1 // Copyright 2014 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef BASE_NUMERICS_SAFE_MATH_IMPL_H_ 6 #define BASE_NUMERICS_SAFE_MATH_IMPL_H_ 7 8 #include <stddef.h> 9 #include <stdint.h> 10 11 #include <cmath> 12 #include <cstdlib> 13 #include <limits> 14 #include <type_traits> 15 16 #include "base/numerics/safe_conversions.h" 17 18 namespace base { 19 namespace internal { 20 21 // Everything from here up to the floating point operations is portable C++, 22 // but it may not be fast. This code could be split based on 23 // platform/architecture and replaced with potentially faster implementations. 24 25 // Integer promotion templates used by the portable checked integer arithmetic. 26 template <size_t Size, bool IsSigned> 27 struct IntegerForSizeAndSign; 28 template <> 29 struct IntegerForSizeAndSign<1, true> { 30 typedef int8_t type; 31 }; 32 template <> 33 struct IntegerForSizeAndSign<1, false> { 34 typedef uint8_t type; 35 }; 36 template <> 37 struct IntegerForSizeAndSign<2, true> { 38 typedef int16_t type; 39 }; 40 template <> 41 struct IntegerForSizeAndSign<2, false> { 42 typedef uint16_t type; 43 }; 44 template <> 45 struct IntegerForSizeAndSign<4, true> { 46 typedef int32_t type; 47 }; 48 template <> 49 struct IntegerForSizeAndSign<4, false> { 50 typedef uint32_t type; 51 }; 52 template <> 53 struct IntegerForSizeAndSign<8, true> { 54 typedef int64_t type; 55 }; 56 template <> 57 struct IntegerForSizeAndSign<8, false> { 58 typedef uint64_t type; 59 }; 60 61 // WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to 62 // support 128-bit math, then the ArithmeticPromotion template below will need 63 // to be updated (or more likely replaced with a decltype expression). 64 65 template <typename Integer> 66 struct UnsignedIntegerForSize { 67 typedef typename std::enable_if< 68 std::numeric_limits<Integer>::is_integer, 69 typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type; 70 }; 71 72 template <typename Integer> 73 struct SignedIntegerForSize { 74 typedef typename std::enable_if< 75 std::numeric_limits<Integer>::is_integer, 76 typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type; 77 }; 78 79 template <typename Integer> 80 struct TwiceWiderInteger { 81 typedef typename std::enable_if< 82 std::numeric_limits<Integer>::is_integer, 83 typename IntegerForSizeAndSign< 84 sizeof(Integer) * 2, 85 std::numeric_limits<Integer>::is_signed>::type>::type type; 86 }; 87 88 template <typename Integer> 89 struct PositionOfSignBit { 90 static const typename std::enable_if<std::numeric_limits<Integer>::is_integer, 91 size_t>::type value = 92 8 * sizeof(Integer) - 1; 93 }; 94 95 // This is used for UnsignedAbs, where we need to support floating-point 96 // template instantiations even though we don't actually support the operations. 97 // However, there is no corresponding implementation of e.g. CheckedUnsignedAbs, 98 // so the float versions will not compile. 99 template <typename Numeric, 100 bool IsInteger = std::numeric_limits<Numeric>::is_integer, 101 bool IsFloat = std::numeric_limits<Numeric>::is_iec559> 102 struct UnsignedOrFloatForSize; 103 104 template <typename Numeric> 105 struct UnsignedOrFloatForSize<Numeric, true, false> { 106 typedef typename UnsignedIntegerForSize<Numeric>::type type; 107 }; 108 109 template <typename Numeric> 110 struct UnsignedOrFloatForSize<Numeric, false, true> { 111 typedef Numeric type; 112 }; 113 114 // Helper templates for integer manipulations. 115 116 template <typename T> 117 bool HasSignBit(T x) { 118 // Cast to unsigned since right shift on signed is undefined. 119 return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >> 120 PositionOfSignBit<T>::value); 121 } 122 123 // This wrapper undoes the standard integer promotions. 124 template <typename T> 125 T BinaryComplement(T x) { 126 return ~x; 127 } 128 129 // Here are the actual portable checked integer math implementations. 130 // TODO(jschuh): Break this code out from the enable_if pattern and find a clean 131 // way to coalesce things into the CheckedNumericState specializations below. 