• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "llvm/ADT/STLExtras.h"
2 #include "llvm/Analysis/Passes.h"
3 #include "llvm/IR/IRBuilder.h"
4 #include "llvm/IR/LLVMContext.h"
5 #include "llvm/IR/LegacyPassManager.h"
6 #include "llvm/IR/Module.h"
7 #include "llvm/IR/Verifier.h"
8 #include "llvm/Support/TargetSelect.h"
9 #include "llvm/Transforms/Scalar.h"
10 #include <cctype>
11 #include <cstdio>
12 #include <map>
13 #include <string>
14 #include <vector>
15 #include "../include/KaleidoscopeJIT.h"
16 
17 using namespace llvm;
18 using namespace llvm::orc;
19 
20 //===----------------------------------------------------------------------===//
21 // Lexer
22 //===----------------------------------------------------------------------===//
23 
24 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
25 // of these for known things.
26 enum Token {
27   tok_eof = -1,
28 
29   // commands
30   tok_def = -2,
31   tok_extern = -3,
32 
33   // primary
34   tok_identifier = -4,
35   tok_number = -5
36 };
37 
38 static std::string IdentifierStr; // Filled in if tok_identifier
39 static double NumVal;             // Filled in if tok_number
40 
41 /// gettok - Return the next token from standard input.
gettok()42 static int gettok() {
43   static int LastChar = ' ';
44 
45   // Skip any whitespace.
46   while (isspace(LastChar))
47     LastChar = getchar();
48 
49   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
50     IdentifierStr = LastChar;
51     while (isalnum((LastChar = getchar())))
52       IdentifierStr += LastChar;
53 
54     if (IdentifierStr == "def")
55       return tok_def;
56     if (IdentifierStr == "extern")
57       return tok_extern;
58     return tok_identifier;
59   }
60 
61   if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
62     std::string NumStr;
63     do {
64       NumStr += LastChar;
65       LastChar = getchar();
66     } while (isdigit(LastChar) || LastChar == '.');
67 
68     NumVal = strtod(NumStr.c_str(), nullptr);
69     return tok_number;
70   }
71 
72   if (LastChar == '#') {
73     // Comment until end of line.
74     do
75       LastChar = getchar();
76     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
77 
78     if (LastChar != EOF)
79       return gettok();
80   }
81 
82   // Check for end of file.  Don't eat the EOF.
83   if (LastChar == EOF)
84     return tok_eof;
85 
86   // Otherwise, just return the character as its ascii value.
87   int ThisChar = LastChar;
88   LastChar = getchar();
89   return ThisChar;
90 }
91 
92 //===----------------------------------------------------------------------===//
93 // Abstract Syntax Tree (aka Parse Tree)
94 //===----------------------------------------------------------------------===//
95 namespace {
96 /// ExprAST - Base class for all expression nodes.
97 class ExprAST {
98 public:
~ExprAST()99   virtual ~ExprAST() {}
100   virtual Value *codegen() = 0;
101 };
102 
103 /// NumberExprAST - Expression class for numeric literals like "1.0".
104 class NumberExprAST : public ExprAST {
105   double Val;
106 
107 public:
NumberExprAST(double Val)108   NumberExprAST(double Val) : Val(Val) {}
109   Value *codegen() override;
110 };
111 
112 /// VariableExprAST - Expression class for referencing a variable, like "a".
113 class VariableExprAST : public ExprAST {
114   std::string Name;
115 
116 public:
VariableExprAST(const std::string & Name)117   VariableExprAST(const std::string &Name) : Name(Name) {}
118   Value *codegen() override;
119 };
120 
121 /// BinaryExprAST - Expression class for a binary operator.
122 class BinaryExprAST : public ExprAST {
123   char Op;
124   std::unique_ptr<ExprAST> LHS, RHS;
125 
126 public:
BinaryExprAST(char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)127   BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
128                 std::unique_ptr<ExprAST> RHS)
129       : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
130   Value *codegen() override;
131 };
132 
133 /// CallExprAST - Expression class for function calls.
