1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31
32 // Google Mock - a framework for writing C++ mock classes.
33 //
34 // This file implements Matcher<const string&>, Matcher<string>, and
35 // utilities for defining matchers.
36
37 #include "gmock/gmock-matchers.h"
38 #include "gmock/gmock-generated-matchers.h"
39
40 #include <string.h>
41 #include <sstream>
42 #include <string>
43
44 namespace testing {
45
46 // Constructs a matcher that matches a const string& whose value is
47 // equal to s.
Matcher(const internal::string & s)48 Matcher<const internal::string&>::Matcher(const internal::string& s) {
49 *this = Eq(s);
50 }
51
52 // Constructs a matcher that matches a const string& whose value is
53 // equal to s.
Matcher(const char * s)54 Matcher<const internal::string&>::Matcher(const char* s) {
55 *this = Eq(internal::string(s));
56 }
57
58 // Constructs a matcher that matches a string whose value is equal to s.
Matcher(const internal::string & s)59 Matcher<internal::string>::Matcher(const internal::string& s) { *this = Eq(s); }
60
61 // Constructs a matcher that matches a string whose value is equal to s.
Matcher(const char * s)62 Matcher<internal::string>::Matcher(const char* s) {
63 *this = Eq(internal::string(s));
64 }
65
66 #if GTEST_HAS_STRING_PIECE_
67 // Constructs a matcher that matches a const StringPiece& whose value is
68 // equal to s.
Matcher(const internal::string & s)69 Matcher<const StringPiece&>::Matcher(const internal::string& s) {
70 *this = Eq(s);
71 }
72
73 // Constructs a matcher that matches a const StringPiece& whose value is
74 // equal to s.
Matcher(const char * s)75 Matcher<const StringPiece&>::Matcher(const char* s) {
76 *this = Eq(internal::string(s));
77 }
78
79 // Constructs a matcher that matches a const StringPiece& whose value is
80 // equal to s.
Matcher(StringPiece s)81 Matcher<const StringPiece&>::Matcher(StringPiece s) {
82 *this = Eq(s.ToString());
83 }
84
85 // Constructs a matcher that matches a StringPiece whose value is equal to s.
Matcher(const internal::string & s)86 Matcher<StringPiece>::Matcher(const internal::string& s) {
87 *this = Eq(s);
88 }
89
90 // Constructs a matcher that matches a StringPiece whose value is equal to s.
Matcher(const char * s)91 Matcher<StringPiece>::Matcher(const char* s) {
92 *this = Eq(internal::string(s));
93 }
94
95 // Constructs a matcher that matches a StringPiece whose value is equal to s.
Matcher(StringPiece s)96 Matcher<StringPiece>::Matcher(StringPiece s) {
97 *this = Eq(s.ToString());
98 }
99 #endif // GTEST_HAS_STRING_PIECE_
100
101 namespace internal {
102
103 // Joins a vector of strings as if they are fields of a tuple; returns
104 // the joined string.
JoinAsTuple(const Strings & fields)105 GTEST_API_ string JoinAsTuple(const Strings& fields) {
106 switch (fields.size()) {
107 case 0:
108 return "";
109 case 1:
110 return fields[0];
111 default:
112 string result = "(" + fields[0];
113 for (size_t i = 1; i < fields.size(); i++) {
114 result += ", ";
115 result += fields[i];
116 }
117 result += ")";
118 return result;
119 }
120 }
121
122 // Returns the description for a matcher defined using the MATCHER*()
123 // macro where the user-supplied description string is "", if
124 // 'negation' is false; otherwise returns the description of the
125 // negation of the matcher. 'param_values' contains a list of strings
126 // that are the print-out of the matcher's parameters.
FormatMatcherDescription(bool negation,const char * matcher_name,const Strings & param_values)127 GTEST_API_ string FormatMatcherDescription(bool negation,
128 const char* matcher_name,
129 const Strings& param_values) {
130 string result = ConvertIdentifierNameToWords(matcher_name);
131 if (param_values.size() >= 1)
132 result += " " + JoinAsTuple(param_values);
133 return negation ? "not (" + result + ")" : result;
134 }
135
136 // FindMaxBipartiteMatching and its helper class.
137 //
138 // Uses the well-known Ford-Fulkerson max flow method to find a maximum
139 // bipartite matching. Flow is considered to be from left to right.
140 // There is an implicit source node that is connected to all of the left
141 // nodes, and an implicit sink node that is connected to all of the
142 // right nodes. All edges have unit capacity.
