1 /*- genpng
2 *
3 * COPYRIGHT: Written by John Cunningham Bowler, 2015.
4 * To the extent possible under law, the author has waived all copyright and
5 * related or neighboring rights to this work. This work is published from:
6 * United States.
7 *
8 * Generate a PNG with an alpha channel, correctly.
9 *
10 * This is a test case generator; the resultant PNG files are only of interest
11 * to those of us who care about whether the edges of circles are green, red,
12 * or yellow.
13 *
14 * The program generates an RGB+Alpha PNG of a given size containing the given
15 * shapes on a transparent background:
16 *
17 * genpng width height { shape }
18 * shape ::= color width shape x1 y1 x2 y2
19 *
20 * 'color' is:
21 *
22 * black white red green yellow blue brown purple pink orange gray cyan
23 *
24 * The point is to have colors that are linguistically meaningful plus that old
25 * bugbear of the department store dress murders, Cyan, the only color we argue
26 * about.
27 *
28 * 'shape' is:
29 *
30 * circle: an ellipse
31 * square: a rectangle
32 * line: a straight line
33 *
34 * Each shape is followed by four numbers, these are two points in the output
35 * coordinate space (as real numbers) which describe the circle, square, or
36 * line. The shape is filled if it is preceded by 'filled' (not valid for
37 * 'line') or is drawn with a line, in which case the width of the line must
38 * precede the shape.
39 *
40 * The whole set of information can be repeated as many times as desired:
41 *
42 * shape ::= color width shape x1 y1 x2 y2
43 *
44 * color ::= black|white|red|green|yellow|blue
45 * color ::= brown|purple|pink|orange|gray|cyan
46 * width ::= filled
47 * width ::= <number>
48 * shape ::= circle|square|line
49 * x1 ::= <number>
50 * x2 ::= <number>
51 * y1 ::= <number>
52 * y2 ::= <number>
53 *
54 * The output PNG is generated by down-sampling a 4x supersampled image using
55 * a bi-cubic filter. The bi-cubic has a 2 (output) pixel width, so an 8x8
56 * array of super-sampled points contribute to each output pixel. The value of
57 * a super-sampled point is found using an unfiltered, aliased, infinite
58 * precision image: Each shape from the last to the first is checked to see if
59 * the point is in the drawn area and, if it is, the color of the point is the
60 * color of the shape and the alpha is 1, if not the previous shape is checked.
61 *
62 * This is an aliased algorithm because no filtering is done; a point is either
63 * inside or outside each shape and 'close' points do not contribute to the
64 * sample. The down-sampling is relied on to correct the error of not using
65 * a filter.
66 *
67 * The line end-caps are 'flat'; they go through the points. The square line
68 * joins are mitres; the outside of the lines are continued to the point of
69 * intersection.
70 */
71 #include <stddef.h>
72 #include <stdlib.h>
73 #include <string.h>
74 #include <stdio.h>
75 #include <math.h>
76
77 /* Normally use <png.h> here to get the installed libpng, but this is done to
78 * ensure the code picks up the local libpng implementation:
79 */
80 #include "../../png.h"
81
82 #if defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) && defined(PNG_STDIO_SUPPORTED)
83
84 static const struct color
85 {
86 const char *name;
87 double red;
88 double green;
89 double blue;
90 } colors[] =
91 /* color ::= black|white|red|green|yellow|blue
92 * color ::= brown|purple|pink|orange|gray|cyan
93 */
94 {
95 { "black", 0, 0, 0 },
96 { "white", 1, 1, 1 },
97 { "red", 1, 0, 0 },
98 { "green", 0, 1, 0 },
99 { "yellow", 1, 1, 0 },
100 { "blue", 0, 0, 1 },
101 { "brown", .5, .125, 0 },
102 { "purple", 1, 0, 1 },
103 { "pink", 1, .5, .5 },
104 { "orange", 1, .5, 0 },
105 { "gray", 0, .5, .5 },
106 { "cyan", 0, 1, 1 }
107 };