134 class CallExprAST : public ExprAST {
135   std::string Callee;
136   std::vector<std::unique_ptr<ExprAST>> Args;
137 
138 public:
CallExprAST(const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)139   CallExprAST(const std::string &Callee,
140               std::vector<std::unique_ptr<ExprAST>> Args)
141       : Callee(Callee), Args(std::move(Args)) {}
142   Value *codegen() override;
143 };
144 
145 /// PrototypeAST - This class represents the "prototype" for a function,
146 /// which captures its name, and its argument names (thus implicitly the number
147 /// of arguments the function takes).
148 class PrototypeAST {
149   std::string Name;
150   std::vector<std::string> Args;
151 
152 public:
PrototypeAST(const std::string & Name,std::vector<std::string> Args)153   PrototypeAST(const std::string &Name, std::vector<std::string> Args)
154       : Name(Name), Args(std::move(Args)) {}
155   Function *codegen();
getName() const156   const std::string &getName() const { return Name; }
157 };
158 
159 /// FunctionAST - This class represents a function definition itself.
160 class FunctionAST {
161   std::unique_ptr<PrototypeAST> Proto;
162   std::unique_ptr<ExprAST> Body;
163 
164 public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,std::unique_ptr<ExprAST> Body)165   FunctionAST(std::unique_ptr<PrototypeAST> Proto,
166               std::unique_ptr<ExprAST> Body)
167       : Proto(std::move(Proto)), Body(std::move(Body)) {}
168   Function *codegen();
169 };
170 } // end anonymous namespace
171 
172 //===----------------------------------------------------------------------===//
173 // Parser
174 //===----------------------------------------------------------------------===//
175 
176 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
177 /// token the parser is looking at.  getNextToken reads another token from the
178 /// lexer and updates CurTok with its results.
179 static int CurTok;
getNextToken()180 static int getNextToken() { return CurTok = gettok(); }
181 
182 /// BinopPrecedence - This holds the precedence for each binary operator that is
183 /// defined.
184 static std::map<char, int> BinopPrecedence;
185 
186 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()187 static int GetTokPrecedence() {
188   if (!isascii(CurTok))
189     return -1;
190 
191   // Make sure it's a declared binop.
192   int TokPrec = BinopPrecedence[CurTok];
193   if (TokPrec <= 0)
194     return -1;
195   return TokPrec;
196 }
197 
198 /// Error* - These are little helper functions for error handling.
Error(const char * Str)199 std::unique_ptr<ExprAST> Error(const char *Str) {
200   fprintf(stderr, "Error: %s\n", Str);
201   return nullptr;
202 }
203 
ErrorP(const char * Str)204 std::unique_ptr<PrototypeAST> ErrorP(const char *Str) {
205   Error(Str);
206   return nullptr;
207 }
208 
209 static std::unique_ptr<ExprAST> ParseExpression();
210 
211 /// numberexpr ::= number
ParseNumberExpr()212 static std::unique_ptr<ExprAST> ParseNumberExpr() {
213   auto Result = llvm::make_unique<NumberExprAST>(NumVal);
214   getNextToken(); // consume the number
215   return std::move(Result);
216 }
217 
218 /// parenexpr ::= '(' expression ')'
ParseParenExpr()219 static std::unique_ptr<ExprAST> ParseParenExpr() {
220   getNextToken(); // eat (.
221   auto V = ParseExpression();
222   if (!V)
223     return nullptr;
224 
225   if (CurTok != ')')
226     return Error("expected ')'");
227   getNextToken(); // eat ).
228   return V;
229 }
230 
231 /// identifierexpr
232 ///   ::= identifier
233 ///   ::= identifier '(' expression* ')'
ParseIdentifierExpr()234 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
235   std::string IdName = IdentifierStr;
236 
237   getNextToken(); // eat identifier.
238 
239   if (CurTok != '(') // Simple variable ref.
240     return llvm::make_unique<VariableExprAST>(IdName);
241 
242   // Call.
243   getNextToken(); // eat (
244   std::vector<std::unique_ptr<ExprAST>> Args;
245   if (CurTok != ')') {
246     while (1) {
247       if (auto Arg = ParseExpression())
248         Args.push_back(std::move(Arg));
249       else
250         return nullptr;
251 
252       if (CurTok == ')')
253         break;
254 
255       if (CurTok != ',')
256         return Error("Expected ')' or ',' in argument list");
257       getNextToken();
258     }
259   }
260 
261   // Eat the ')'.
