• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
3 *
4 * This software is provided 'as-is', without any express or implied
5 * warranty.  In no event will the authors be held liable for any damages
6 * arising from the use of this software.
7 * Permission is granted to anyone to use this software for any purpose,
8 * including commercial applications, and to alter it and redistribute it
9 * freely, subject to the following restrictions:
10 * 1. The origin of this software must not be misrepresented; you must not
11 * claim that you wrote the original software. If you use this software
12 * in a product, an acknowledgment in the product documentation would be
13 * appreciated but is not required.
14 * 2. Altered source versions must be plainly marked as such, and must not be
15 * misrepresented as being the original software.
16 * 3. This notice may not be removed or altered from any source distribution.
17 */
18 
19 #ifndef B2_REVOLUTE_JOINT_H
20 #define B2_REVOLUTE_JOINT_H
21 
22 #include <Box2D/Dynamics/Joints/b2Joint.h>
23 
24 /// Revolute joint definition. This requires defining an
25 /// anchor point where the bodies are joined. The definition
26 /// uses local anchor points so that the initial configuration
27 /// can violate the constraint slightly. You also need to
28 /// specify the initial relative angle for joint limits. This
29 /// helps when saving and loading a game.
30 /// The local anchor points are measured from the body's origin
31 /// rather than the center of mass because:
32 /// 1. you might not know where the center of mass will be.
33 /// 2. if you add/remove shapes from a body and recompute the mass,
34 ///    the joints will be broken.
35 struct b2RevoluteJointDef : public b2JointDef
36 {
b2RevoluteJointDefb2RevoluteJointDef37 	b2RevoluteJointDef()
38 	{
39 		type = e_revoluteJoint;
40 		localAnchorA.Set(0.0f, 0.0f);
41 		localAnchorB.Set(0.0f, 0.0f);
42 		referenceAngle = 0.0f;
43 		lowerAngle = 0.0f;
44 		upperAngle = 0.0f;
45 		maxMotorTorque = 0.0f;
46 		motorSpeed = 0.0f;
47 		enableLimit = false;
48 		enableMotor = false;
49 	}
50 
51 	/// Initialize the bodies, anchors, and reference angle using a world
52 	/// anchor point.
53 	void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor);
54 
55 	/// The local anchor point relative to bodyA's origin.
56 	b2Vec2 localAnchorA;
57 
58 	/// The local anchor point relative to bodyB's origin.
59 	b2Vec2 localAnchorB;
60 
61 	/// The bodyB angle minus bodyA angle in the reference state (radians).
62 	float32 referenceAngle;
63 
64 	/// A flag to enable joint limits.
65 	bool enableLimit;
66 
67 	/// The lower angle for the joint limit (radians).
68 	float32 lowerAngle;
69 
70 	/// The upper angle for the joint limit (radians).
71 	float32 upperAngle;
72 
73 	/// A flag to enable the joint motor.
74 	bool enableMotor;
75 
76 	/// The desired motor speed. Usually in radians per second.
77 	float32 motorSpeed;
78 
79 	/// The maximum motor torque used to achieve the desired motor speed.
80 	/// Usually in N-m.
81 	float32 maxMotorTorque;
82 };
83 
84 /// A revolute joint constrains two bodies to share a common point while they
85 /// are free to rotate about the point. The relative rotation about the shared
86 /// point is the joint angle. You can limit the relative rotation with
87 /// a joint limit that specifies a lower and upper angle. You can use a motor
88 /// to drive the relative rotation about the shared point. A maximum motor torque
89 /// is provided so that infinite forces are not generated.
90 class b2RevoluteJoint : public b2Joint
91 {
92 public:
93 	b2Vec2 GetAnchorA() const;
94 	b2Vec2 GetAnchorB() const;
95 
96 	/// The local anchor point relative to bodyA's origin.
GetLocalAnchorA()97 	const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
98 
99 	/// The local anchor point relative to bodyB's origin.
