• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jcsample.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1996, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
8  * Copyright (C) 2014, MIPS Technologies, Inc., California
9  * For conditions of distribution and use, see the accompanying README file.
10  *
11  * This file contains downsampling routines.
12  *
13  * Downsampling input data is counted in "row groups".  A row group
14  * is defined to be max_v_samp_factor pixel rows of each component,
15  * from which the downsampler produces v_samp_factor sample rows.
16  * A single row group is processed in each call to the downsampler module.
17  *
18  * The downsampler is responsible for edge-expansion of its output data
19  * to fill an integral number of DCT blocks horizontally.  The source buffer
20  * may be modified if it is helpful for this purpose (the source buffer is
21  * allocated wide enough to correspond to the desired output width).
22  * The caller (the prep controller) is responsible for vertical padding.
23  *
24  * The downsampler may request "context rows" by setting need_context_rows
25  * during startup.  In this case, the input arrays will contain at least
26  * one row group's worth of pixels above and below the passed-in data;
27  * the caller will create dummy rows at image top and bottom by replicating
28  * the first or last real pixel row.
29  *
30  * An excellent reference for image resampling is
31  *   Digital Image Warping, George Wolberg, 1990.
32  *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
33  *
34  * The downsampling algorithm used here is a simple average of the source
35  * pixels covered by the output pixel.  The hi-falutin sampling literature
36  * refers to this as a "box filter".  In general the characteristics of a box
37  * filter are not very good, but for the specific cases we normally use (1:1
38  * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
39  * nearly so bad.  If you intend to use other sampling ratios, you'd be well
40  * advised to improve this code.
41  *
42  * A simple input-smoothing capability is provided.  This is mainly intended
43  * for cleaning up color-dithered GIF input files (if you find it inadequate,
44  * we suggest using an external filtering program such as pnmconvol).  When
45  * enabled, each input pixel P is replaced by a weighted sum of itself and its
46  * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
47  * where SF = (smoothing_factor / 1024).
48  * Currently, smoothing is only supported for 2h2v sampling factors.
49  */
50 
51 #define JPEG_INTERNALS
52 #include "jinclude.h"
53 #include "jpeglib.h"
54 #include "jsimd.h"
55 
56 
57 /* Pointer to routine to downsample a single component */
58 typedef void (*downsample1_ptr) (j_compress_ptr cinfo,
59                                  jpeg_component_info * compptr,
60                                  JSAMPARRAY input_data,
61                                  JSAMPARRAY output_data);
62 
63 /* Private subobject */
64 
65 typedef struct {
66   struct jpeg_downsampler pub;  /* public fields */
67 
68   /* Downsampling method pointers, one per component */
69   downsample1_ptr methods[MAX_COMPONENTS];
70 } my_downsampler;
71 
72 typedef my_downsampler * my_downsample_ptr;
73 
74 
75 /*
76  * Initialize for a downsampling pass.
77  */
78 
79 METHODDEF(void)
start_pass_downsample(j_compress_ptr cinfo)80 start_pass_downsample (j_compress_ptr cinfo)
81 {
82   /* no work for now */
83 }
84 
85 
86 /*
87  * Expand a component horizontally from width input_cols to width output_cols,
88  * by duplicating the rightmost samples.
89  */
90 
91 LOCAL(void)
expand_right_edge(JSAMPARRAY image_data,int num_rows,JDIMENSION input_cols,JDIMENSION output_cols)92 expand_right_edge (JSAMPARRAY image_data, int num_rows,
93                    JDIMENSION input_cols, JDIMENSION output_cols)
94 {
95   register JSAMPROW ptr;
96   register JSAMPLE pixval;
97   register int count;
98   int row;
99   int numcols = (int) (output_cols - input_cols);
100 
101   if (numcols > 0) {
102     for (row = 0; row < num_rows; row++) {
103       ptr = image_data[row] + input_cols;
104       pixval = ptr[-1];         /* don't need GETJSAMPLE() here */
105       for (count = numcols; count > 0; count--)
106         *ptr++ = pixval;
107     }
108   }
109 }
110 
111 
112 /*
113  * Do downsampling for a whole row group (all components).
114  *
115  * In this version we simply downsample each component independently.