262   getNextToken();
263 
264   return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
265 }
266 
267 /// primary
268 ///   ::= identifierexpr
269 ///   ::= numberexpr
270 ///   ::= parenexpr
ParsePrimary()271 static std::unique_ptr<ExprAST> ParsePrimary() {
272   switch (CurTok) {
273   default:
274     return Error("unknown token when expecting an expression");
275   case tok_identifier:
276     return ParseIdentifierExpr();
277   case tok_number:
278     return ParseNumberExpr();
279   case '(':
280     return ParseParenExpr();
281   }
282 }
283 
284 /// binoprhs
285 ///   ::= ('+' primary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)286 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
287                                               std::unique_ptr<ExprAST> LHS) {
288   // If this is a binop, find its precedence.
289   while (1) {
290     int TokPrec = GetTokPrecedence();
291 
292     // If this is a binop that binds at least as tightly as the current binop,
293     // consume it, otherwise we are done.
294     if (TokPrec < ExprPrec)
295       return LHS;
296 
297     // Okay, we know this is a binop.
298     int BinOp = CurTok;
299     getNextToken(); // eat binop
300 
301     // Parse the primary expression after the binary operator.
302     auto RHS = ParsePrimary();
303     if (!RHS)
304       return nullptr;
305 
306     // If BinOp binds less tightly with RHS than the operator after RHS, let
307     // the pending operator take RHS as its LHS.
308     int NextPrec = GetTokPrecedence();
309     if (TokPrec < NextPrec) {
310       RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
311       if (!RHS)
312         return nullptr;
313     }
314 
315     // Merge LHS/RHS.
316     LHS =
317         llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
318   }
319 }
320 
321 /// expression
322 ///   ::= primary binoprhs
323 ///
ParseExpression()324 static std::unique_ptr<ExprAST> ParseExpression() {
325   auto LHS = ParsePrimary();
326   if (!LHS)
327     return nullptr;
328 
329   return ParseBinOpRHS(0, std::move(LHS));
330 }
331 
332 /// prototype
333 ///   ::= id '(' id* ')'
ParsePrototype()334 static std::unique_ptr<PrototypeAST> ParsePrototype() {
335   if (CurTok != tok_identifier)
336     return ErrorP("Expected function name in prototype");
337 
338   std::string FnName = IdentifierStr;
339   getNextToken();
340 
341   if (CurTok != '(')
342     return ErrorP("Expected '(' in prototype");
343 
344   std::vector<std::string> ArgNames;
345   while (getNextToken() == tok_identifier)
346     ArgNames.push_back(IdentifierStr);
347   if (CurTok != ')')
348     return ErrorP("Expected ')' in prototype");
349 
350   // success.
351   getNextToken(); // eat ')'.
352 
353   return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
354 }
355 
356 /// definition ::= 'def' prototype expression
ParseDefinition()357 static std::unique_ptr<FunctionAST> ParseDefinition() {
358   getNextToken(); // eat def.
359   auto Proto = ParsePrototype();
360   if (!Proto)
361     return nullptr;
362 
363   if (auto E = ParseExpression())
364     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
365   return nullptr;
366 }
367 
368 /// toplevelexpr ::= expression
ParseTopLevelExpr()369 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
370   if (auto E = ParseExpression()) {
371     // Make an anonymous proto.
372     auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
373                                                  std::vector<std::string>());
374     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
375   }
376   return nullptr;
377 }
378 
379 /// external ::= 'extern' prototype
ParseExtern()380 static std::unique_ptr<PrototypeAST> ParseExtern() {
381   getNextToken(); // eat extern.
382   return ParsePrototype();
383 }
384 
385 //===----------------------------------------------------------------------===//
386 // Code Generation
387 //===----------------------------------------------------------------------===//
388 
389 static std::unique_ptr<Module> TheModule;
390 static IRBuilder<> Builder(getGlobalContext());
391 static std::map<std::string, Value *> NamedValues;
392 static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
393 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
394 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
395 
ErrorV(const char * Str)396 Value *ErrorV(const char *Str) {
397   Error(Str);
398   return nullptr;
399 }
400 
getFunction(std::string Name)401 Function *getFunction(std::string Name) {
402   // First, see if the function has already been added to the current module.
