• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jchuff.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1997, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2009-2011, 2014-2015 D. R. Commander.
8  * For conditions of distribution and use, see the accompanying README file.
9  *
10  * This file contains Huffman entropy encoding routines.
11  *
12  * Much of the complexity here has to do with supporting output suspension.
13  * If the data destination module demands suspension, we want to be able to
14  * back up to the start of the current MCU.  To do this, we copy state
15  * variables into local working storage, and update them back to the
16  * permanent JPEG objects only upon successful completion of an MCU.
17  */
18 
19 #define JPEG_INTERNALS
20 #include "jinclude.h"
21 #include "jpeglib.h"
22 #include "jchuff.h"             /* Declarations shared with jcphuff.c */
23 #include <limits.h>
24 
25 /*
26  * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
27  * used for bit counting rather than the lookup table.  This will reduce the
28  * memory footprint by 64k, which is important for some mobile applications
29  * that create many isolated instances of libjpeg-turbo (web browsers, for
30  * instance.)  This may improve performance on some mobile platforms as well.
31  * This feature is enabled by default only on ARM processors, because some x86
32  * chips have a slow implementation of bsr, and the use of clz/bsr cannot be
33  * shown to have a significant performance impact even on the x86 chips that
34  * have a fast implementation of it.  When building for ARMv6, you can
35  * explicitly disable the use of clz/bsr by adding -mthumb to the compiler
36  * flags (this defines __thumb__).
37  */
38 
39 /* NOTE: Both GCC and Clang define __GNUC__ */
40 #if defined __GNUC__ && (defined __arm__ || defined __aarch64__)
41 #if !defined __thumb__ || defined __thumb2__
42 #define USE_CLZ_INTRINSIC
43 #endif
44 #endif
45 
46 #ifdef USE_CLZ_INTRINSIC
47 #define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x))
48 #define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0)
49 #else
50 #include "jpeg_nbits_table.h"
51 #define JPEG_NBITS(x) (jpeg_nbits_table[x])
52 #define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x)
53 #endif
54 
55 #ifndef min
56  #define min(a,b) ((a)<(b)?(a):(b))
57 #endif
58 
59 
60 /* Expanded entropy encoder object for Huffman encoding.
61  *
62  * The savable_state subrecord contains fields that change within an MCU,
63  * but must not be updated permanently until we complete the MCU.
64  */
65 
66 typedef struct {
67   size_t put_buffer;            /* current bit-accumulation buffer */
68   int put_bits;                 /* # of bits now in it */
69   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
70 } savable_state;
71 
72 /* This macro is to work around compilers with missing or broken
73  * structure assignment.  You'll need to fix this code if you have
74  * such a compiler and you change MAX_COMPS_IN_SCAN.
75  */
76 
77 #ifndef NO_STRUCT_ASSIGN
78 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
79 #else
80 #if MAX_COMPS_IN_SCAN == 4
81 #define ASSIGN_STATE(dest,src)  \
82         ((dest).put_buffer = (src).put_buffer, \
83          (dest).put_bits = (src).put_bits, \
84          (dest).last_dc_val[0] = (src).last_dc_val[0], \
85          (dest).last_dc_val[1] = (src).last_dc_val[1], \
86          (dest).last_dc_val[2] = (src).last_dc_val[2], \
87          (dest).last_dc_val[3] = (src).last_dc_val[3])
88 #endif
89 #endif
90 
91 
92 typedef struct {
93   struct jpeg_entropy_encoder pub; /* public fields */
94 
95   savable_state saved;          /* Bit buffer & DC state at start of MCU */
96 
97   /* These fields are NOT loaded into local working state. */
98   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
99   int next_restart_num;         /* next restart number to write (0-7) */
100 
101   /* Pointers to derived tables (these workspaces have image lifespan) */
102   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
103   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
104 
105 #ifdef ENTROPY_OPT_SUPPORTED    /* Statistics tables for optimization */
106   long * dc_count_ptrs[NUM_HUFF_TBLS];
107   long * ac_count_ptrs[NUM_HUFF_TBLS];
108 #endif
109 } huff_entropy_encoder;
110 
111 typedef huff_entropy_encoder * huff_entropy_ptr;
112 
113 /* Working state while writing an MCU.
114  * This struct contains all the fields that are needed by subroutines.