116  */
117 
118 METHODDEF(void)
sep_downsample(j_compress_ptr cinfo,JSAMPIMAGE input_buf,JDIMENSION in_row_index,JSAMPIMAGE output_buf,JDIMENSION out_row_group_index)119 sep_downsample (j_compress_ptr cinfo,
120                 JSAMPIMAGE input_buf, JDIMENSION in_row_index,
121                 JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
122 {
123   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
124   int ci;
125   jpeg_component_info * compptr;
126   JSAMPARRAY in_ptr, out_ptr;
127 
128   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
129        ci++, compptr++) {
130     in_ptr = input_buf[ci] + in_row_index;
131     out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
132     (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
133   }
134 }
135 
136 
137 /*
138  * Downsample pixel values of a single component.
139  * One row group is processed per call.
140  * This version handles arbitrary integral sampling ratios, without smoothing.
141  * Note that this version is not actually used for customary sampling ratios.
142  */
143 
144 METHODDEF(void)
int_downsample(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY input_data,JSAMPARRAY output_data)145 int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
146                 JSAMPARRAY input_data, JSAMPARRAY output_data)
147 {
148   int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
149   JDIMENSION outcol, outcol_h;  /* outcol_h == outcol*h_expand */
150   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
151   JSAMPROW inptr, outptr;
152   INT32 outvalue;
153 
154   h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
155   v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
156   numpix = h_expand * v_expand;
157   numpix2 = numpix/2;
158 
159   /* Expand input data enough to let all the output samples be generated
160    * by the standard loop.  Special-casing padded output would be more
161    * efficient.
162    */
163   expand_right_edge(input_data, cinfo->max_v_samp_factor,
164                     cinfo->image_width, output_cols * h_expand);
165 
166   inrow = 0;
167   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
168     outptr = output_data[outrow];
169     for (outcol = 0, outcol_h = 0; outcol < output_cols;
170          outcol++, outcol_h += h_expand) {
171       outvalue = 0;
172       for (v = 0; v < v_expand; v++) {
173         inptr = input_data[inrow+v] + outcol_h;
174         for (h = 0; h < h_expand; h++) {
175           outvalue += (INT32) GETJSAMPLE(*inptr++);
176         }
177       }
178       *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
179     }
180     inrow += v_expand;
181   }
182 }
183 
184 
185 /*
186  * Downsample pixel values of a single component.
187  * This version handles the special case of a full-size component,
188  * without smoothing.
189  */
190 
191 METHODDEF(void)
fullsize_downsample(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY input_data,JSAMPARRAY output_data)192 fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
193                      JSAMPARRAY input_data, JSAMPARRAY output_data)
194 {
195   /* Copy the data */
196   jcopy_sample_rows(input_data, 0, output_data, 0,
197                     cinfo->max_v_samp_factor, cinfo->image_width);
198   /* Edge-expand */
199   expand_right_edge(output_data, cinfo->max_v_samp_factor,
200                     cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
201 }
202 
203 
204 /*
205  * Downsample pixel values of a single component.
206  * This version handles the common case of 2:1 horizontal and 1:1 vertical,
207  * without smoothing.
208  *
209  * A note about the "bias" calculations: when rounding fractional values to
210  * integer, we do not want to always round 0.5 up to the next integer.
211  * If we did that, we'd introduce a noticeable bias towards larger values.
212  * Instead, this code is arranged so that 0.5 will be rounded up or down at
213  * alternate pixel locations (a simple ordered dither pattern).
214  */
215 
216 METHODDEF(void)
h2v1_downsample(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY input_data,JSAMPARRAY output_data)217 h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
218                  JSAMPARRAY input_data, JSAMPARRAY output_data)
219 {
220   int outrow;
221   JDIMENSION outcol;
222   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
223   register JSAMPROW inptr, outptr;
224   register int bias;
225 
226   /* Expand input data enough to let all the output samples be generated
227    * by the standard loop.  Special-casing padded output would be more
228    * efficient.
229    */
230   expand_right_edge(input_data, cinfo->max_v_samp_factor,
231                     cinfo->image_width, output_cols * 2);
232 
233   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
234     outptr = output_data[outrow];
235     inptr = input_data[outrow];
236     bias = 0;                   /* bias = 0,1,0,1,... for successive samples */
237     for (outcol = 0; outcol < output_cols; outcol++) {
238       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
239                               + bias) >> 1);
240       bias ^= 1;                /* 0=>1, 1=>0 */
241       inptr += 2;
242     }
243   }
244 }
245 
246 
247 /*
248  * Downsample pixel values of a single component.
249  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
250  * without smoothing.
251  */
252 
253 METHODDEF(void)
h2v2_downsample(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY input_data,JSAMPARRAY output_data)254 h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
255                  JSAMPARRAY input_data, JSAMPARRAY output_data)
256 {
257   int inrow, outrow;
258   JDIMENSION outcol;
259   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
260   register JSAMPROW inptr0, inptr1, outptr;
261   register int bias;
262 
263   /* Expand input data enough to let all the output samples be generated
264    * by the standard loop.  Special-casing padded output would be more
265    * efficient.