403   if (auto *F = TheModule->getFunction(Name))
404     return F;
405 
406   // If not, check whether we can codegen the declaration from some existing
407   // prototype.
408   auto FI = FunctionProtos.find(Name);
409   if (FI != FunctionProtos.end())
410     return FI->second->codegen();
411 
412   // If no existing prototype exists, return null.
413   return nullptr;
414 }
415 
codegen()416 Value *NumberExprAST::codegen() {
417   return ConstantFP::get(getGlobalContext(), APFloat(Val));
418 }
419 
codegen()420 Value *VariableExprAST::codegen() {
421   // Look this variable up in the function.
422   Value *V = NamedValues[Name];
423   if (!V)
424     return ErrorV("Unknown variable name");
425   return V;
426 }
427 
codegen()428 Value *BinaryExprAST::codegen() {
429   Value *L = LHS->codegen();
430   Value *R = RHS->codegen();
431   if (!L || !R)
432     return nullptr;
433 
434   switch (Op) {
435   case '+':
436     return Builder.CreateFAdd(L, R, "addtmp");
437   case '-':
438     return Builder.CreateFSub(L, R, "subtmp");
439   case '*':
440     return Builder.CreateFMul(L, R, "multmp");
441   case '<':
442     L = Builder.CreateFCmpULT(L, R, "cmptmp");
443     // Convert bool 0/1 to double 0.0 or 1.0
444     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
445                                 "booltmp");
446   default:
447     return ErrorV("invalid binary operator");
448   }
449 }
450 
codegen()451 Value *CallExprAST::codegen() {
452   // Look up the name in the global module table.
453   Function *CalleeF = getFunction(Callee);
454   if (!CalleeF)
455     return ErrorV("Unknown function referenced");
456 
457   // If argument mismatch error.
458   if (CalleeF->arg_size() != Args.size())
459     return ErrorV("Incorrect # arguments passed");
460 
461   std::vector<Value *> ArgsV;
462   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
463     ArgsV.push_back(Args[i]->codegen());
464     if (!ArgsV.back())
465       return nullptr;
466   }
467 
468   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
469 }
470 
codegen()471 Function *PrototypeAST::codegen() {
472   // Make the function type:  double(double,double) etc.
473   std::vector<Type *> Doubles(Args.size(),
474                               Type::getDoubleTy(getGlobalContext()));
475   FunctionType *FT =
476       FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false);
477 
478   Function *F =
479       Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
480 
481   // Set names for all arguments.
482   unsigned Idx = 0;
483   for (auto &Arg : F->args())
484     Arg.setName(Args[Idx++]);
485 
486   return F;
487 }
488 
codegen()489 Function *FunctionAST::codegen() {
490   // Transfer ownership of the prototype to the FunctionProtos map, but keep a
491   // reference to it for use below.
492   auto &P = *Proto;
493   FunctionProtos[Proto->getName()] = std::move(Proto);
494   Function *TheFunction = getFunction(P.getName());
495   if (!TheFunction)
496     return nullptr;
497 
498   // Create a new basic block to start insertion into.
499   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
500   Builder.SetInsertPoint(BB);
501 
502   // Record the function arguments in the NamedValues map.
503   NamedValues.clear();
504   for (auto &Arg : TheFunction->args())
505     NamedValues[Arg.getName()] = &Arg;
506 
507   if (Value *RetVal = Body->codegen()) {
508     // Finish off the function.
509     Builder.CreateRet(RetVal);
510 
511     // Validate the generated code, checking for consistency.
512     verifyFunction(*TheFunction);
513 
514     // Run the optimizer on the function.
515     TheFPM->run(*TheFunction);
516 
517     return TheFunction;
518   }
519 
520   // Error reading body, remove function.
521   TheFunction->eraseFromParent();
522   return nullptr;
523 }
524 
525 //===----------------------------------------------------------------------===//
526 // Top-Level parsing and JIT Driver
527 //===----------------------------------------------------------------------===//
528 
InitializeModuleAndPassManager()529 static void InitializeModuleAndPassManager() {
530   // Open a new module.
531   TheModule = llvm::make_unique<Module>("my cool jit", getGlobalContext());
532   TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
533 
534   // Create a new pass manager attached to it.
