• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
3 *
4 * This software is provided 'as-is', without any express or implied
5 * warranty.  In no event will the authors be held liable for any damages
6 * arising from the use of this software.
7 * Permission is granted to anyone to use this software for any purpose,
8 * including commercial applications, and to alter it and redistribute it
9 * freely, subject to the following restrictions:
10 * 1. The origin of this software must not be misrepresented; you must not
11 * claim that you wrote the original software. If you use this software
12 * in a product, an acknowledgment in the product documentation would be
13 * appreciated but is not required.
14 * 2. Altered source versions must be plainly marked as such, and must not be
15 * misrepresented as being the original software.
16 * 3. This notice may not be removed or altered from any source distribution.
17 */
18 
19 #include <Box2D/Collision/Shapes/b2PolygonShape.h>
20 #include <new>
21 
Clone(b2BlockAllocator * allocator) const22 b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const
23 {
24 	void* mem = allocator->Allocate(sizeof(b2PolygonShape));
25 	b2PolygonShape* clone = new (mem) b2PolygonShape;
26 	*clone = *this;
27 	return clone;
28 }
29 
SetAsBox(float32 hx,float32 hy)30 void b2PolygonShape::SetAsBox(float32 hx, float32 hy)
31 {
32 	m_count = 4;
33 	m_vertices[0].Set(-hx, -hy);
34 	m_vertices[1].Set( hx, -hy);
35 	m_vertices[2].Set( hx,  hy);
36 	m_vertices[3].Set(-hx,  hy);
37 	m_normals[0].Set(0.0f, -1.0f);
38 	m_normals[1].Set(1.0f, 0.0f);
39 	m_normals[2].Set(0.0f, 1.0f);
40 	m_normals[3].Set(-1.0f, 0.0f);
41 	m_centroid.SetZero();
42 }
43 
SetAsBox(float32 hx,float32 hy,const b2Vec2 & center,float32 angle)44 void b2PolygonShape::SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle)
45 {
46 	m_count = 4;
47 	m_vertices[0].Set(-hx, -hy);
48 	m_vertices[1].Set( hx, -hy);
49 	m_vertices[2].Set( hx,  hy);
50 	m_vertices[3].Set(-hx,  hy);
51 	m_normals[0].Set(0.0f, -1.0f);
52 	m_normals[1].Set(1.0f, 0.0f);
53 	m_normals[2].Set(0.0f, 1.0f);
54 	m_normals[3].Set(-1.0f, 0.0f);
55 	m_centroid = center;
56 
57 	b2Transform xf;
58 	xf.p = center;
59 	xf.q.Set(angle);
60 
61 	// Transform vertices and normals.
62 	for (int32 i = 0; i < m_count; ++i)
63 	{
64 		m_vertices[i] = b2Mul(xf, m_vertices[i]);
65 		m_normals[i] = b2Mul(xf.q, m_normals[i]);
66 	}
67 }
68 
GetChildCount() const69 int32 b2PolygonShape::GetChildCount() const
70 {
71 	return 1;
72 }
73 
ComputeCentroid(const b2Vec2 * vs,int32 count)74 static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count)
75 {
76 	b2Assert(count >= 3);
77 
78 	b2Vec2 c; c.Set(0.0f, 0.0f);
79 	float32 area = 0.0f;
80 
81 	// pRef is the reference point for forming triangles.
82 	// It's location doesn't change the result (except for rounding error).
83 	b2Vec2 pRef(0.0f, 0.0f);
84 #if 0
85 	// This code would put the reference point inside the polygon.
86 	for (int32 i = 0; i < count; ++i)
87 	{
88 		pRef += vs[i];
89 	}
90 	pRef *= 1.0f / count;
91 #endif
92 
93 	const float32 inv3 = 1.0f / 3.0f;
94 
95 	for (int32 i = 0; i < count; ++i)
96 	{
97 		// Triangle vertices.