115  */
116 
117 typedef struct {
118   JOCTET * next_output_byte;    /* => next byte to write in buffer */
119   size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
120   savable_state cur;            /* Current bit buffer & DC state */
121   j_compress_ptr cinfo;         /* dump_buffer needs access to this */
122 } working_state;
123 
124 
125 /* Forward declarations */
126 METHODDEF(boolean) encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data);
127 METHODDEF(void) finish_pass_huff (j_compress_ptr cinfo);
128 #ifdef ENTROPY_OPT_SUPPORTED
129 METHODDEF(boolean) encode_mcu_gather (j_compress_ptr cinfo,
130                                       JBLOCKROW *MCU_data);
131 METHODDEF(void) finish_pass_gather (j_compress_ptr cinfo);
132 #endif
133 
134 
135 /*
136  * Initialize for a Huffman-compressed scan.
137  * If gather_statistics is TRUE, we do not output anything during the scan,
138  * just count the Huffman symbols used and generate Huffman code tables.
139  */
140 
141 METHODDEF(void)
start_pass_huff(j_compress_ptr cinfo,boolean gather_statistics)142 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
143 {
144   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
145   int ci, dctbl, actbl;
146   jpeg_component_info * compptr;
147 
148   if (gather_statistics) {
149 #ifdef ENTROPY_OPT_SUPPORTED
150     entropy->pub.encode_mcu = encode_mcu_gather;
151     entropy->pub.finish_pass = finish_pass_gather;
152 #else
153     ERREXIT(cinfo, JERR_NOT_COMPILED);
154 #endif
155   } else {
156     entropy->pub.encode_mcu = encode_mcu_huff;
157     entropy->pub.finish_pass = finish_pass_huff;
158   }
159 
160   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
161     compptr = cinfo->cur_comp_info[ci];
162     dctbl = compptr->dc_tbl_no;
163     actbl = compptr->ac_tbl_no;
164     if (gather_statistics) {
165 #ifdef ENTROPY_OPT_SUPPORTED
166       /* Check for invalid table indexes */
167       /* (make_c_derived_tbl does this in the other path) */
168       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
169         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
170       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
171         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
172       /* Allocate and zero the statistics tables */
173       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
174       if (entropy->dc_count_ptrs[dctbl] == NULL)
175         entropy->dc_count_ptrs[dctbl] = (long *)
176           (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
177                                       257 * sizeof(long));
178       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * sizeof(long));
179       if (entropy->ac_count_ptrs[actbl] == NULL)
180         entropy->ac_count_ptrs[actbl] = (long *)
181           (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
182                                       257 * sizeof(long));
183       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * sizeof(long));
184 #endif
185     } else {
186       /* Compute derived values for Huffman tables */
187       /* We may do this more than once for a table, but it's not expensive */
188       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
189                               & entropy->dc_derived_tbls[dctbl]);
190       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
191                               & entropy->ac_derived_tbls[actbl]);
192     }
193     /* Initialize DC predictions to 0 */
194     entropy->saved.last_dc_val[ci] = 0;
195   }
196 
197   /* Initialize bit buffer to empty */
198   entropy->saved.put_buffer = 0;
199   entropy->saved.put_bits = 0;
200 
201   /* Initialize restart stuff */
202   entropy->restarts_to_go = cinfo->restart_interval;
203   entropy->next_restart_num = 0;
204 }
205 
206 
207 /*
208  * Compute the derived values for a Huffman table.
209  * This routine also performs some validation checks on the table.
210  *
211  * Note this is also used by jcphuff.c.
212  */
213 
214 GLOBAL(void)
jpeg_make_c_derived_tbl(j_compress_ptr cinfo,boolean isDC,int tblno,c_derived_tbl ** pdtbl)215 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
216                          c_derived_tbl ** pdtbl)
217 {
218   JHUFF_TBL *htbl;
219   c_derived_tbl *dtbl;
220   int p, i, l, lastp, si, maxsymbol;
221   char huffsize[257];
222   unsigned int huffcode[257];
223   unsigned int code;
224 
225   /* Note that huffsize[] and huffcode[] are filled in code-length order,
226    * paralleling the order of the symbols themselves in htbl->huffval[].
227    */
228 
229   /* Find the input Huffman table */
230   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
231     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
232   htbl =
233     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
234   if (htbl == NULL)
235     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
236 
237   /* Allocate a workspace if we haven't already done so. */
238   if (*pdtbl == NULL)
239     *pdtbl = (c_derived_tbl *)
240       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
241                                   sizeof(c_derived_tbl));
242   dtbl = *pdtbl;
243 
244   /* Figure C.1: make table of Huffman code length for each symbol */
245 
246   p = 0;
247   for (l = 1; l <= 16; l++) {
248     i = (int) htbl->bits[l];
249     if (i < 0 || p + i > 256)   /* protect against table overrun */
250       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
251     while (i--)
252       huffsize[p++] = (char) l;
253   }
254   huffsize[p] = 0;
255   lastp = p;
256 
257   /* Figure C.2: generate the codes themselves */
258   /* We also validate that the counts represent a legal Huffman code tree. */
259 
260   code = 0;
261   si = huffsize[0];
262   p = 0;
263   while (huffsize[p]) {
264     while (((int) huffsize[p]) == si) {
265       huffcode[p++] = code;
266       code++;
267     }
268     /* code is now 1 more than the last code used for codelength si; but
269      * it must still fit in si bits, since no code is allowed to be all ones.