143 //
144 // Neither the flow graph nor the residual flow graph are represented
145 // explicitly. Instead, they are implied by the information in 'graph' and
146 // a vector<int> called 'left_' whose elements are initialized to the
147 // value kUnused. This represents the initial state of the algorithm,
148 // where the flow graph is empty, and the residual flow graph has the
149 // following edges:
150 // - An edge from source to each left_ node
151 // - An edge from each right_ node to sink
152 // - An edge from each left_ node to each right_ node, if the
153 // corresponding edge exists in 'graph'.
154 //
155 // When the TryAugment() method adds a flow, it sets left_[l] = r for some
156 // nodes l and r. This induces the following changes:
157 // - The edges (source, l), (l, r), and (r, sink) are added to the
158 // flow graph.
159 // - The same three edges are removed from the residual flow graph.
160 // - The reverse edges (l, source), (r, l), and (sink, r) are added
161 // to the residual flow graph, which is a directional graph
162 // representing unused flow capacity.
163 //
164 // When the method augments a flow (moving left_[l] from some r1 to some
165 // other r2), this can be thought of as "undoing" the above steps with
166 // respect to r1 and "redoing" them with respect to r2.
167 //
168 // It bears repeating that the flow graph and residual flow graph are
169 // never represented explicitly, but can be derived by looking at the
170 // information in 'graph' and in left_.
171 //
172 // As an optimization, there is a second vector<int> called right_ which
173 // does not provide any new information. Instead, it enables more
174 // efficient queries about edges entering or leaving the right-side nodes
175 // of the flow or residual flow graphs. The following invariants are
176 // maintained:
177 //
178 // left[l] == kUnused or right[left[l]] == l
179 // right[r] == kUnused or left[right[r]] == r
180 //
181 // . [ source ] .
182 // . ||| .
183 // . ||| .
184 // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ .
185 // . || | | .
186 // . |\---> left[1]=-1 \--> right[1]=0 ---\| .
187 // . | || .
188 // . \----> left[2]=2 ------> right[2]=2 --\|| .
189 // . ||| .
190 // . elements matchers vvv .
191 // . [ sink ] .
192 //
193 // See Also:
194 // [1] Cormen, et al (2001). "Section 26.2: The Ford–Fulkerson method".
195 // "Introduction to Algorithms (Second ed.)", pp. 651–664.
196 // [2] "Ford–Fulkerson algorithm", Wikipedia,
197 // 'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
198 class MaxBipartiteMatchState {
199 public:
MaxBipartiteMatchState(const MatchMatrix & graph)200 explicit MaxBipartiteMatchState(const MatchMatrix& graph)
201 : graph_(&graph),
202 left_(graph_->LhsSize(), kUnused),
203 right_(graph_->RhsSize(), kUnused) {
204 }
205
206 // Returns the edges of a maximal match, each in the form {left, right}.
Compute()207 ElementMatcherPairs Compute() {
208 // 'seen' is used for path finding { 0: unseen, 1: seen }.
209 ::std::vector<char> seen;
210 // Searches the residual flow graph for a path from each left node to
211 // the sink in the residual flow graph, and if one is found, add flow
212 // to the graph. It's okay to search through the left nodes once. The
213 // edge from the implicit source node to each previously-visited left
214 // node will have flow if that left node has any path to the sink
215 // whatsoever. Subsequent augmentations can only add flow to the
216 // network, and cannot take away that previous flow unit from the source.
217 // Since the source-to-left edge can only carry one flow unit (or,
218 // each element can be matched to only one matcher), there is no need
219 // to visit the left nodes more than once looking for augmented paths.
220 // The flow is known to be possible or impossible by looking at the
221 // node once.
222 for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
223 // Reset the path-marking vector and try to find a path from
224 // source to sink starting at the left_[ilhs] node.
225 GTEST_CHECK_(left_[ilhs] == kUnused)
226 << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
227 // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
228 seen.assign(graph_->RhsSize(), 0);
229 TryAugment(ilhs, &seen);
230 }
231 ElementMatcherPairs result;
232 for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
233 size_t irhs = left_[ilhs];
234 if (irhs == kUnused) continue;
235 result.push_back(ElementMatcherPair(ilhs, irhs));
236 }
237 return result;
238 }
239
240 private:
241 static const size_t kUnused = static_cast<size_t>(-1);
242
243 // Perform a depth-first search from left node ilhs to the sink. If a
244 // path is found, flow is added to the network by linking the left and
245 // right vector elements corresponding each segment of the path.