108 #define color_count ((sizeof colors)/(sizeof colors[0]))
109
110 static const struct color *
color_of(const char * arg)111 color_of(const char *arg)
112 {
113 int icolor = color_count;
114
115 while (--icolor >= 0)
116 {
117 if (strcmp(colors[icolor].name, arg) == 0)
118 return colors+icolor;
119 }
120
121 fprintf(stderr, "genpng: invalid color %s\n", arg);
122 exit(1);
123 }
124
125 static double
width_of(const char * arg)126 width_of(const char *arg)
127 {
128 if (strcmp(arg, "filled") == 0)
129 return 0;
130
131 else
132 {
133 char *ep = NULL;
134 double w = strtod(arg, &ep);
135
136 if (ep != NULL && *ep == 0 && w > 0)
137 return w;
138 }
139
140 fprintf(stderr, "genpng: invalid line width %s\n", arg);
141 exit(1);
142 }
143
144 static double
coordinate_of(const char * arg)145 coordinate_of(const char *arg)
146 {
147 char *ep = NULL;
148 double w = strtod(arg, &ep);
149
150 if (ep != NULL && *ep == 0)
151 return w;
152
153 fprintf(stderr, "genpng: invalid coordinate value %s\n", arg);
154 exit(1);
155 }
156
157 struct arg; /* forward declaration */
158
159 typedef int (*shape_fn_ptr)(const struct arg *arg, double x, double y);
160 /* A function to determine if (x,y) is inside the shape.
161 *
162 * There are two implementations:
163 *
164 * inside_fn: returns true if the point is inside
165 * check_fn: returns;
166 * -1: the point is outside the shape by more than the filter width (2)
167 * 0: the point may be inside the shape
168 * +1: the point is inside the shape by more than the filter width
169 */
170 #define OUTSIDE (-1)
171 #define INSIDE (1)
172
173 struct arg
174 {
175 const struct color *color;
176 shape_fn_ptr inside_fn;
177 shape_fn_ptr check_fn;
178 double width; /* line width, 0 for 'filled' */
179 double x1, y1, x2, y2;
180 };
181
182 /* IMPLEMENTATION NOTE:
183 *
184 * We want the contribution of each shape to the sample corresponding to each
185 * pixel. This could be obtained by super sampling the image to infinite
186 * dimensions, finding each point within the shape and assigning that a value
187 * '1' while leaving every point outside the shape with value '0' then
188 * downsampling to the image size with sinc; computationally very expensive.
189 *
190 * Approximations are as follows:
191 *
192 * 1) If the pixel coordinate is within the shape assume the sample has the
193 * shape color and is opaque, else assume there is no contribution from
194 * the shape.
195 *
196 * This is the equivalent of aliased rendering or resampling an image with
197 * a block filter. The maximum error in the calculated alpha (which will
198 * always be 0 or 1) is 0.5.
199 *
200 * 2) If the shape is within a square of size 1x1 centered on the pixel assume
201 * that the shape obscures an amount of the pixel equal to its area within
202 * that square.
203 *
204 * This is the equivalent of 'pixel coverage' alpha calculation or resampling
205 * an image with a bi-linear filter. The maximum error is over 0.2, but the
206 * results are often acceptable.
207 *
208 * This can be approximated by applying (1) to a super-sampled image then
209 * downsampling with a bi-linear filter. The error in the super-sampled
210 * image is 0.5 per sample, but the resampling reduces this.
211 *
212 * 3) Use a better filter with a super-sampled image; in the limit this is the
213 * sinc() approach.
214 *
215 * 4) Do the geometric calculation; a bivariate definite integral across the
216 * shape, unfortunately this means evaluating Si(x), the integral of sinc(x),
217 * which is still a lot of math.
218 *
219 * This code uses approach (3) with a bi-cubic filter and 8x super-sampling
220 * and method (1) for the super-samples. This means that the sample is either
221 * 0 or 1, depending on whether the sub-pixel is within or outside the shape.