266    */
267   expand_right_edge(input_data, cinfo->max_v_samp_factor,
268                     cinfo->image_width, output_cols * 2);
269 
270   inrow = 0;
271   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
272     outptr = output_data[outrow];
273     inptr0 = input_data[inrow];
274     inptr1 = input_data[inrow+1];
275     bias = 1;                   /* bias = 1,2,1,2,... for successive samples */
276     for (outcol = 0; outcol < output_cols; outcol++) {
277       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
278                               GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
279                               + bias) >> 2);
280       bias ^= 3;                /* 1=>2, 2=>1 */
281       inptr0 += 2; inptr1 += 2;
282     }
283     inrow += 2;
284   }
285 }
286 
287 
288 #ifdef INPUT_SMOOTHING_SUPPORTED
289 
290 /*
291  * Downsample pixel values of a single component.
292  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
293  * with smoothing.  One row of context is required.
294  */
295 
296 METHODDEF(void)
h2v2_smooth_downsample(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY input_data,JSAMPARRAY output_data)297 h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
298                         JSAMPARRAY input_data, JSAMPARRAY output_data)
299 {
300   int inrow, outrow;
301   JDIMENSION colctr;
302   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
303   register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
304   INT32 membersum, neighsum, memberscale, neighscale;
305 
306   /* Expand input data enough to let all the output samples be generated
307    * by the standard loop.  Special-casing padded output would be more
308    * efficient.
309    */
310   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
311                     cinfo->image_width, output_cols * 2);
312 
313   /* We don't bother to form the individual "smoothed" input pixel values;
314    * we can directly compute the output which is the average of the four
315    * smoothed values.  Each of the four member pixels contributes a fraction
316    * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
317    * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
318    * output.  The four corner-adjacent neighbor pixels contribute a fraction
319    * SF to just one smoothed pixel, or SF/4 to the final output; while the
320    * eight edge-adjacent neighbors contribute SF to each of two smoothed
321    * pixels, or SF/2 overall.  In order to use integer arithmetic, these
322    * factors are scaled by 2^16 = 65536.
323    * Also recall that SF = smoothing_factor / 1024.
324    */
325 
326   memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
327   neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
328 
329   inrow = 0;
330   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
331     outptr = output_data[outrow];
332     inptr0 = input_data[inrow];
333     inptr1 = input_data[inrow+1];
334     above_ptr = input_data[inrow-1];
335     below_ptr = input_data[inrow+2];
336 
337     /* Special case for first column: pretend column -1 is same as column 0 */
338     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
339                 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
340     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
341                GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
342                GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
343                GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
344     neighsum += neighsum;
345     neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
346                 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
347     membersum = membersum * memberscale + neighsum * neighscale;
348     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
349     inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
350 
351     for (colctr = output_cols - 2; colctr > 0; colctr--) {
352       /* sum of pixels directly mapped to this output element */
353       membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
354                   GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
355       /* sum of edge-neighbor pixels */
356       neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
357                  GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
358                  GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
359                  GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
360       /* The edge-neighbors count twice as much as corner-neighbors */
361       neighsum += neighsum;
362       /* Add in the corner-neighbors */
363       neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
364                   GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
365       /* form final output scaled up by 2^16 */
366       membersum = membersum * memberscale + neighsum * neighscale;
367       /* round, descale and output it */
368       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
369       inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
370     }
371 
372     /* Special case for last column */
373     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
374                 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
375     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
376                GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
377                GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
378                GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
379     neighsum += neighsum;
380     neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
381                 GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
382     membersum = membersum * memberscale + neighsum * neighscale;
383     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
384 
385     inrow += 2;
386   }
387 }
388 
389 
390 /*
391  * Downsample pixel values of a single component.
392  * This version handles the special case of a full-size component,
393  * with smoothing.  One row of context is required.
394  */
395 
396 METHODDEF(void)
fullsize_smooth_downsample(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY input_data,JSAMPARRAY output_data)397 fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
398                             JSAMPARRAY input_data, JSAMPARRAY output_data)
399 {
400   int outrow;
401   JDIMENSION colctr;
402   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
403   register JSAMPROW inptr, above_ptr, below_ptr, outptr;
404   INT32 membersum, neighsum, memberscale, neighscale;
405   int colsum, lastcolsum, nextcolsum;
406 
407   /* Expand input data enough to let all the output samples be generated
408    * by the standard loop.  Special-casing padded output would be more
409    * efficient.