270      */
271     if (((INT32) code) >= (((INT32) 1) << si))
272       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
273     code <<= 1;
274     si++;
275   }
276 
277   /* Figure C.3: generate encoding tables */
278   /* These are code and size indexed by symbol value */
279 
280   /* Set all codeless symbols to have code length 0;
281    * this lets us detect duplicate VAL entries here, and later
282    * allows emit_bits to detect any attempt to emit such symbols.
283    */
284   MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi));
285 
286   /* This is also a convenient place to check for out-of-range
287    * and duplicated VAL entries.  We allow 0..255 for AC symbols
288    * but only 0..15 for DC.  (We could constrain them further
289    * based on data depth and mode, but this seems enough.)
290    */
291   maxsymbol = isDC ? 15 : 255;
292 
293   for (p = 0; p < lastp; p++) {
294     i = htbl->huffval[p];
295     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
296       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
297     dtbl->ehufco[i] = huffcode[p];
298     dtbl->ehufsi[i] = huffsize[p];
299   }
300 }
301 
302 
303 /* Outputting bytes to the file */
304 
305 /* Emit a byte, taking 'action' if must suspend. */
306 #define emit_byte(state,val,action)  \
307         { *(state)->next_output_byte++ = (JOCTET) (val);  \
308           if (--(state)->free_in_buffer == 0)  \
309             if (! dump_buffer(state))  \
310               { action; } }
311 
312 
313 LOCAL(boolean)
dump_buffer(working_state * state)314 dump_buffer (working_state * state)
315 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
316 {
317   struct jpeg_destination_mgr * dest = state->cinfo->dest;
318 
319   if (! (*dest->empty_output_buffer) (state->cinfo))
320     return FALSE;
321   /* After a successful buffer dump, must reset buffer pointers */
322   state->next_output_byte = dest->next_output_byte;
323   state->free_in_buffer = dest->free_in_buffer;
324   return TRUE;
325 }
326 
327 
328 /* Outputting bits to the file */
329 
330 /* These macros perform the same task as the emit_bits() function in the
331  * original libjpeg code.  In addition to reducing overhead by explicitly
332  * inlining the code, additional performance is achieved by taking into
333  * account the size of the bit buffer and waiting until it is almost full
334  * before emptying it.  This mostly benefits 64-bit platforms, since 6
335  * bytes can be stored in a 64-bit bit buffer before it has to be emptied.
336  */
337 
338 #define EMIT_BYTE() { \
339   JOCTET c; \
340   put_bits -= 8; \
341   c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
342   *buffer++ = c; \
343   if (c == 0xFF)  /* need to stuff a zero byte? */ \
344     *buffer++ = 0; \
345  }
346 
347 #define PUT_BITS(code, size) { \
348   put_bits += size; \
349   put_buffer = (put_buffer << size) | code; \
350 }
351 
352 #define CHECKBUF15() { \
353   if (put_bits > 15) { \
354     EMIT_BYTE() \
355     EMIT_BYTE() \
356   } \
357 }
358 
359 #define CHECKBUF31() { \
360   if (put_bits > 31) { \
361     EMIT_BYTE() \
362     EMIT_BYTE() \
363     EMIT_BYTE() \
364     EMIT_BYTE() \
365   } \
366 }
367 
368 #define CHECKBUF47() { \
369   if (put_bits > 47) { \
370     EMIT_BYTE() \
371     EMIT_BYTE() \
372     EMIT_BYTE() \
373     EMIT_BYTE() \
374     EMIT_BYTE() \
375     EMIT_BYTE() \
376   } \
377 }
378 
379 #if !defined(_WIN32) && !defined(SIZEOF_SIZE_T)
380 #error Cannot determine word size
381 #endif
382 
383 #if SIZEOF_SIZE_T==8 || defined(_WIN64)
384 
385 #define EMIT_BITS(code, size) { \
386   CHECKBUF47() \
387   PUT_BITS(code, size) \
388 }
389 
390 #define EMIT_CODE(code, size) { \
391   temp2 &= (((INT32) 1)<<nbits) - 1; \
392   CHECKBUF31() \
393   PUT_BITS(code, size) \
394   PUT_BITS(temp2, nbits) \
395  }
396 
397 #else
398 
399 #define EMIT_BITS(code, size) { \
400   PUT_BITS(code, size) \
401   CHECKBUF15() \
402 }
403 
404 #define EMIT_CODE(code, size) { \
405   temp2 &= (((INT32) 1)<<nbits) - 1; \
406   PUT_BITS(code, size) \
407   CHECKBUF15() \
408   PUT_BITS(temp2, nbits) \
409   CHECKBUF15() \
410  }
411 
412 #endif
413 
414 
415 /* Although it is exceedingly rare, it is possible for a Huffman-encoded
416  * coefficient block to be larger than the 128-byte unencoded block.  For each
417  * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
418  * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
419  * encoded block.)  If, for instance, one artificially sets the AC
420  * coefficients to alternating values of 32767 and -32768 (using the JPEG
421  * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
422  * larger than 200 bytes.