98 		b2Vec2 p1 = pRef;
99 		b2Vec2 p2 = vs[i];
100 		b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0];
101 
102 		b2Vec2 e1 = p2 - p1;
103 		b2Vec2 e2 = p3 - p1;
104 
105 		float32 D = b2Cross(e1, e2);
106 
107 		float32 triangleArea = 0.5f * D;
108 		area += triangleArea;
109 
110 		// Area weighted centroid
111 		c += triangleArea * inv3 * (p1 + p2 + p3);
112 	}
113 
114 	// Centroid
115 	b2Assert(area > b2_epsilon);
116 	c *= 1.0f / area;
117 	return c;
118 }
119 
Set(const b2Vec2 * vertices,int32 count)120 void b2PolygonShape::Set(const b2Vec2* vertices, int32 count)
121 {
122 	b2Assert(3 <= count && count <= b2_maxPolygonVertices);
123 	if (count < 3)
124 	{
125 		SetAsBox(1.0f, 1.0f);
126 		return;
127 	}
128 
129 	int32 n = b2Min(count, b2_maxPolygonVertices);
130 
131 	// Perform welding and copy vertices into local buffer.
132 	b2Vec2 ps[b2_maxPolygonVertices];
133 	int32 tempCount = 0;
134 	for (int32 i = 0; i < n; ++i)
135 	{
136 		b2Vec2 v = vertices[i];
137 
138 		bool unique = true;
139 		for (int32 j = 0; j < tempCount; ++j)
140 		{
141 			if (b2DistanceSquared(v, ps[j]) < ((0.5f * b2_linearSlop) * (0.5f * b2_linearSlop)))
142 			{
143 				unique = false;
144 				break;
145 			}
146 		}
147 
148 		if (unique)
149 		{
150 			ps[tempCount++] = v;
151 		}
152 	}
153 
154 	n = tempCount;
155 	if (n < 3)
156 	{
157 		// Polygon is degenerate.
158 		b2Assert(false);
159 		SetAsBox(1.0f, 1.0f);
160 		return;
161 	}
162 
163 	// Create the convex hull using the Gift wrapping algorithm
164 	// http://en.wikipedia.org/wiki/Gift_wrapping_algorithm
165 
166 	// Find the right most point on the hull
167 	int32 i0 = 0;
168 	float32 x0 = ps[0].x;
169 	for (int32 i = 1; i < n; ++i)
170 	{
171 		float32 x = ps[i].x;
172 		if (x > x0 || (x == x0 && ps[i].y < ps[i0].y))
173 		{
174 			i0 = i;
175 			x0 = x;
176 		}
177 	}
178 
179 	int32 hull[b2_maxPolygonVertices];
180 	int32 m = 0;
181 	int32 ih = i0;
182 
183 	for (;;)
184 	{
185 		hull[m] = ih;
186 
187 		int32 ie = 0;
188 		for (int32 j = 1; j < n; ++j)
189 		{
190 			if (ie == ih)
191 			{
192 				ie = j;
193 				continue;
194 			}
195 
196 			b2Vec2 r = ps[ie] - ps[hull[m]];
197 			b2Vec2 v = ps[j] - ps[hull[m]];
198 			float32 c = b2Cross(r, v);
199 			if (c < 0.0f)
200 			{
201 				ie = j;
202 			}
203 
204 			// Collinearity check
205 			if (c == 0.0f && v.LengthSquared() > r.LengthSquared())
206 			{
207 				ie = j;
208 			}
209 		}
210 
211 		++m;
212 		ih = ie;
213 
214 		if (ie == i0)
215 		{
216 			break;
217 		}
218 	}
219 
220 	if (m < 3)
221 	{
222 		// Polygon is degenerate.
223 		b2Assert(false);
224 		SetAsBox(1.0f, 1.0f);
225 		return;
226 	}
227 
228 	m_count = m;
229 
230 	// Copy vertices.
231 	for (int32 i = 0; i < m; ++i)
232 	{
233 		m_vertices[i] = ps[hull[i]];
234 	}
235 
236 	// Compute normals. Ensure the edges have non-zero length.