246 // Returns true if a path to sink was found, which means that a unit of
247 // flow was added to the network. The 'seen' vector elements correspond
248 // to right nodes and are marked to eliminate cycles from the search.
249 //
250 // Left nodes will only be explored at most once because they
251 // are accessible from at most one right node in the residual flow
252 // graph.
253 //
254 // Note that left_[ilhs] is the only element of left_ that TryAugment will
255 // potentially transition from kUnused to another value. Any other
256 // left_ element holding kUnused before TryAugment will be holding it
257 // when TryAugment returns.
258 //
TryAugment(size_t ilhs,::std::vector<char> * seen)259 bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
260 for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
261 if ((*seen)[irhs])
262 continue;
263 if (!graph_->HasEdge(ilhs, irhs))
264 continue;
265 // There's an available edge from ilhs to irhs.
266 (*seen)[irhs] = 1;
267 // Next a search is performed to determine whether
268 // this edge is a dead end or leads to the sink.
269 //
270 // right_[irhs] == kUnused means that there is residual flow from
271 // right node irhs to the sink, so we can use that to finish this
272 // flow path and return success.
273 //
274 // Otherwise there is residual flow to some ilhs. We push flow
275 // along that path and call ourselves recursively to see if this
276 // ultimately leads to sink.
277 if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
278 // Add flow from left_[ilhs] to right_[irhs].
279 left_[ilhs] = irhs;
280 right_[irhs] = ilhs;
281 return true;
282 }
283 }
284 return false;
285 }
286
287 const MatchMatrix* graph_; // not owned
288 // Each element of the left_ vector represents a left hand side node
289 // (i.e. an element) and each element of right_ is a right hand side
290 // node (i.e. a matcher). The values in the left_ vector indicate
291 // outflow from that node to a node on the the right_ side. The values
292 // in the right_ indicate inflow, and specify which left_ node is
293 // feeding that right_ node, if any. For example, left_[3] == 1 means
294 // there's a flow from element #3 to matcher #1. Such a flow would also
295 // be redundantly represented in the right_ vector as right_[1] == 3.
296 // Elements of left_ and right_ are either kUnused or mutually
297 // referent. Mutually referent means that left_[right_[i]] = i and
298 // right_[left_[i]] = i.
299 ::std::vector<size_t> left_;
300 ::std::vector<size_t> right_;
301
302 GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState);
303 };
304
305 const size_t MaxBipartiteMatchState::kUnused;
306
307 GTEST_API_ ElementMatcherPairs
FindMaxBipartiteMatching(const MatchMatrix & g)308 FindMaxBipartiteMatching(const MatchMatrix& g) {
309 return MaxBipartiteMatchState(g).Compute();
310 }
311
LogElementMatcherPairVec(const ElementMatcherPairs & pairs,::std::ostream * stream)312 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
313 ::std::ostream* stream) {
314 typedef ElementMatcherPairs::const_iterator Iter;
315 ::std::ostream& os = *stream;
316 os << "{";
317 const char *sep = "";
318 for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
319 os << sep << "\n ("
320 << "element #" << it->first << ", "
321 << "matcher #" << it->second << ")";
322 sep = ",";
323 }
324 os << "\n}";
325 }
326
327 // Tries to find a pairing, and explains the result.