423  */
424 #define BUFSIZE (DCTSIZE2 * 4)
425 
426 #define LOAD_BUFFER() { \
427   if (state->free_in_buffer < BUFSIZE) { \
428     localbuf = 1; \
429     buffer = _buffer; \
430   } \
431   else buffer = state->next_output_byte; \
432  }
433 
434 #define STORE_BUFFER() { \
435   if (localbuf) { \
436     bytes = buffer - _buffer; \
437     buffer = _buffer; \
438     while (bytes > 0) { \
439       bytestocopy = min(bytes, state->free_in_buffer); \
440       MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
441       state->next_output_byte += bytestocopy; \
442       buffer += bytestocopy; \
443       state->free_in_buffer -= bytestocopy; \
444       if (state->free_in_buffer == 0) \
445         if (! dump_buffer(state)) return FALSE; \
446       bytes -= bytestocopy; \
447     } \
448   } \
449   else { \
450     state->free_in_buffer -= (buffer - state->next_output_byte); \
451     state->next_output_byte = buffer; \
452   } \
453  }
454 
455 
456 LOCAL(boolean)
flush_bits(working_state * state)457 flush_bits (working_state * state)
458 {
459   JOCTET _buffer[BUFSIZE], *buffer;
460   size_t put_buffer;  int put_bits;
461   size_t bytes, bytestocopy;  int localbuf = 0;
462 
463   put_buffer = state->cur.put_buffer;
464   put_bits = state->cur.put_bits;
465   LOAD_BUFFER()
466 
467   /* fill any partial byte with ones */
468   PUT_BITS(0x7F, 7)
469   while (put_bits >= 8) EMIT_BYTE()
470 
471   state->cur.put_buffer = 0;    /* and reset bit-buffer to empty */
472   state->cur.put_bits = 0;
473   STORE_BUFFER()
474 
475   return TRUE;
476 }
477 
478 
479 /* Encode a single block's worth of coefficients */
480 
481 LOCAL(boolean)
encode_one_block(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)482 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
483                   c_derived_tbl *dctbl, c_derived_tbl *actbl)
484 {
485   int temp, temp2, temp3;
486   int nbits;
487   int r, code, size;
488   JOCTET _buffer[BUFSIZE], *buffer;
489   size_t put_buffer;  int put_bits;
490   int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0];
491   size_t bytes, bytestocopy;  int localbuf = 0;
492 
493   put_buffer = state->cur.put_buffer;
494   put_bits = state->cur.put_bits;
495   LOAD_BUFFER()
496 
497   /* Encode the DC coefficient difference per section F.1.2.1 */
498 
499   temp = temp2 = block[0] - last_dc_val;
500 
501  /* This is a well-known technique for obtaining the absolute value without a
502   * branch.  It is derived from an assembly language technique presented in
503   * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
504   * Agner Fog.
505   */
506   temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
507   temp ^= temp3;
508   temp -= temp3;
509 
510   /* For a negative input, want temp2 = bitwise complement of abs(input) */
511   /* This code assumes we are on a two's complement machine */
512   temp2 += temp3;
513 
514   /* Find the number of bits needed for the magnitude of the coefficient */
515   nbits = JPEG_NBITS(temp);
516 
517   /* Emit the Huffman-coded symbol for the number of bits */
518   code = dctbl->ehufco[nbits];
519   size = dctbl->ehufsi[nbits];
520   EMIT_BITS(code, size)
521 
522   /* Mask off any extra bits in code */
523   temp2 &= (((INT32) 1)<<nbits) - 1;
524 
525   /* Emit that number of bits of the value, if positive, */
526   /* or the complement of its magnitude, if negative. */
527   EMIT_BITS(temp2, nbits)
528 
529   /* Encode the AC coefficients per section F.1.2.2 */
530 
531   r = 0;                        /* r = run length of zeros */
532 
533 /* Manually unroll the k loop to eliminate the counter variable.  This
534  * improves performance greatly on systems with a limited number of
535  * registers (such as x86.)