GetLocalAnchorB()100 	const b2Vec2& GetLocalAnchorB() const  { return m_localAnchorB; }
101 
102 	/// Get the reference angle.
GetReferenceAngle()103 	float32 GetReferenceAngle() const { return m_referenceAngle; }
104 
105 	/// Get the current joint angle in radians.
106 	float32 GetJointAngle() const;
107 
108 	/// Get the current joint angle speed in radians per second.
109 	float32 GetJointSpeed() const;
110 
111 	/// Is the joint limit enabled?
112 	bool IsLimitEnabled() const;
113 
114 	/// Enable/disable the joint limit.
115 	void EnableLimit(bool flag);
116 
117 	/// Get the lower joint limit in radians.
118 	float32 GetLowerLimit() const;
119 
120 	/// Get the upper joint limit in radians.
121 	float32 GetUpperLimit() const;
122 
123 	/// Set the joint limits in radians.
124 	void SetLimits(float32 lower, float32 upper);
125 
126 	/// Is the joint motor enabled?
127 	bool IsMotorEnabled() const;
128 
129 	/// Enable/disable the joint motor.
130 	void EnableMotor(bool flag);
131 
132 	/// Set the motor speed in radians per second.
133 	void SetMotorSpeed(float32 speed);
134 
135 	/// Get the motor speed in radians per second.
136 	float32 GetMotorSpeed() const;
137 
138 	/// Set the maximum motor torque, usually in N-m.
139 	void SetMaxMotorTorque(float32 torque);
GetMaxMotorTorque()140 	float32 GetMaxMotorTorque() const { return m_maxMotorTorque; }
141 
142 	/// Get the reaction force given the inverse time step.
143 	/// Unit is N.
144 	b2Vec2 GetReactionForce(float32 inv_dt) const;
145 
146 	/// Get the reaction torque due to the joint limit given the inverse time step.
147 	/// Unit is N*m.
148 	float32 GetReactionTorque(float32 inv_dt) const;
149 
150 	/// Get the current motor torque given the inverse time step.
151 	/// Unit is N*m.
152 	float32 GetMotorTorque(float32 inv_dt) const;
153 
154 	/// Dump to b2Log.
155 	void Dump();
156 
157 protected:
158 
159 	friend class b2Joint;
160 	friend class b2GearJoint;
161 
162 	b2RevoluteJoint(const b2RevoluteJointDef* def);
163 
164 	void InitVelocityConstraints(const b2SolverData& data);
165 	void SolveVelocityConstraints(const b2SolverData& data);
166 	bool SolvePositionConstraints(const b2SolverData& data);
167 
168 	// Solver shared
169 	b2Vec2 m_localAnchorA;
170 	b2Vec2 m_localAnchorB;
171 	b2Vec3 m_impulse;
172 	float32 m_motorImpulse;
173 
174 	bool m_enableMotor;
175 	float32 m_maxMotorTorque;
176 	float32 m_motorSpeed;
177 
178 	bool m_enableLimit;
179 	float32 m_referenceAngle;
180 	float32 m_lowerAngle;
181 	float32 m_upperAngle;
182 
183 	// Solver temp
184 	int32 m_indexA;
185 	int32 m_indexB;
186 	b2Vec2 m_rA;
187 	b2Vec2 m_rB;
188 	b2Vec2 m_localCenterA;
189 	b2Vec2 m_localCenterB;
190 	float32 m_invMassA;
191 	float32 m_invMassB;
192 	float32 m_invIA;
193 	float32 m_invIB;
194 	b2Mat33 m_mass;			// effective mass for point-to-point constraint.
195 	float32 m_motorMass;	// effective mass for motor/limit angular constraint.
196 	b2LimitState m_limitState;
197 };
198 
GetMotorSpeed()199 inline float32 b2RevoluteJoint::GetMotorSpeed() const
200 {
201 	return m_motorSpeed;
202 }
203 
204 #endif
205