222 * The bi-cubic weights are also fixed and the 16 required weights are
223 * pre-computed here (note that the 'scale' setting will need to be changed if
224 * 'super' is increased).
225 *
226 * The code also calculates a sum to the edge of the filter. This is not
227 * currently used by could be used to optimize the calculation.
228 */
229 #if 0 /* bc code */
230 scale=10
231 super=8
232 define bicubic(x) {
233 if (x <= 1) return (1.5*x - 2.5)*x*x + 1;
234 if (x < 2) return (((2.5 - 0.5*x)*x - 4)*x + 2);
235 return 0;
236 }
237 define sum(x) {
238 auto s;
239 s = 0;
240 while (x < 2*super) {
241 s = s + bicubic(x/super);
242 x = x + 1;
243 }
244 return s;
245 }
246 define results(x) {
247 auto b, s;
248 b = bicubic(x/super);
249 s = sum(x);
250
251 print " /*", x, "*/ { ", b, ", ", s, " }";
252 return 1;
253 }
254 x=0
255 while (x<2*super) {
256 x = x + results(x)
257 if (x < 2*super) print ","
258 print "\n"
259 }
260 quit
261 #endif
262
263 #define BICUBIC1(x) /* |x| <= 1 */ ((1.5*(x)* - 2.5)*(x)*(x) + 1)
264 #define BICUBIC2(x) /* 1 < |x| < 2 */ (((2.5 - 0.5*(x))*(x) - 4)*(x) + 2)
265 #define FILTER_WEIGHT 9 /* Twice the first sum below */
266 #define FILTER_WIDTH 2 /* Actually half the width; -2..+2 */
267 #define FILTER_STEPS 8 /* steps per filter unit */
268 static const double
269 bicubic[16][2] =
270 {
271 /* These numbers are exact; the weight for the filter is 1/9, but this
272 * would make the numbers inexact, so it is not included here.
273 */
274 /* bicubic sum */
275 /* 0*/ { 1.0000000000, 4.5000000000 },
276 /* 1*/ { .9638671875, 3.5000000000 },
277 /* 2*/ { .8671875000, 2.5361328125 },
278 /* 3*/ { .7275390625, 1.6689453125 },
279 /* 4*/ { .5625000000, .9414062500 },
280 /* 5*/ { .3896484375, .3789062500 },
281 /* 6*/ { .2265625000, -.0107421875 },
282 /* 7*/ { .0908203125, -.2373046875 },
283 /* 8*/ { 0, -.3281250000 },
284 /* 9*/ { -.0478515625, -.3281250000 },
285 /*10*/ { -.0703125000, -.2802734375 },
286 /*11*/ { -.0732421875, -.2099609375 },
287 /*12*/ { -.0625000000, -.1367187500 },
288 /*13*/ { -.0439453125, -.0742187500 },
289 /*14*/ { -.0234375000, -.0302734375 },
290 /*15*/ { -.0068359375, -.0068359375 }
291 };
292
293 static double
alpha_calc(const struct arg * arg,double x,double y)294 alpha_calc(const struct arg *arg, double x, double y)
295 {
296 /* For [x-2..x+2],[y-2,y+2] calculate the weighted bicubic given a function
297 * which tells us whether a point is inside or outside the shape. First
298 * check if we need to do this at all:
299 */
300 switch (arg->check_fn(arg, x, y))
301 {
302 case OUTSIDE:
303 return 0; /* all samples outside the shape */
304
305 case INSIDE:
306 return 1; /* all samples inside the shape */
307
308 default:
309 {
310 int dy;
311 double alpha = 0;
312
313 # define FILTER_D (FILTER_WIDTH*FILTER_STEPS-1)
314 for (dy=-FILTER_D; dy<=FILTER_D; ++dy)
315 {
316 double wy = bicubic[abs(dy)][0];
317
318 if (wy != 0)
319 {
320 double alphay = 0;
321 int dx;
322
323 for (dx=-FILTER_D; dx<=FILTER_D; ++dx)
324 {
325 double wx = bicubic[abs(dx)][0];
326
327 if (wx != 0 && arg->inside_fn(arg, x+dx/16, y+dy/16))
328 alphay += wx;
329 }
330
331 alpha += wy * alphay;
332 }
333 }
334
335 /* This needs to be weighted for each dimension: */