536  */
537 #define kloop(jpeg_natural_order_of_k) {  \
538   if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
539     r++; \
540   } else { \
541     temp2 = temp; \
542     /* Branch-less absolute value, bitwise complement, etc., same as above */ \
543     temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
544     temp ^= temp3; \
545     temp -= temp3; \
546     temp2 += temp3; \
547     nbits = JPEG_NBITS_NONZERO(temp); \
548     /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
549     while (r > 15) { \
550       EMIT_BITS(code_0xf0, size_0xf0) \
551       r -= 16; \
552     } \
553     /* Emit Huffman symbol for run length / number of bits */ \
554     temp3 = (r << 4) + nbits;  \
555     code = actbl->ehufco[temp3]; \
556     size = actbl->ehufsi[temp3]; \
557     EMIT_CODE(code, size) \
558     r = 0;  \
559   } \
560 }
561 
562   /* One iteration for each value in jpeg_natural_order[] */
563   kloop(1);   kloop(8);   kloop(16);  kloop(9);   kloop(2);   kloop(3);
564   kloop(10);  kloop(17);  kloop(24);  kloop(32);  kloop(25);  kloop(18);
565   kloop(11);  kloop(4);   kloop(5);   kloop(12);  kloop(19);  kloop(26);
566   kloop(33);  kloop(40);  kloop(48);  kloop(41);  kloop(34);  kloop(27);
567   kloop(20);  kloop(13);  kloop(6);   kloop(7);   kloop(14);  kloop(21);
568   kloop(28);  kloop(35);  kloop(42);  kloop(49);  kloop(56);  kloop(57);
569   kloop(50);  kloop(43);  kloop(36);  kloop(29);  kloop(22);  kloop(15);
570   kloop(23);  kloop(30);  kloop(37);  kloop(44);  kloop(51);  kloop(58);
571   kloop(59);  kloop(52);  kloop(45);  kloop(38);  kloop(31);  kloop(39);
572   kloop(46);  kloop(53);  kloop(60);  kloop(61);  kloop(54);  kloop(47);
573   kloop(55);  kloop(62);  kloop(63);
574 
575   /* If the last coef(s) were zero, emit an end-of-block code */
576   if (r > 0) {
577     code = actbl->ehufco[0];
578     size = actbl->ehufsi[0];
579     EMIT_BITS(code, size)
580   }
581 
582   state->cur.put_buffer = put_buffer;
583   state->cur.put_bits = put_bits;
584   STORE_BUFFER()
585 
586   return TRUE;
587 }
588 
589 
590 /*
591  * Emit a restart marker & resynchronize predictions.
592  */
593 
594 LOCAL(boolean)
emit_restart(working_state * state,int restart_num)595 emit_restart (working_state * state, int restart_num)
596 {
597   int ci;
598 
599   if (! flush_bits(state))
600     return FALSE;
601 
602   emit_byte(state, 0xFF, return FALSE);
603   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
604 
605   /* Re-initialize DC predictions to 0 */
606   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
607     state->cur.last_dc_val[ci] = 0;
608 
609   /* The restart counter is not updated until we successfully write the MCU. */
610 
611   return TRUE;
612 }
613 
614 
615 /*
616  * Encode and output one MCU's worth of Huffman-compressed coefficients.
617  */
618 
619 METHODDEF(boolean)
encode_mcu_huff(j_compress_ptr cinfo,JBLOCKROW * MCU_data)620 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
621 {
622   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
623   working_state state;
624   int blkn, ci;
625   jpeg_component_info * compptr;
626 
627   /* Load up working state */
628   state.next_output_byte = cinfo->dest->next_output_byte;
629   state.free_in_buffer = cinfo->dest->free_in_buffer;
630   ASSIGN_STATE(state.cur, entropy->saved);
631   state.cinfo = cinfo;
632 
633   /* Emit restart marker if needed */
634   if (cinfo->restart_interval) {
635     if (entropy->restarts_to_go == 0)
636       if (! emit_restart(&state, entropy->next_restart_num))
637         return FALSE;
638   }
639 
640   /* Encode the MCU data blocks */
641   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
642     ci = cinfo->MCU_membership[blkn];
643     compptr = cinfo->cur_comp_info[ci];
644     if (! encode_one_block(&state,
645                            MCU_data[blkn][0], state.cur.last_dc_val[ci],
646                            entropy->dc_derived_tbls[compptr->dc_tbl_no],
647                            entropy->ac_derived_tbls[compptr->ac_tbl_no]))
648       return FALSE;
649     /* Update last_dc_val */
650     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
651   }
652 
653   /* Completed MCU, so update state */
654   cinfo->dest->next_output_byte = state.next_output_byte;
655   cinfo->dest->free_in_buffer = state.free_in_buffer;
656   ASSIGN_STATE(entropy->saved, state.cur);
657 
658   /* Update restart-interval state too */
659   if (cinfo->restart_interval) {
660     if (entropy->restarts_to_go == 0) {
661       entropy->restarts_to_go = cinfo->restart_interval;
662       entropy->next_restart_num++;
663       entropy->next_restart_num &= 7;
664     }
665     entropy->restarts_to_go--;
666   }
667 
668   return TRUE;
669 }
670 
671 
672 /*
673  * Finish up at the end of a Huffman-compressed scan.