FindPairing(const MatchMatrix & matrix,MatchResultListener * listener)328 GTEST_API_ bool FindPairing(const MatchMatrix& matrix,
329 MatchResultListener* listener) {
330 ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
331
332 size_t max_flow = matches.size();
333 bool result = (max_flow == matrix.RhsSize());
334
335 if (!result) {
336 if (listener->IsInterested()) {
337 *listener << "where no permutation of the elements can "
338 "satisfy all matchers, and the closest match is "
339 << max_flow << " of " << matrix.RhsSize()
340 << " matchers with the pairings:\n";
341 LogElementMatcherPairVec(matches, listener->stream());
342 }
343 return false;
344 }
345
346 if (matches.size() > 1) {
347 if (listener->IsInterested()) {
348 const char *sep = "where:\n";
349 for (size_t mi = 0; mi < matches.size(); ++mi) {
350 *listener << sep << " - element #" << matches[mi].first
351 << " is matched by matcher #" << matches[mi].second;
352 sep = ",\n";
353 }
354 }
355 }
356 return true;
357 }
358
NextGraph()359 bool MatchMatrix::NextGraph() {
360 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
361 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
362 char& b = matched_[SpaceIndex(ilhs, irhs)];
363 if (!b) {
364 b = 1;
365 return true;
366 }
367 b = 0;
368 }
369 }
370 return false;
371 }
372
Randomize()373 void MatchMatrix::Randomize() {
374 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
375 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
376 char& b = matched_[SpaceIndex(ilhs, irhs)];
377 b = static_cast<char>(rand() & 1); // NOLINT
378 }
379 }
380 }
381
DebugString() const382 string MatchMatrix::DebugString() const {
383 ::std::stringstream ss;
384 const char *sep = "";
385 for (size_t i = 0; i < LhsSize(); ++i) {
386 ss << sep;
387 for (size_t j = 0; j < RhsSize(); ++j) {
388 ss << HasEdge(i, j);
389 }
390 sep = ";";
391 }
392 return ss.str();
393 }
394
DescribeToImpl(::std::ostream * os) const395 void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
396 ::std::ostream* os) const {
397 if (matcher_describers_.empty()) {
398 *os << "is empty";
399 return;
400 }
401 if (matcher_describers_.size() == 1) {
402 *os << "has " << Elements(1) << " and that element ";
403 matcher_describers_[0]->DescribeTo(os);
404 return;
405 }
406 *os << "has " << Elements(matcher_describers_.size())
407 << " and there exists some permutation of elements such that:\n";
408 const char* sep = "";
409 for (size_t i = 0; i != matcher_describers_.size(); ++i) {
410 *os << sep << " - element #" << i << " ";
411 matcher_describers_[i]->DescribeTo(os);
412 sep = ", and\n";
413 }
414 }
415
DescribeNegationToImpl(::std::ostream * os) const416 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
417 ::std::ostream* os) const {
418 if (matcher_describers_.empty()) {
419 *os << "isn't empty";
420 return;
421 }
422 if (matcher_describers_.size() == 1) {
423 *os << "doesn't have " << Elements(1)
424 << ", or has " << Elements(1) << " that ";
425 matcher_describers_[0]->DescribeNegationTo(os);
426 return;
427 }
428 *os << "doesn't have " << Elements(matcher_describers_.size())
429 << ", or there exists no permutation of elements such that:\n";
430 const char* sep = "";
431 for (size_t i = 0; i != matcher_describers_.size(); ++i) {
432 *os << sep << " - element #" << i << " ";
433 matcher_describers_[i]->DescribeTo(os);
434 sep = ", and\n";
435 }
436 }
437
438 // Checks that all matchers match at least one element, and that all
439 // elements match at least one matcher. This enables faster matching
440 // and better error reporting.
441 // Returns false, writing an explanation to 'listener', if and only
442 // if the success criteria are not met.
443 bool UnorderedElementsAreMatcherImplBase::
VerifyAllElementsAndMatchersAreMatched(const::std::vector<string> & element_printouts,const MatchMatrix & matrix,MatchResultListener * listener) const444 VerifyAllElementsAndMatchersAreMatched(
445 const ::std::vector<string>& element_printouts,
446 const MatchMatrix& matrix,
447 MatchResultListener* listener) const {
448 bool result = true;
449 ::std::vector<char> element_matched(matrix.LhsSize(), 0);
450 ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
451
452 for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
453 for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
454 char matched = matrix.HasEdge(ilhs, irhs);
455 element_matched[ilhs] |= matched;
456 matcher_matched[irhs] |= matched;
457 }
458 }
459
460 {
461 const char* sep =
462 "where the following matchers don't match any elements:\n";
463 for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
464 if (matcher_matched[mi])
465 continue;
466 result = false;
467 if (listener->IsInterested()) {
468 *listener << sep << "matcher #" << mi << ": ";
469 matcher_describers_[mi]->DescribeTo(listener->stream());
470 sep = ",\n";
471 }
472 }
473 }
474
475 {
476 const char* sep =
477 "where the following elements don't match any matchers:\n";
478 const char* outer_sep = "";
479 if (!result) {
480 outer_sep = "\nand ";
481 }
482 for (size_t ei = 0; ei < element_matched.size(); ++ei) {
483 if (element_matched[ei])
484 continue;
485 result = false;
486 if (listener->IsInterested()) {
487 *listener << outer_sep << sep << "element #" << ei << ": "
488 << element_printouts[ei];
489 sep = ",\n";
490 outer_sep = "";
491 }
492 }
493 }
494 return result;
495 }
496
497 } // namespace internal
498 } // namespace testing
499