336 return alpha / (FILTER_WEIGHT*FILTER_WEIGHT);
337 }
338 }
339 }
340
341 /* These are the shape functions. */
342 /* "square",
343 * { inside_square_filled, check_square_filled },
344 * { inside_square, check_square }
345 */
346 static int
square_check(double x,double y,double x1,double y1,double x2,double y2)347 square_check(double x, double y, double x1, double y1, double x2, double y2)
348 /* Is x,y inside the square (x1,y1)..(x2,y2)? */
349 {
350 /* Do a modified Cohen-Sutherland on one point, bit patterns that indicate
351 * 'outside' are:
352 *
353 * x<x1 | x<y1 | x<x2 | x<y2
354 * 0 x 0 x To the right
355 * 1 x 1 x To the left
356 * x 0 x 0 Below
357 * x 1 x 1 Above
358 *
359 * So 'inside' is (x<x1) != (x<x2) && (y<y1) != (y<y2);
360 */
361 return ((x<x1) ^ (x<x2)) & ((y<y1) ^ (y<y2));
362 }
363
364 static int
inside_square_filled(const struct arg * arg,double x,double y)365 inside_square_filled(const struct arg *arg, double x, double y)
366 {
367 return square_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2);
368 }
369
370 static int
square_check_line(const struct arg * arg,double x,double y,double w)371 square_check_line(const struct arg *arg, double x, double y, double w)
372 /* Check for a point being inside the boundaries implied by the given arg
373 * and assuming a width 2*w each side of the boundaries. This returns the
374 * 'check' INSIDE/OUTSIDE/0 result but note the semantics:
375 *
376 * +--------------+
377 * | | OUTSIDE
378 * | INSIDE |
379 * | |
380 * +--------------+
381 *
382 * And '0' means within the line boundaries.
383 */
384 {
385 double cx = (arg->x1+arg->x2)/2;
386 double wx = fabs(arg->x1-arg->x2)/2;
387 double cy = (arg->y1+arg->y2)/2;
388 double wy = fabs(arg->y1-arg->y2)/2;
389
390 if (square_check(x, y, cx-wx-w, cy-wy-w, cx+wx+w, cy+wy+w))
391 {
392 /* Inside, but maybe too far; check for the redundant case where
393 * the lines overlap:
394 */
395 wx -= w;
396 wy -= w;
397 if (wx > 0 && wy > 0 && square_check(x, y, cx-wx, cy-wy, cx+wx, cy+wy))
398 return INSIDE; /* between (inside) the boundary lines. */
399
400 return 0; /* inside the lines themselves. */
401 }
402
403 return OUTSIDE; /* outside the boundary lines. */
404 }
405
406 static int
check_square_filled(const struct arg * arg,double x,double y)407 check_square_filled(const struct arg *arg, double x, double y)
408 {
409 /* The filter extends +/-FILTER_WIDTH each side of each output point, so
410 * the check has to expand and contract the square by that amount; '0'
411 * means close enough to the edge of the square that the bicubic filter has
412 * to be run, OUTSIDE means alpha==0, INSIDE means alpha==1.
413 */
414 return square_check_line(arg, x, y, FILTER_WIDTH);
415 }
416
417 static int
inside_square(const struct arg * arg,double x,double y)418 inside_square(const struct arg *arg, double x, double y)
419 {
420 /* Return true if within the drawn lines, else false, no need to distinguish
421 * INSIDE vs OUTSIDE here:
422 */
423 return square_check_line(arg, x, y, arg->width/2) == 0;
424 }
425
426 static int
check_square(const struct arg * arg,double x,double y)427 check_square(const struct arg *arg, double x, double y)
428 {
429 /* So for this function a result of 'INSIDE' means inside the actual lines.