132 133 template <typename T> 134 typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type 135 CheckedAdd(T x, T y, RangeConstraint* validity) { 136 // Since the value of x+y is undefined if we have a signed type, we compute 137 // it using the unsigned type of the same size. 138 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; 139 UnsignedDst ux = static_cast<UnsignedDst>(x); 140 UnsignedDst uy = static_cast<UnsignedDst>(y); 141 UnsignedDst uresult = ux + uy; 142 // Addition is valid if the sign of (x + y) is equal to either that of x or 143 // that of y. 144 if (std::numeric_limits<T>::is_signed) { 145 if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy)))) 146 *validity = RANGE_VALID; 147 else // Direction of wrap is inverse of result sign. 148 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; 149 150 } else { // Unsigned is either valid or overflow. 151 *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW; 152 } 153 return static_cast<T>(uresult); 154 } 155 156 template <typename T> 157 typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type 158 CheckedSub(T x, T y, RangeConstraint* validity) { 159 // Since the value of x+y is undefined if we have a signed type, we compute 160 // it using the unsigned type of the same size. 161 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; 162 UnsignedDst ux = static_cast<UnsignedDst>(x); 163 UnsignedDst uy = static_cast<UnsignedDst>(y); 164 UnsignedDst uresult = ux - uy; 165 // Subtraction is valid if either x and y have same sign, or (x-y) and x have 166 // the same sign. 167 if (std::numeric_limits<T>::is_signed) { 168 if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy)))) 169 *validity = RANGE_VALID; 170 else // Direction of wrap is inverse of result sign. 171 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; 172 173 } else { // Unsigned is either valid or underflow. 174 *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW; 175 } 176 return static_cast<T>(uresult); 177 } 178 179 // Integer multiplication is a bit complicated. In the fast case we just 180 // we just promote to a twice wider type, and range check the result. In the 181 // slow case we need to manually check that the result won't be truncated by 182 // checking with division against the appropriate bound. 183 template <typename T> 184 typename std::enable_if<std::numeric_limits<T>::is_integer && 185 sizeof(T) * 2 <= sizeof(uintmax_t), 186 T>::type 187 CheckedMul(T x, T y, RangeConstraint* validity) { 188 typedef typename TwiceWiderInteger<T>::type IntermediateType; 189 IntermediateType tmp = 190 static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y); 191 *validity = DstRangeRelationToSrcRange<T>(tmp); 192 return static_cast<T>(tmp); 193 } 194 195 template <typename T> 196 typename std::enable_if<std::numeric_limits<T>::is_integer && 197 std::numeric_limits<T>::is_signed && 198 (sizeof(T) * 2 > sizeof(uintmax_t)), 199 T>::type 200 CheckedMul(T x, T y, RangeConstraint* validity) { 201 // If either side is zero then the result will be zero. 202 if (!x || !y) { 203 return RANGE_VALID; 204 205 } else if (x > 0) { 206 if (y > 0) 207 *validity = 208 x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW; 209 else 210 *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID 211 : RANGE_UNDERFLOW; 212 213 } else { 214 if (y > 0) 215 *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID 216 : RANGE_UNDERFLOW; 217 else 218 *validity = 219 y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW; 220 } 221 222 return x * y; 223 } 224 225 template <typename T> 226 typename std::enable_if<std::numeric_limits<T>::is_integer && 227 !std::numeric_limits<T>::is_signed && 228 (sizeof(T) * 2 > sizeof(uintmax_t)), 229 T>::type 230 CheckedMul(T x, T y, RangeConstraint* validity) { 231 *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y) 232 ? RANGE_VALID 233 : RANGE_OVERFLOW; 234 return x * y; 235 } 236 237 // Division just requires a check for an invalid negation on signed min/-1. 238 template <typename T> 239 T CheckedDiv(T x, 240 T y, 241 RangeConstraint* validity, 242 typename std::enable_if<std::numeric_limits<T>::is_integer, 243 int>::type = 0) { 244 if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() && 245 y == static_cast<T>(-1)) { 246 *validity = RANGE_OVERFLOW; 247 return std::numeric_limits<T>::min(); 248 } 249 250 *validity = RANGE_VALID; 251 return x / y; 252 } 253 254 template <typename T> 255 typename std::enable_if<std::numeric_limits<T>::is_integer && 256 std::numeric_limits<T>::is_signed, 257 T>::type 258 CheckedMod(T x, T y, RangeConstraint* validity) { 259 *validity = y > 0 ? RANGE_VALID : RANGE_INVALID; 260 return x % y; 261 } 262 263 template <typename T> 264 typename std::enable_if<std::numeric_limits<T>::is_integer && 265 !std::numeric_limits<T>::is_signed, 266 