410    */
411   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
412                     cinfo->image_width, output_cols);
413 
414   /* Each of the eight neighbor pixels contributes a fraction SF to the
415    * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
416    * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
417    * Also recall that SF = smoothing_factor / 1024.
418    */
419 
420   memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
421   neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
422 
423   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
424     outptr = output_data[outrow];
425     inptr = input_data[outrow];
426     above_ptr = input_data[outrow-1];
427     below_ptr = input_data[outrow+1];
428 
429     /* Special case for first column */
430     colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
431              GETJSAMPLE(*inptr);
432     membersum = GETJSAMPLE(*inptr++);
433     nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
434                  GETJSAMPLE(*inptr);
435     neighsum = colsum + (colsum - membersum) + nextcolsum;
436     membersum = membersum * memberscale + neighsum * neighscale;
437     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
438     lastcolsum = colsum; colsum = nextcolsum;
439 
440     for (colctr = output_cols - 2; colctr > 0; colctr--) {
441       membersum = GETJSAMPLE(*inptr++);
442       above_ptr++; below_ptr++;
443       nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
444                    GETJSAMPLE(*inptr);
445       neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
446       membersum = membersum * memberscale + neighsum * neighscale;
447       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
448       lastcolsum = colsum; colsum = nextcolsum;
449     }
450 
451     /* Special case for last column */
452     membersum = GETJSAMPLE(*inptr);
453     neighsum = lastcolsum + (colsum - membersum) + colsum;
454     membersum = membersum * memberscale + neighsum * neighscale;
455     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
456 
457   }
458 }
459 
460 #endif /* INPUT_SMOOTHING_SUPPORTED */
461 
462 
463 /*
464  * Module initialization routine for downsampling.
465  * Note that we must select a routine for each component.
466  */
467 
468 GLOBAL(void)
jinit_downsampler(j_compress_ptr cinfo)469 jinit_downsampler (j_compress_ptr cinfo)
470 {
471   my_downsample_ptr downsample;
472   int ci;
473   jpeg_component_info * compptr;
474   boolean smoothok = TRUE;
475 
476   downsample = (my_downsample_ptr)
477     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
478                                 sizeof(my_downsampler));
479   cinfo->downsample = (struct jpeg_downsampler *) downsample;
480   downsample->pub.start_pass = start_pass_downsample;
481   downsample->pub.downsample = sep_downsample;
482   downsample->pub.need_context_rows = FALSE;
483 
484   if (cinfo->CCIR601_sampling)
485     ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
486 
487   /* Verify we can handle the sampling factors, and set up method pointers */
488   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
489        ci++, compptr++) {
490     if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
491         compptr->v_samp_factor == cinfo->max_v_samp_factor) {
492 #ifdef INPUT_SMOOTHING_SUPPORTED
493       if (cinfo->smoothing_factor) {
494         downsample->methods[ci] = fullsize_smooth_downsample;
495         downsample->pub.need_context_rows = TRUE;
496       } else
497 #endif
498         downsample->methods[ci] = fullsize_downsample;
499     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
500                compptr->v_samp_factor == cinfo->max_v_samp_factor) {
501       smoothok = FALSE;
502       if (jsimd_can_h2v1_downsample())
503         downsample->methods[ci] = jsimd_h2v1_downsample;
504       else
505         downsample->methods[ci] = h2v1_downsample;
506     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
507                compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
508 #ifdef INPUT_SMOOTHING_SUPPORTED
509       if (cinfo->smoothing_factor) {
510 #if defined(__mips__)
511         if (jsimd_can_h2v2_smooth_downsample())
512           downsample->methods[ci] = jsimd_h2v2_smooth_downsample;
513         else
514 #endif
515           downsample->methods[ci] = h2v2_smooth_downsample;
516         downsample->pub.need_context_rows = TRUE;
517       } else
518 #endif
519       {
520         if (jsimd_can_h2v2_downsample())
521           downsample->methods[ci] = jsimd_h2v2_downsample;
522         else
523           downsample->methods[ci] = h2v2_downsample;
524       }
525     } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
526                (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
527       smoothok = FALSE;
528       downsample->methods[ci] = int_downsample;
529     } else
530       ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
531   }
532 
533 #ifdef INPUT_SMOOTHING_SUPPORTED
534   if (cinfo->smoothing_factor && !smoothok)
535     TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
536 #endif
537 }
538