430 */
431 double w = arg->width/2;
432
433 if (square_check_line(arg, x, y, w+FILTER_WIDTH) == 0)
434 {
435 /* Somewhere close to the boundary lines. If far enough inside one of
436 * them then we can return INSIDE:
437 */
438 w -= FILTER_WIDTH;
439
440 if (w > 0 && square_check_line(arg, x, y, w) == 0)
441 return INSIDE;
442
443 /* Point is somewhere in the filter region: */
444 return 0;
445 }
446
447 else /* Inside or outside the square by more than w+FILTER_WIDTH. */
448 return OUTSIDE;
449 }
450
451 /* "circle",
452 * { inside_circle_filled, check_circle_filled },
453 * { inside_circle, check_circle }
454 *
455 * The functions here are analoguous to the square ones; however, they check
456 * the corresponding ellipse as opposed to the rectangle.
457 */
458 static int
circle_check(double x,double y,double x1,double y1,double x2,double y2)459 circle_check(double x, double y, double x1, double y1, double x2, double y2)
460 {
461 if (square_check(x, y, x1, y1, x2, y2))
462 {
463 /* Inside the square, so maybe inside the circle too: */
464 const double cx = (x1 + x2)/2;
465 const double cy = (y1 + y2)/2;
466 const double dx = x1 - x2;
467 const double dy = y1 - y2;
468
469 x = (x - cx)/dx;
470 y = (y - cy)/dy;
471
472 /* It is outside if the distance from the center is more than half the
473 * diameter:
474 */
475 return x*x+y*y < .25;
476 }
477
478 return 0; /* outside */
479 }
480
481 static int
inside_circle_filled(const struct arg * arg,double x,double y)482 inside_circle_filled(const struct arg *arg, double x, double y)
483 {
484 return circle_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2);
485 }
486
487 static int
circle_check_line(const struct arg * arg,double x,double y,double w)488 circle_check_line(const struct arg *arg, double x, double y, double w)
489 /* Check for a point being inside the boundaries implied by the given arg
490 * and assuming a width 2*w each side of the boundaries. This function has
491 * the same semantic as square_check_line but tests the circle.
492 */
493 {
494 double cx = (arg->x1+arg->x2)/2;
495 double wx = fabs(arg->x1-arg->x2)/2;
496 double cy = (arg->y1+arg->y2)/2;
497 double wy = fabs(arg->y1-arg->y2)/2;
498
499 if (circle_check(x, y, cx-wx-w, cy-wy-w, cx+wx+w, cy+wy+w))
500 {
501 /* Inside, but maybe too far; check for the redundant case where
502 * the lines overlap:
503 */
504 wx -= w;
505 wy -= w;
506 if (wx > 0 && wy > 0 && circle_check(x, y, cx-wx, cy-wy, cx+wx, cy+wy))
507 return INSIDE; /* between (inside) the boundary lines. */
508
509 return 0; /* inside the lines themselves. */
510 }
511
512 return OUTSIDE; /* outside the boundary lines. */
513 }
514
515 static int
check_circle_filled(const struct arg * arg,double x,double y)516 check_circle_filled(const struct arg *arg, double x, double y)
517 {
518 return circle_check_line(arg, x, y, FILTER_WIDTH);
519 }
520
521 static int
inside_circle(const struct arg * arg,double x,double y)522 inside_circle(const struct arg *arg, double x, double y)
523 {
524 return circle_check_line(arg, x, y, arg->width/2) == 0;
525 }
526
527 static int
check_circle(const struct arg * arg,double x,double y)528 check_circle(const struct arg *arg, double x, double y)
529 {
530 /* Exactly as the 'square' code. */
531 double w = arg->width/2;
532
533 if (circle_check_line(arg, x, y, w+FILTER_WIDTH) == 0)
534 {
535 w -= FILTER_WIDTH;
536
537 if (w > 0 && circle_check_line(arg, x, y, w) == 0)
538 return INSIDE;
539
540 /* Point is somewhere in the filter region: */
541 return 0;
542 }
543
544 else /* Inside or outside the square by more than w+FILTER_WIDTH. */
545 return OUTSIDE;
546 }
547
548 /* "line",
549 * { NULL, NULL }, There is no 'filled' line.
