1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #include "main.h" 11 #include <unsupported/Eigen/MatrixFunctions> 12 13 template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> 14 struct generateTestMatrix; 15 16 // for real matrices, make sure none of the eigenvalues are negative 17 template <typename MatrixType> 18 struct generateTestMatrix<MatrixType,0> 19 { 20 static void run(MatrixType& result, typename MatrixType::Index size) 21 { 22 MatrixType mat = MatrixType::Random(size, size); 23 EigenSolver<MatrixType> es(mat); 24 typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues(); 25 for (typename MatrixType::Index i = 0; i < size; ++i) { 26 if (eivals(i).imag() == 0 && eivals(i).real() < 0) 27 eivals(i) = -eivals(i); 28 } 29 result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real(); 30 } 31 }; 32 33 // for complex matrices, any matrix is fine 34 template <typename MatrixType> 35 struct generateTestMatrix<MatrixType,1> 36 { 37 static void run(MatrixType& result, typename MatrixType::Index size) 38 { 39 result = MatrixType::Random(size, size); 40 } 41 }; 42 43 template <typename Derived, typename OtherDerived> 44 double relerr(const MatrixBase<Derived>& A, const MatrixBase<OtherDerived>& B) 45 { 46 return std::sqrt((A - B).cwiseAbs2().sum() / (std::min)(A.cwiseAbs2().sum(), B.cwiseAbs2().sum())); 47 } 48