674  */
675 
676 METHODDEF(void)
finish_pass_huff(j_compress_ptr cinfo)677 finish_pass_huff (j_compress_ptr cinfo)
678 {
679   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
680   working_state state;
681 
682   /* Load up working state ... flush_bits needs it */
683   state.next_output_byte = cinfo->dest->next_output_byte;
684   state.free_in_buffer = cinfo->dest->free_in_buffer;
685   ASSIGN_STATE(state.cur, entropy->saved);
686   state.cinfo = cinfo;
687 
688   /* Flush out the last data */
689   if (! flush_bits(&state))
690     ERREXIT(cinfo, JERR_CANT_SUSPEND);
691 
692   /* Update state */
693   cinfo->dest->next_output_byte = state.next_output_byte;
694   cinfo->dest->free_in_buffer = state.free_in_buffer;
695   ASSIGN_STATE(entropy->saved, state.cur);
696 }
697 
698 
699 /*
700  * Huffman coding optimization.
701  *
702  * We first scan the supplied data and count the number of uses of each symbol
703  * that is to be Huffman-coded. (This process MUST agree with the code above.)
704  * Then we build a Huffman coding tree for the observed counts.
705  * Symbols which are not needed at all for the particular image are not
706  * assigned any code, which saves space in the DHT marker as well as in
707  * the compressed data.
708  */
709 
710 #ifdef ENTROPY_OPT_SUPPORTED
711 
712 
713 /* Process a single block's worth of coefficients */
714 
715 LOCAL(void)
htest_one_block(j_compress_ptr cinfo,JCOEFPTR block,int last_dc_val,long dc_counts[],long ac_counts[])716 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
717                  long dc_counts[], long ac_counts[])
718 {
719   register int temp;
720   register int nbits;
721   register int k, r;
722 
723   /* Encode the DC coefficient difference per section F.1.2.1 */
724 
725   temp = block[0] - last_dc_val;
726   if (temp < 0)
727     temp = -temp;
728 
729   /* Find the number of bits needed for the magnitude of the coefficient */
730   nbits = 0;
731   while (temp) {
732     nbits++;
733     temp >>= 1;
734   }
735   /* Check for out-of-range coefficient values.
736    * Since we're encoding a difference, the range limit is twice as much.
737    */
738   if (nbits > MAX_COEF_BITS+1)
739     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
740 
741   /* Count the Huffman symbol for the number of bits */
742   dc_counts[nbits]++;
743 
744   /* Encode the AC coefficients per section F.1.2.2 */
745 
746   r = 0;                        /* r = run length of zeros */
747 
748   for (k = 1; k < DCTSIZE2; k++) {
749     if ((temp = block[jpeg_natural_order[k]]) == 0) {
750       r++;
751     } else {
752       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
753       while (r > 15) {
754         ac_counts[0xF0]++;
755         r -= 16;
756       }
757 
758       /* Find the number of bits needed for the magnitude of the coefficient */
759       if (temp < 0)
760         temp = -temp;
761 
762       /* Find the number of bits needed for the magnitude of the coefficient */
763       nbits = 1;                /* there must be at least one 1 bit */
764       while ((temp >>= 1))
765         nbits++;
766       /* Check for out-of-range coefficient values */
767       if (nbits > MAX_COEF_BITS)
768         ERREXIT(cinfo, JERR_BAD_DCT_COEF);
769 
770       /* Count Huffman symbol for run length / number of bits */
771       ac_counts[(r << 4) + nbits]++;
772 
773       r = 0;
774     }
775   }
776 
777   /* If the last coef(s) were zero, emit an end-of-block code */
778   if (r > 0)
779     ac_counts[0]++;
780 }
781 
782 
783 /*
784  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
785  * No data is actually output, so no suspension return is possible.