550 * { inside_line, check_line }
551 */
552 static int
line_check(double x,double y,double x1,double y1,double x2,double y2,double w,double expand)553 line_check(double x, double y, double x1, double y1, double x2, double y2,
554 double w, double expand)
555 {
556 /* Shift all the points to (arg->x1, arg->y1) */
557 double lx = x2 - x1;
558 double ly = y2 - y1;
559 double len2 = lx*lx + ly*ly;
560 double cross, dot;
561
562 x -= x1;
563 y -= y1;
564
565 /* The dot product is the distance down the line, the cross product is
566 * the distance away from the line:
567 *
568 * distance = |cross| / sqrt(len2)
569 */
570 cross = x * ly - y * lx;
571
572 /* If 'distance' is more than w the point is definitely outside the line:
573 *
574 * distance >= w
575 * |cross| >= w * sqrt(len2)
576 * cross^2 >= w^2 * len2:
577 */
578 if (cross*cross >= (w+expand)*(w+expand)*len2)
579 return 0; /* outside */
580
581 /* Now find the distance *along* the line; this comes from the dot product
582 * lx.x+ly.y. The actual distance (in pixels) is:
583 *
584 * distance = dot / sqrt(len2)
585 */
586 dot = lx * x + ly * y;
587
588 /* The test for 'outside' is:
589 *
590 * distance < 0 || distance > sqrt(len2)
591 * -> dot / sqrt(len2) > sqrt(len2)
592 * -> dot > len2
593 *
594 * But 'expand' is used for the filter width and needs to be handled too:
595 */
596 return dot > -expand && dot < len2+expand;
597 }
598
599 static int
inside_line(const struct arg * arg,double x,double y)600 inside_line(const struct arg *arg, double x, double y)
601 {
602 return line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2, 0);
603 }
604
605 static int
check_line(const struct arg * arg,double x,double y)606 check_line(const struct arg *arg, double x, double y)
607 {
608 /* The end caps of the line must be checked too; it's not enough just to
609 * widen the line by FILTER_WIDTH; 'expand' exists for this purpose:
610 */
611 if (line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2,
612 FILTER_WIDTH))
613 {
614 /* Inside the line+filter; far enough inside that the filter isn't
615 * required?
616 */
617 if (arg->width > 2*FILTER_WIDTH &&
618 line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2,
619 -FILTER_WIDTH))
620 return INSIDE;
621
622 return 0;
623 }
624
625 return OUTSIDE;
626 }
627
628 static const struct
629 {
630 const char *name;
631 shape_fn_ptr function[2/*fill,line*/][2];
632 # define FN_INSIDE 0
633 # define FN_CHECK 1
634 } shape_defs[] =
635 {
636 { "square",
637 { { inside_square_filled, check_square_filled },
638 { inside_square, check_square } }
639 },
640 { "circle",
641 { { inside_circle_filled, check_circle_filled },
642 { inside_circle, check_circle } }
643 },
644 { "line",
645 { { NULL, NULL },
646 { inside_line, check_line } }
647 }
648 };
649
650 #define shape_count ((sizeof shape_defs)/(sizeof shape_defs[0]))
651
652 static shape_fn_ptr
shape_of(const char * arg,double width,int f)653 shape_of(const char *arg, double width, int f)
654 {
655 unsigned int i;
656