T>::type 267 CheckedMod(T x, T y, RangeConstraint* validity) { 268 *validity = RANGE_VALID; 269 return x % y; 270 } 271 272 template <typename T> 273 typename std::enable_if<std::numeric_limits<T>::is_integer && 274 std::numeric_limits<T>::is_signed, 275 T>::type 276 CheckedNeg(T value, RangeConstraint* validity) { 277 *validity = 278 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; 279 // The negation of signed min is min, so catch that one. 280 return -value; 281 } 282 283 template <typename T> 284 typename std::enable_if<std::numeric_limits<T>::is_integer && 285 !std::numeric_limits<T>::is_signed, 286 T>::type 287 CheckedNeg(T value, RangeConstraint* validity) { 288 // The only legal unsigned negation is zero. 289 *validity = value ? RANGE_UNDERFLOW : RANGE_VALID; 290 return static_cast<T>( 291 -static_cast<typename SignedIntegerForSize<T>::type>(value)); 292 } 293 294 template <typename T> 295 typename std::enable_if<std::numeric_limits<T>::is_integer && 296 std::numeric_limits<T>::is_signed, 297 T>::type 298 CheckedAbs(T value, RangeConstraint* validity) { 299 *validity = 300 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; 301 return static_cast<T>(std::abs(value)); 302 } 303 304 template <typename T> 305 typename std::enable_if<std::numeric_limits<T>::is_integer && 306 !std::numeric_limits<T>::is_signed, 307 T>::type 308 CheckedAbs(T value, RangeConstraint* validity) { 309 // T is unsigned, so |value| must already be positive. 310 *validity = RANGE_VALID; 311 return value; 312 } 313 314 template <typename T> 315 typename std::enable_if<std::numeric_limits<T>::is_integer && 316 std::numeric_limits<T>::is_signed, 317 typename UnsignedIntegerForSize<T>::type>::type 318 CheckedUnsignedAbs(T value) { 319 typedef typename UnsignedIntegerForSize<T>::type UnsignedT; 320 return value == std::numeric_limits<T>::min() 321 ? static_cast<UnsignedT>(std::numeric_limits<T>::max()) + 1 322 : static_cast<UnsignedT>(std::abs(value)); 323 } 324 325 template <typename T> 326 typename std::enable_if<std::numeric_limits<T>::is_integer && 327 !std::numeric_limits<T>::is_signed, 328 T>::type 329 CheckedUnsignedAbs(T value) { 330 // T is unsigned, so |value| must already be positive. 331 return value; 332 } 333 334 // These are the floating point stubs that the compiler needs to see. Only the 335 // negation operation is ever called. 336 #define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \ 337 template <typename T> \ 338 typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type \ 339 Checked##NAME(T, T, RangeConstraint*) { \ 340 NOTREACHED(); \ 341 return 0; \ 342 } 343 344 BASE_FLOAT_ARITHMETIC_STUBS(Add) 345 BASE_FLOAT_ARITHMETIC_STUBS(Sub) 346 BASE_FLOAT_ARITHMETIC_STUBS(Mul) 347 BASE_FLOAT_ARITHMETIC_STUBS(Div) 348 BASE_FLOAT_ARITHMETIC_STUBS(Mod) 349 350 #undef BASE_FLOAT_ARITHMETIC_STUBS 351 352 template <typename T> 353 typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg( 354 T value, 355 RangeConstraint*) { 356 return -value; 357 } 358 359 template <typename T> 360 typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs( 361 T value, 362 RangeConstraint*) { 363 return std::abs(value); 364 } 365 366 // Floats carry around their validity state with them, but integers do not. So, 367 // we wrap the underlying value in a specialization in order to hide that detail 368 // and expose an interface via accessors. 369 enum NumericRepresentation { 370 NUMERIC_INTEGER, 371 NUMERIC_FLOATING, 372 NUMERIC_UNKNOWN 373 }; 374 375 template <typename NumericType> 376 struct GetNumericRepresentation { 377 static const NumericRepresentation value = 378 std::numeric_limits<NumericType>::is_integer 379 ? NUMERIC_INTEGER 380 : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING 381 : NUMERIC_UNKNOWN); 382 }; 383 384 template <typename T, NumericRepresentation type = 385 GetNumericRepresentation<T>::value> 386 class CheckedNumericState {}; 387 388 // Integrals require quite a bit of additional housekeeping to manage state. 389 template <typename T> 390 class CheckedNumericState<T, NUMERIC_INTEGER> { 391 private: 392 T value_; 393 RangeConstraint validity_; 394 395 public: 396 template <typename Src, NumericRepresentation type> 397 friend class CheckedNumericState; 398 399 CheckedNumericState() : value_(0), validity_(RANGE_VALID) {} 400 401 template <typename Src> 402 CheckedNumericState(Src value, RangeConstraint validity) 403 : value_(static_cast<T>(value)), 404 validity_(GetRangeConstraint(validity | 405 DstRangeRelationToSrcRange<T>(value))) { 406 static_assert(std::numeric_limits<Src>::is_specialized, 407 "Argument must be numeric."); 408 } 409 410 // Copy constructor. 