786  */
787 
788 METHODDEF(boolean)
encode_mcu_gather(j_compress_ptr cinfo,JBLOCKROW * MCU_data)789 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
790 {
791   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
792   int blkn, ci;
793   jpeg_component_info * compptr;
794 
795   /* Take care of restart intervals if needed */
796   if (cinfo->restart_interval) {
797     if (entropy->restarts_to_go == 0) {
798       /* Re-initialize DC predictions to 0 */
799       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
800         entropy->saved.last_dc_val[ci] = 0;
801       /* Update restart state */
802       entropy->restarts_to_go = cinfo->restart_interval;
803     }
804     entropy->restarts_to_go--;
805   }
806 
807   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
808     ci = cinfo->MCU_membership[blkn];
809     compptr = cinfo->cur_comp_info[ci];
810     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
811                     entropy->dc_count_ptrs[compptr->dc_tbl_no],
812                     entropy->ac_count_ptrs[compptr->ac_tbl_no]);
813     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
814   }
815 
816   return TRUE;
817 }
818 
819 
820 /*
821  * Generate the best Huffman code table for the given counts, fill htbl.
822  * Note this is also used by jcphuff.c.
823  *
824  * The JPEG standard requires that no symbol be assigned a codeword of all
825  * one bits (so that padding bits added at the end of a compressed segment
826  * can't look like a valid code).  Because of the canonical ordering of
827  * codewords, this just means that there must be an unused slot in the
828  * longest codeword length category.  Section K.2 of the JPEG spec suggests
829  * reserving such a slot by pretending that symbol 256 is a valid symbol
830  * with count 1.  In theory that's not optimal; giving it count zero but
831  * including it in the symbol set anyway should give a better Huffman code.
832  * But the theoretically better code actually seems to come out worse in
833  * practice, because it produces more all-ones bytes (which incur stuffed
834  * zero bytes in the final file).  In any case the difference is tiny.
835  *
836  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
837  * If some symbols have a very small but nonzero probability, the Huffman tree
838  * must be adjusted to meet the code length restriction.  We currently use
839  * the adjustment method suggested in JPEG section K.2.  This method is *not*
840  * optimal; it may not choose the best possible limited-length code.  But
841  * typically only very-low-frequency symbols will be given less-than-optimal
842  * lengths, so the code is almost optimal.  Experimental comparisons against
843  * an optimal limited-length-code algorithm indicate that the difference is
844  * microscopic --- usually less than a hundredth of a percent of total size.
845  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
846  */
847 
848 GLOBAL(void)
jpeg_gen_optimal_table(j_compress_ptr cinfo,JHUFF_TBL * htbl,long freq[])849 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
850 {
851 #define MAX_CLEN 32             /* assumed maximum initial code length */
852   UINT8 bits[MAX_CLEN+1];       /* bits[k] = # of symbols with code length k */
853   int codesize[257];            /* codesize[k] = code length of symbol k */
854   int others[257];              /* next symbol in current branch of tree */
855   int c1, c2;
856   int p, i, j;
857   long v;
858 
859   /* This algorithm is explained in section K.2 of the JPEG standard */
860 
861   MEMZERO(bits, sizeof(bits));
862   MEMZERO(codesize, sizeof(codesize));
863   for (i = 0; i < 257; i++)
864     others[i] = -1;             /* init links to empty */
865 
866   freq[256] = 1;                /* make sure 256 has a nonzero count */
867   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
868    * that no real symbol is given code-value of all ones, because 256
869    * will be placed last in the largest codeword category.
870    */
871 
872   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
873 
874   for (;;) {
875     /* Find the smallest nonzero frequency, set c1 = its symbol */
876     /* In case of ties, take the larger symbol number */
877     c1 = -1;
878     v = 1000000000L;
879     for (i = 0; i <= 256; i++) {
880       if (freq[i] && freq[i] <= v) {
881         v = freq[i];
882         c1 = i;
883       }
884     }
885 
886     /* Find the next smallest nonzero frequency, set c2 = its symbol */
887     /* In case of ties, take the larger symbol number */
888     c2 = -1;
889     v = 1000000000L;
890     for (i = 0; i <= 256; i++) {
891       if (freq[i] && freq[i] <= v && i != c1) {
892         v = freq[i];
893         c2 = i;
894       }
895     }
896 
897     /* Done if we've merged everything into one frequency */
898     if (c2 < 0)
899       break;
900 
901     /* Else merge the two counts/trees */
902     freq[c1] += freq[c2];
903     freq[c2] = 0;
904 
905     /* Increment the codesize of everything in c1's tree branch */
906     codesize[c1]++;
907     while (others[c1] >= 0) {
908       c1 = others[c1];
909       codesize[c1]++;
910     }
911 
912     others[c1] = c2;            /* chain c2 onto c1's tree branch */
913 
914     /* Increment the codesize of everything in c2's tree branch */
915     codesize[c2]++;
916     while (others[c2] >= 0) {
917       c2 = others[c2];
918       codesize[c2]++;
919     }
920   }
921 
922   /* Now count the number of symbols of each code length */
923   for (i = 0; i <= 256; i++) {
924     if (codesize[i]) {
925       /* The JPEG standard seems to think that this can't happen, */
926       /* but I'm paranoid... */
927       if (codesize[i] > MAX_CLEN)
928         ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
929 
930       bits[codesize[i]]++;
931     }
932   }
933 
934   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
935    * Huffman procedure assigned any such lengths, we must adjust the coding.