657 for (i=0; i<shape_count; ++i) if (strcmp(shape_defs[i].name, arg) == 0)
658 {
659 shape_fn_ptr fn = shape_defs[i].function[width != 0][f];
660
661 if (fn != NULL)
662 return fn;
663
664 fprintf(stderr, "genpng: %s %s not supported\n",
665 width == 0 ? "filled" : "unfilled", arg);
666 exit(1);
667 }
668
669 fprintf(stderr, "genpng: %s: not a valid shape name\n", arg);
670 exit(1);
671 }
672
673 static void
parse_arg(struct arg * arg,const char ** argv)674 parse_arg(struct arg *arg, const char **argv/*7 arguments*/)
675 {
676 /* shape ::= color width shape x1 y1 x2 y2 */
677 arg->color = color_of(argv[0]);
678 arg->width = width_of(argv[1]);
679 arg->inside_fn = shape_of(argv[2], arg->width, FN_INSIDE);
680 arg->check_fn = shape_of(argv[2], arg->width, FN_CHECK);
681 arg->x1 = coordinate_of(argv[3]);
682 arg->y1 = coordinate_of(argv[4]);
683 arg->x2 = coordinate_of(argv[5]);
684 arg->y2 = coordinate_of(argv[6]);
685 }
686
687 static png_uint_32
read_wh(const char * name,const char * str)688 read_wh(const char *name, const char *str)
689 /* read a PNG width or height */
690 {
691 char *ep = NULL;
692 unsigned long ul = strtoul(str, &ep, 10);
693
694 if (ep != NULL && *ep == 0 && ul > 0 && ul <= 0x7fffffff)
695 return (png_uint_32)/*SAFE*/ul;
696
697 fprintf(stderr, "genpng: %s: invalid number %s\n", name, str);
698 exit(1);
699 }
700
701 static void
pixel(png_uint_16p p,struct arg * args,int nargs,double x,double y)702 pixel(png_uint_16p p, struct arg *args, int nargs, double x, double y)
703 {
704 /* Fill in the pixel by checking each shape (args[nargs]) for effects on
705 * the corresponding sample:
706 */
707 double r=0, g=0, b=0, a=0;
708
709 while (--nargs >= 0 && a != 1)
710 {
711 /* NOTE: alpha_calc can return a value outside the range 0..1 with the
712 * bicubic filter.
713 */
714 const double alpha = alpha_calc(args+nargs, x, y) * (1-a);
715
716 r += alpha * args[nargs].color->red;
717 g += alpha * args[nargs].color->green;
718 b += alpha * args[nargs].color->blue;
719 a += alpha;
720 }
721
722 /* 'a' may be negative or greater than 1; if it is, negative clamp the
723 * pixel to 0 if >1 clamp r/g/b:
724 */
725 if (a > 0)
726 {
727 if (a > 1)
728 {
729 if (r > 1) r = 1;
730 if (g > 1) g = 1;
731 if (b > 1) b = 1;
732 a = 1;
733 }
734
735 /* And fill in the pixel: */
736 p[0] = (png_uint_16)/*SAFE*/round(r * 65535);
737 p[1] = (png_uint_16)/*SAFE*/round(g * 65535);
738 p[2] = (png_uint_16)/*SAFE*/round(b * 65535);
739 p[3] = (png_uint_16)/*SAFE*/round(a * 65535);
740 }
741
742 else
743 p[3] = p[2] = p[1] = p[0] = 0;
744 }
745
746 int
main(int argc,const char ** argv)747 main(int argc, const char **argv)
748 {
749 int convert_to_8bit = 0;
750
751 /* There is one option: --8bit: */
752 if (argc > 1 && strcmp(argv[1], "--8bit") == 0)
753 --argc, ++argv, convert_to_8bit = 1;
754
755 if (argc >= 3)
756 {
757 png_uint_16p buffer;
758 int nshapes;
759 png_image image;
760 # define max_shapes 256
761 struct arg arg_list[max_shapes];
762
763 /* The libpng Simplified API write code requires a fully initialized
764 * structure.
