUBTEST/*_10*/(testNistMGH10());
1841     CALL_SUBTEST/*_11*/(testNistBoxBOD());
1842 //     CALL_SUBTEST/*_12*/(testNistMGH09());
1843     CALL_SUBTEST/*_13*/(testNistBennett5());
1844     CALL_SUBTEST/*_14*/(testNistThurber());
1845     CALL_SUBTEST/*_15*/(testNistRat43());
1846     CALL_SUBTEST/*_16*/(testNistEckerle4());
1847 }
1848 
1849 /*
1850  * Can be useful for debugging...
1851   printf("info, nfev : %d, %d\n", info, lm.nfev);
1852   printf("info, nfev, njev : %d, %d, %d\n", info, solver.nfev, solver.njev);
1853   printf("info, nfev : %d, %d\n", info, solver.nfev);
1854   printf("x[0] : %.32g\n", x[0]);
1855   printf("x[1] : %.32g\n", x[1]);
1856   printf("x[2] : %.32g\n", x[2]);
1857   printf("x[3] : %.32g\n", x[3]);
1858   printf("fvec.blueNorm() : %.32g\n", solver.fvec.blueNorm());
1859   printf("fvec.blueNorm() : %.32g\n", lm.fvec.blueNorm());
1860 
1861   printf("info, nfev, njev : %d, %d, %d\n", info, lm.nfev, lm.njev);
1862   printf("fvec.squaredNorm() : %.13g\n", lm.fvec.squaredNorm());
1863   std::cout << x << std::endl;
1864   std::cout.precision(9);
1865   std::cout << x[0] << std::endl;
1866   std::cout << x[1] << std::endl;
1867   std::cout << x[2] << std::endl;
1868   std::cout << x[3] << std::endl;
1869 */
1870 
1871