936    * Here is what the JPEG spec says about how this next bit works:
937    * Since symbols are paired for the longest Huffman code, the symbols are
938    * removed from this length category two at a time.  The prefix for the pair
939    * (which is one bit shorter) is allocated to one of the pair; then,
940    * skipping the BITS entry for that prefix length, a code word from the next
941    * shortest nonzero BITS entry is converted into a prefix for two code words
942    * one bit longer.
943    */
944 
945   for (i = MAX_CLEN; i > 16; i--) {
946     while (bits[i] > 0) {
947       j = i - 2;                /* find length of new prefix to be used */
948       while (bits[j] == 0)
949         j--;
950 
951       bits[i] -= 2;             /* remove two symbols */
952       bits[i-1]++;              /* one goes in this length */
953       bits[j+1] += 2;           /* two new symbols in this length */
954       bits[j]--;                /* symbol of this length is now a prefix */
955     }
956   }
957 
958   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
959   while (bits[i] == 0)          /* find largest codelength still in use */
960     i--;
961   bits[i]--;
962 
963   /* Return final symbol counts (only for lengths 0..16) */
964   MEMCOPY(htbl->bits, bits, sizeof(htbl->bits));
965 
966   /* Return a list of the symbols sorted by code length */
967   /* It's not real clear to me why we don't need to consider the codelength
968    * changes made above, but the JPEG spec seems to think this works.
969    */
970   p = 0;
971   for (i = 1; i <= MAX_CLEN; i++) {
972     for (j = 0; j <= 255; j++) {
973       if (codesize[j] == i) {
974         htbl->huffval[p] = (UINT8) j;
975         p++;
976       }
977     }
978   }
979 
980   /* Set sent_table FALSE so updated table will be written to JPEG file. */
981   htbl->sent_table = FALSE;
982 }
983 
984 
985 /*
986  * Finish up a statistics-gathering pass and create the new Huffman tables.
987  */
988 
989 METHODDEF(void)
finish_pass_gather(j_compress_ptr cinfo)990 finish_pass_gather (j_compress_ptr cinfo)
991 {
992   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
993   int ci, dctbl, actbl;
994   jpeg_component_info * compptr;
995   JHUFF_TBL **htblptr;
996   boolean did_dc[NUM_HUFF_TBLS];
997   boolean did_ac[NUM_HUFF_TBLS];
998 
999   /* It's important not to apply jpeg_gen_optimal_table more than once
1000    * per table, because it clobbers the input frequency counts!
1001    */
1002   MEMZERO(did_dc, sizeof(did_dc));
1003   MEMZERO(did_ac, sizeof(did_ac));
1004 
1005   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1006     compptr = cinfo->cur_comp_info[ci];
1007     dctbl = compptr->dc_tbl_no;
1008     actbl = compptr->ac_tbl_no;
1009     if (! did_dc[dctbl]) {
1010       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
1011       if (*htblptr == NULL)
1012         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1013       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
1014       did_dc[dctbl] = TRUE;
1015     }
1016     if (! did_ac[actbl]) {
1017       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
1018       if (*htblptr == NULL)
1019         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1020       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
1021       did_ac[actbl] = TRUE;
1022     }
1023   }
1024 }
1025 
1026 
1027 #endif /* ENTROPY_OPT_SUPPORTED */
1028 
1029 
1030 /*
1031  * Module initialization routine for Huffman entropy encoding.
1032  */
1033 
1034 GLOBAL(void)
jinit_huff_encoder(j_compress_ptr cinfo)1035 jinit_huff_encoder (j_compress_ptr cinfo)
1036 {
1037   huff_entropy_ptr entropy;
1038   int i;
1039 
1040   entropy = (huff_entropy_ptr)
1041     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1042                                 sizeof(huff_entropy_encoder));
1043   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
1044   entropy->pub.start_pass = start_pass_huff;
1045 
1046   /* Mark tables unallocated */
1047   for (i = 0; i < NUM_HUFF_TBLS; i++) {
1048     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1049 #ifdef ENTROPY_OPT_SUPPORTED
1050     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1051 #endif
1052   }
1053 }
1054