765 */
766 memset(&image, 0, sizeof image);
767 image.version = PNG_IMAGE_VERSION;
768 image.opaque = NULL;
769 image.width = read_wh("width", argv[1]);
770 image.height = read_wh("height", argv[2]);
771 image.format = PNG_FORMAT_LINEAR_RGB_ALPHA;
772 image.flags = 0;
773 image.colormap_entries = 0;
774
775 /* Check the remainder of the arguments */
776 for (nshapes=0; 3+7*(nshapes+1) <= argc && nshapes < max_shapes;
777 ++nshapes)
778 parse_arg(arg_list+nshapes, argv+3+7*nshapes);
779
780 if (3+7*nshapes != argc)
781 {
782 fprintf(stderr, "genpng: %s: too many arguments\n", argv[3+7*nshapes]);
783 return 1;
784 }
785
786 /* Create the buffer: */
787 buffer = malloc(PNG_IMAGE_SIZE(image));
788
789 if (buffer != NULL)
790 {
791 png_uint_32 y;
792
793 /* Write each row... */
794 for (y=0; y<image.height; ++y)
795 {
796 png_uint_32 x;
797
798 /* Each pixel in each row: */
799 for (x=0; x<image.width; ++x)
800 pixel(buffer + 4*(x + y*image.width), arg_list, nshapes, x, y);
801 }
802
803 /* Write the result (to stdout) */
804 if (png_image_write_to_stdio(&image, stdout, convert_to_8bit,
805 buffer, 0/*row_stride*/, NULL/*colormap*/))
806 {
807 free(buffer);
808 return 0; /* success */
809 }
810
811 else
812 fprintf(stderr, "genpng: write stdout: %s\n", image.message);
813
814 free(buffer);
815 }
816
817 else
818 fprintf(stderr, "genpng: out of memory: %lu bytes\n",
819 (unsigned long)PNG_IMAGE_SIZE(image));
820 }
821
822 else
823 {
824 /* Wrong number of arguments */
825 fprintf(stderr, "genpng: usage: genpng [--8bit] width height {shape}\n"
826 " Generate a transparent PNG in RGBA (truecolor+alpha) format\n"
827 " containing the given shape or shapes. Shapes are defined:\n"
828 "\n"
829 " shape ::= color width shape x1 y1 x2 y2\n"
830 " color ::= black|white|red|green|yellow|blue\n"
831 " color ::= brown|purple|pink|orange|gray|cyan\n"
832 " width ::= filled|<number>\n"
833 " shape ::= circle|square|line\n"
834 " x1,x2 ::= <number>\n"
835 " y1,y2 ::= <number>\n"
836 "\n"
837 " Numbers are floating point numbers describing points relative to\n"
838 " the top left of the output PNG as pixel coordinates. The 'width'\n"
839 " parameter is either the width of the line (in output pixels) used\n"
840 " to draw the shape or 'filled' to indicate that the shape should\n"
841 " be filled with the color.\n"
842 "\n"
843 " Colors are interpreted loosely to give access to the eight full\n"
844 " intensity RGB values:\n"
845 "\n"
846 " black, red, green, blue, yellow, cyan, purple, white,\n"
847 "\n"
848 " Cyan is full intensity blue+green; RGB(0,1,1), plus the following\n"
849 " lower intensity values:\n"
850 "\n"
851 " brown: red+orange: RGB(0.5, 0.125, 0) (dark red+orange)\n"
852 " pink: red+white: RGB(1.0, 0.5, 0.5)\n"
853 " orange: red+yellow: RGB(1.0, 0.5, 0)\n"
854 " gray: black+white: RGB(0.5, 0.5, 0.5)\n"
855 "\n"
856 " The RGB values are selected to make detection of aliasing errors\n"
857 " easy. The names are selected to make the description of errors\n"
858 " easy.\n"
859 "\n"
860 " The PNG is written to stdout, if --8bit is given a 32bpp RGBA sRGB\n"
861 " file is produced, otherwise a 64bpp RGBA linear encoded file is\n"
862 " written.\n");
863 }
864
865 return 1;
866 }
867 #endif /* SIMPLIFIED_WRITE && STDIO */
868