535   TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get());
536 
537   // Do simple "peephole" optimizations and bit-twiddling optzns.
538   TheFPM->add(createInstructionCombiningPass());
539   // Reassociate expressions.
540   TheFPM->add(createReassociatePass());
541   // Eliminate Common SubExpressions.
542   TheFPM->add(createGVNPass());
543   // Simplify the control flow graph (deleting unreachable blocks, etc).
544   TheFPM->add(createCFGSimplificationPass());
545 
546   TheFPM->doInitialization();
547 }
548 
HandleDefinition()549 static void HandleDefinition() {
550   if (auto FnAST = ParseDefinition()) {
551     if (auto *FnIR = FnAST->codegen()) {
552       fprintf(stderr, "Read function definition:");
553       FnIR->dump();
554       TheJIT->addModule(std::move(TheModule));
555       InitializeModuleAndPassManager();
556     }
557   } else {
558     // Skip token for error recovery.
559     getNextToken();
560   }
561 }
562 
HandleExtern()563 static void HandleExtern() {
564   if (auto ProtoAST = ParseExtern()) {
565     if (auto *FnIR = ProtoAST->codegen()) {
566       fprintf(stderr, "Read extern: ");
567       FnIR->dump();
568       FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
569     }
570   } else {
571     // Skip token for error recovery.
572     getNextToken();
573   }
574 }
575 
HandleTopLevelExpression()576 static void HandleTopLevelExpression() {
577   // Evaluate a top-level expression into an anonymous function.
578   if (auto FnAST = ParseTopLevelExpr()) {
579     if (FnAST->codegen()) {
580 
581       // JIT the module containing the anonymous expression, keeping a handle so
582       // we can free it later.
583       auto H = TheJIT->addModule(std::move(TheModule));
584       InitializeModuleAndPassManager();
585 
586       // Search the JIT for the __anon_expr symbol.
587       auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
588       assert(ExprSymbol && "Function not found");
589 
590       // Get the symbol's address and cast it to the right type (takes no
591       // arguments, returns a double) so we can call it as a native function.
592       double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
593       fprintf(stderr, "Evaluated to %f\n", FP());
594 
595       // Delete the anonymous expression module from the JIT.
596       TheJIT->removeModule(H);
597     }
598   } else {
599     // Skip token for error recovery.
600     getNextToken();
601   }
602 }
603 
604 /// top ::= definition | external | expression | ';'
MainLoop()605 static void MainLoop() {
606   while (1) {
607     fprintf(stderr, "ready> ");
608     switch (CurTok) {
609     case tok_eof:
610       return;
611     case ';': // ignore top-level semicolons.
612       getNextToken();
613       break;
614     case tok_def:
615       HandleDefinition();
616       break;
617     case tok_extern:
618       HandleExtern();
619       break;
620     default:
621       HandleTopLevelExpression();
622       break;
623     }
624   }
625 }
626 
627 //===----------------------------------------------------------------------===//
628 // "Library" functions that can be "extern'd" from user code.
629 //===----------------------------------------------------------------------===//
630 
631 /// putchard - putchar that takes a double and returns 0.
putchard(double X)632 extern "C" double putchard(double X) {
633   fputc((char)X, stderr);
634   return 0;
635 }
636 
637 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)638 extern "C" double printd(double X) {
639   fprintf(stderr, "%f\n", X);
640   return 0;
641 }
642 
643 //===----------------------------------------------------------------------===//
644 // Main driver code.
645 //===----------------------------------------------------------------------===//
646 
main()647 int main() {
648   InitializeNativeTarget();
649   InitializeNativeTargetAsmPrinter();
650   InitializeNativeTargetAsmParser();
651 
652   // Install standard binary operators.
653   // 1 is lowest precedence.
654   BinopPrecedence['<'] = 10;
655   BinopPrecedence['+'] = 20;
656   BinopPrecedence['-'] = 20;
657   BinopPrecedence['*'] = 40; // highest.
658 
659   // Prime the first token.
660   fprintf(stderr, "ready> ");
661   getNextToken();
662 
663   TheJIT = llvm::make_unique<KaleidoscopeJIT>();
664 
665   InitializeModuleAndPassManager();
666 
667   // Run the main "interpreter loop" now.
668   MainLoop();
669 
670   return 0;
671 }
672