237 	for (int32 i = 0; i < m; ++i)
238 	{
239 		int32 i1 = i;
240 		int32 i2 = i + 1 < m ? i + 1 : 0;
241 		b2Vec2 edge = m_vertices[i2] - m_vertices[i1];
242 		b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon);
243 		m_normals[i] = b2Cross(edge, 1.0f);
244 		m_normals[i].Normalize();
245 	}
246 
247 	// Compute the polygon centroid.
248 	m_centroid = ComputeCentroid(m_vertices, m);
249 }
250 
TestPoint(const b2Transform & xf,const b2Vec2 & p) const251 bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const
252 {
253 	b2Vec2 pLocal = b2MulT(xf.q, p - xf.p);
254 
255 	for (int32 i = 0; i < m_count; ++i)
256 	{
257 		float32 dot = b2Dot(m_normals[i], pLocal - m_vertices[i]);
258 		if (dot > 0.0f)
259 		{
260 			return false;
261 		}
262 	}
263 
264 	return true;
265 }
266 
RayCast(b2RayCastOutput * output,const b2RayCastInput & input,const b2Transform & xf,int32 childIndex) const267 bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
268 								const b2Transform& xf, int32 childIndex) const
269 {
270 	B2_NOT_USED(childIndex);
271 
272 	// Put the ray into the polygon's frame of reference.
273 	b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p);
274 	b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p);
275 	b2Vec2 d = p2 - p1;
276 
277 	float32 lower = 0.0f, upper = input.maxFraction;
278 
279 	int32 index = -1;
280 
281 	for (int32 i = 0; i < m_count; ++i)
282 	{
283 		// p = p1 + a * d
284 		// dot(normal, p - v) = 0
285 		// dot(normal, p1 - v) + a * dot(normal, d) = 0
286 		float32 numerator = b2Dot(m_normals[i], m_vertices[i] - p1);
287 		float32 denominator = b2Dot(m_normals[i], d);
288 
289 		if (denominator == 0.0f)
290 		{
291 			if (numerator < 0.0f)
292 			{
293 				return false;
294 			}
295 		}
296 		else
297 		{
298 			// Note: we want this predicate without division:
299 			// lower < numerator / denominator, where denominator < 0
300 			// Since denominator < 0, we have to flip the inequality:
301 			// lower < numerator / denominator <==> denominator * lower > numerator.
302 			if (denominator < 0.0f && numerator < lower * denominator)
303 			{
304 				// Increase lower.
305 				// The segment enters this half-space.
306 				lower = numerator / denominator;
307 				index = i;
308 			}
309 			else if (denominator > 0.0f && numerator < upper * denominator)
310 			{
311 				// Decrease upper.
312 				// The segment exits this half-space.
313 				upper = numerator / denominator;
314 			}
315 		}
316 
317 		// The use of epsilon here causes the assert on lower to trip
318 		// in some cases. Apparently the use of epsilon was to make edge
319 		// shapes work, but now those are handled separately.
320 		//if (upper < lower - b2_epsilon)
321 		if (upper < lower)
322 		{
323 			return false;
324 		}
325 	}
326 
327 	b2Assert(0.0f <= lower && lower <= input.maxFraction);
328 
329 	if (index >= 0)
330 	{
331 		output->fraction = lower;
332 		output->normal = b2Mul(xf.q, m_normals[index]);
333 		return true;
334 	}
335 
336 	return false;
337 }
338 
ComputeAABB(b2AABB * aabb,const b2Transform & xf,int32 childIndex) const339 void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const
340 {
341 	B2_NOT_USED(childIndex);
342 
343 	b2Vec2 lower = b2Mul(xf, m_vertices[0]);
344 	b2Vec2 upper = lower;
345 
346 	for (int32 i = 1; i < m_count; ++i)
347 	{
348 		b2Vec2 v = b2Mul(xf, m_vertices[i]);
349 		lower = b2Min(lower, v);
350 		upper = b2Max(upper, v);
351 	}
352 
353 	b2Vec2 r(m_radius, m_radius);
354 	aabb->lowerBound = lower - r;
355 	aabb->upperBound = upper + r;
356 }
357 
ComputeMass(b2MassData * massData,float32 density) const358 void b2PolygonShape::ComputeMass(b2MassData* massData, float32 density) const
359 {
360 	// Polygon mass, centroid, and inertia.