411 template <typename Src> 412 CheckedNumericState(const CheckedNumericState<Src>& rhs) 413 : value_(static_cast<T>(rhs.value())), 414 validity_(GetRangeConstraint( 415 rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {} 416 417 template <typename Src> 418 explicit CheckedNumericState( 419 Src value, 420 typename std::enable_if<std::numeric_limits<Src>::is_specialized, 421 int>::type = 0) 422 : value_(static_cast<T>(value)), 423 validity_(DstRangeRelationToSrcRange<T>(value)) {} 424 425 RangeConstraint validity() const { return validity_; } 426 T value() const { return value_; } 427 }; 428 429 // Floating points maintain their own validity, but need translation wrappers. 430 template <typename T> 431 class CheckedNumericState<T, NUMERIC_FLOATING> { 432 private: 433 T value_; 434 435 public: 436 template <typename Src, NumericRepresentation type> 437 friend class CheckedNumericState; 438 439 CheckedNumericState() : value_(0.0) {} 440 441 template <typename Src> 442 CheckedNumericState( 443 Src value, 444 RangeConstraint /* validity */, 445 typename std::enable_if<std::numeric_limits<Src>::is_integer, int>::type = 446 0) { 447 switch (DstRangeRelationToSrcRange<T>(value)) { 448 case RANGE_VALID: 449 value_ = static_cast<T>(value); 450 break; 451 452 case RANGE_UNDERFLOW: 453 value_ = -std::numeric_limits<T>::infinity(); 454 break; 455 456 case RANGE_OVERFLOW: 457 value_ = std::numeric_limits<T>::infinity(); 458 break; 459 460 case RANGE_INVALID: 461 value_ = std::numeric_limits<T>::quiet_NaN(); 462 break; 463 464 default: 465 NOTREACHED(); 466 } 467 } 468 469 template <typename Src> 470 explicit CheckedNumericState( 471 Src value, 472 typename std::enable_if<std::numeric_limits<Src>::is_specialized, 473 int>::type = 0) 474 : value_(static_cast<T>(value)) {} 475 476 // Copy constructor. 477 template <typename Src> 478 CheckedNumericState(const CheckedNumericState<Src>& rhs) 479 : value_(static_cast<T>(rhs.value())) {} 480 481 RangeConstraint validity() const { 482 return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(), 483 value_ >= -std::numeric_limits<T>::max()); 484 } 485 T value() const { return value_; } 486 }; 487 488 // For integers less than 128-bit and floats 32-bit or larger, we can distil 489 // C/C++ arithmetic promotions down to two simple rules: 490 // 1. The type with the larger maximum exponent always takes precedence. 491 // 2. The resulting type must be promoted to at least an int. 492 // The following template specializations implement that promotion logic. 493 enum ArithmeticPromotionCategory { 494 LEFT_PROMOTION, 495 RIGHT_PROMOTION, 496 DEFAULT_PROMOTION 497 }; 498 499 template <typename Lhs, 500 typename Rhs = Lhs, 501 ArithmeticPromotionCategory Promotion = 502 (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) 503 ? (MaxExponent<Lhs>::value > MaxExponent<int>::value 504 ? LEFT_PROMOTION 505 : DEFAULT_PROMOTION) 506 : (MaxExponent<Rhs>::value > MaxExponent<int>::value 507 ? RIGHT_PROMOTION 508 : DEFAULT_PROMOTION) > 509 struct ArithmeticPromotion; 510 511 template <typename Lhs, typename Rhs> 512 struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> { 513 typedef Lhs type; 514 }; 515 516 template <typename Lhs, typename Rhs> 517 struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> { 518 typedef Rhs type; 519 }; 520 521 template <typename Lhs, typename Rhs> 522 struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> { 523 typedef int type; 524 }; 525 526 // We can statically check if operations on the provided types can wrap, so we 527 // can skip the checked operations if they're not needed. So, for an integer we 528 // care if the destination type preserves the sign and is twice the width of 529 // the source. 530 template <typename T, typename Lhs, typename Rhs> 531 struct IsIntegerArithmeticSafe { 532 static const bool value = !std::numeric_limits<T>::is_iec559 && 533 StaticDstRangeRelationToSrcRange<T, Lhs>::value == 534 NUMERIC_RANGE_CONTAINED && 535 sizeof(T) >= (2 * sizeof(Lhs)) && 536 StaticDstRangeRelationToSrcRange<T, Rhs>::value != 537 NUMERIC_RANGE_CONTAINED && 538 sizeof(T) >= (2 * sizeof(Rhs)); 539 }; 540 541 } // namespace internal 542 } // namespace base 543 544 #endif // BASE_NUMERICS_SAFE_MATH_IMPL_H_ 545