361 	// Let rho be the polygon density in mass per unit area.
362 	// Then:
363 	// mass = rho * int(dA)
364 	// centroid.x = (1/mass) * rho * int(x * dA)
365 	// centroid.y = (1/mass) * rho * int(y * dA)
366 	// I = rho * int((x*x + y*y) * dA)
367 	//
368 	// We can compute these integrals by summing all the integrals
369 	// for each triangle of the polygon. To evaluate the integral
370 	// for a single triangle, we make a change of variables to
371 	// the (u,v) coordinates of the triangle:
372 	// x = x0 + e1x * u + e2x * v
373 	// y = y0 + e1y * u + e2y * v
374 	// where 0 <= u && 0 <= v && u + v <= 1.
375 	//
376 	// We integrate u from [0,1-v] and then v from [0,1].
377 	// We also need to use the Jacobian of the transformation:
378 	// D = cross(e1, e2)
379 	//
380 	// Simplification: triangle centroid = (1/3) * (p1 + p2 + p3)
381 	//
382 	// The rest of the derivation is handled by computer algebra.
383 
384 	b2Assert(m_count >= 3);
385 
386 	b2Vec2 center; center.Set(0.0f, 0.0f);
387 	float32 area = 0.0f;
388 	float32 I = 0.0f;
389 
390 	// s is the reference point for forming triangles.
391 	// It's location doesn't change the result (except for rounding error).
392 	b2Vec2 s(0.0f, 0.0f);
393 
394 	// This code would put the reference point inside the polygon.
395 	for (int32 i = 0; i < m_count; ++i)
396 	{
397 		s += m_vertices[i];
398 	}
399 	s *= 1.0f / m_count;
400 
401 	const float32 k_inv3 = 1.0f / 3.0f;
402 
403 	for (int32 i = 0; i < m_count; ++i)
404 	{
405 		// Triangle vertices.
406 		b2Vec2 e1 = m_vertices[i] - s;
407 		b2Vec2 e2 = i + 1 < m_count ? m_vertices[i+1] - s : m_vertices[0] - s;
408 
409 		float32 D = b2Cross(e1, e2);
410 
411 		float32 triangleArea = 0.5f * D;
412 		area += triangleArea;
413 
414 		// Area weighted centroid
415 		center += triangleArea * k_inv3 * (e1 + e2);
416 
417 		float32 ex1 = e1.x, ey1 = e1.y;
418 		float32 ex2 = e2.x, ey2 = e2.y;
419 
420 		float32 intx2 = ex1*ex1 + ex2*ex1 + ex2*ex2;
421 		float32 inty2 = ey1*ey1 + ey2*ey1 + ey2*ey2;
422 
423 		I += (0.25f * k_inv3 * D) * (intx2 + inty2);
424 	}
425 
426 	// Total mass
427 	massData->mass = density * area;
428 
429 	// Center of mass
430 	b2Assert(area > b2_epsilon);
431 	center *= 1.0f / area;
432 	massData->center = center + s;
433 
434 	// Inertia tensor relative to the local origin (point s).
435 	massData->I = density * I;
436 
437 	// Shift to center of mass then to original body origin.
438 	massData->I += massData->mass * (b2Dot(massData->center, massData->center) - b2Dot(center, center));
439 }
440 
Validate() const441 bool b2PolygonShape::Validate() const
442 {
443 	for (int32 i = 0; i < m_count; ++i)
444 	{
445 		int32 i1 = i;
446 		int32 i2 = i < m_count - 1 ? i1 + 1 : 0;
447 		b2Vec2 p = m_vertices[i1];
448 		b2Vec2 e = m_vertices[i2] - p;
449 
450 		for (int32 j = 0; j < m_count; ++j)
451 		{
452 			if (j == i1 || j == i2)
453 			{
454 				continue;
455 			}
456 
457 			b2Vec2 v = m_vertices[j] - p;
458 			float32 c = b2Cross(e, v);
459 			if (c < 0.0f)
460 			{
461 				return false;
462 			}
463 		}
464 	}
465 
466 	return true;
467 }
468