1 #include "llvm/ADT/STLExtras.h"
2 #include "llvm/Analysis/Passes.h"
3 #include "llvm/IR/IRBuilder.h"
4 #include "llvm/IR/LLVMContext.h"
5 #include "llvm/IR/LegacyPassManager.h"
6 #include "llvm/IR/Module.h"
7 #include "llvm/IR/Verifier.h"
8 #include "llvm/Support/TargetSelect.h"
9 #include "llvm/Transforms/Scalar.h"
10 #include <cctype>
11 #include <cstdio>
12 #include <map>
13 #include <string>
14 #include <vector>
15 #include "../include/KaleidoscopeJIT.h"
16
17 using namespace llvm;
18 using namespace llvm::orc;
19
20 //===----------------------------------------------------------------------===//
21 // Lexer
22 //===----------------------------------------------------------------------===//
23
24 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
25 // of these for known things.
26 enum Token {
27 tok_eof = -1,
28
29 // commands
30 tok_def = -2,
31 tok_extern = -3,
32
33 // primary
34 tok_identifier = -4,
35 tok_number = -5,
36
37 // control
38 tok_if = -6,
39 tok_then = -7,
40 tok_else = -8,
41 tok_for = -9,
42 tok_in = -10
43 };
44
45 static std::string IdentifierStr; // Filled in if tok_identifier
46 static double NumVal; // Filled in if tok_number
47
48 /// gettok - Return the next token from standard input.
gettok()49 static int gettok() {
50 static int LastChar = ' ';
51
52 // Skip any whitespace.
53 while (isspace(LastChar))
54 LastChar = getchar();
55
56 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
57 IdentifierStr = LastChar;
58 while (isalnum((LastChar = getchar())))
59 IdentifierStr += LastChar;
60
61 if (IdentifierStr == "def")
62 return tok_def;
63 if (IdentifierStr == "extern")
64 return tok_extern;
65 if (IdentifierStr == "if")
66 return tok_if;
67 if (IdentifierStr == "then")
68 return tok_then;
69 if (IdentifierStr == "else")
70 return tok_else;
71 if (IdentifierStr == "for")
72 return tok_for;
73 if (IdentifierStr == "in")
74 return tok_in;
75 return tok_identifier;
76 }
77
78 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
79 std::string NumStr;
80 do {
81 NumStr += LastChar;
82 LastChar = getchar();
83 } while (isdigit(LastChar) || LastChar == '.');
84
85 NumVal = strtod(NumStr.c_str(), nullptr);
86 return tok_number;
87 }
88
89 if (LastChar == '#') {
90 // Comment until end of line.
91 do
92 LastChar = getchar();
93 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
94
95 if (LastChar != EOF)
96 return gettok();
97 }
98
99 // Check for end of file. Don't eat the EOF.
100 if (LastChar == EOF)
101 return tok_eof;
102
103 // Otherwise, just return the character as its ascii value.
104 int ThisChar = LastChar;
105 LastChar = getchar();
106 return ThisChar;
107 }
108
109 //===----------------------------------------------------------------------===//
110 // Abstract Syntax Tree (aka Parse Tree)
111 //===----------------------------------------------------------------------===//
112 namespace {
113 /// ExprAST - Base class for all expression nodes.
114 class ExprAST {
115 public:
~ExprAST()116 virtual ~ExprAST() {}
117 virtual Value *codegen() = 0;
118 };
119
120 /// NumberExprAST - Expression class for numeric literals like "1.0".
121 class NumberExprAST : public ExprAST {
122 double Val;
123
124 public:
NumberExprAST(double Val)125 NumberExprAST(double Val) : Val(Val) {}
126 Value *codegen() override;
127 };
128
129 /// VariableExprAST - Expression class for referencing a variable, like "a".
130 class VariableExprAST : public ExprAST {
131 std::string Name;
132
133 public:
VariableExprAST(const std::string & Name)134 VariableExprAST(const std::string &Name) : Name(Name) {}
135 Value *codegen() override;
136 };
137
138 /// BinaryExprAST - Expression class for a binary operator.
139 class BinaryExprAST : public ExprAST {
140 char Op;
141 std::unique_ptr<ExprAST> LHS, RHS;
142
143 public:
BinaryExprAST(char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)144 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
145 std::unique_ptr<ExprAST> RHS)
146 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
147 Value *codegen() override;
148 };
149
150 /// CallExprAST - Expression class for function calls.
151 class CallExprAST : public ExprAST {
152 std::string Callee;
153 std::vector<std::unique_ptr<ExprAST>> Args;
154
155 public:
CallExprAST(const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)156 CallExprAST(const std::string &Callee,
157 std::vector<std::unique_ptr<ExprAST>> Args)
158 : Callee(Callee), Args(std::move(Args)) {}
159 Value *codegen() override;
160 };
161
162 /// IfExprAST - Expression class for if/then/else.
163 class IfExprAST : public ExprAST {
164 std::unique_ptr<ExprAST> Cond, Then, Else;
165
166 public:
IfExprAST(std::unique_ptr<ExprAST> Cond,std::unique_ptr<ExprAST> Then,std::unique_ptr<ExprAST> Else)167 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
168 std::unique_ptr<ExprAST> Else)
169 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
170 Value *codegen() override;
171 };
172
173 /// ForExprAST - Expression class for for/in.
174 class ForExprAST : public ExprAST {
175 std::string VarName;
176 std::unique_ptr<ExprAST> Start, End, Step, Body;
177
178 public:
ForExprAST(const std::string & VarName,std::unique_ptr<ExprAST> Start,std::unique_ptr<ExprAST> End,std::unique_ptr<ExprAST> Step,std::unique_ptr<ExprAST> Body)179 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
180 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
181 std::unique_ptr<ExprAST> Body)
182 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
183 Step(std::move(Step)), Body(std::move(Body)) {}
184 Value *codegen() override;
185 };
186
187 /// PrototypeAST - This class represents the "prototype" for a function,
188 /// which captures its name, and its argument names (thus implicitly the number
189 /// of arguments the function takes).
190 class PrototypeAST {
191 std::string Name;
192 std::vector<std::string> Args;
193
194 public:
PrototypeAST(const std::string & Name,std::vector<std::string> Args)195 PrototypeAST(const std::string &Name, std::vector<std::string> Args)
196 : Name(Name), Args(std::move(Args)) {}
197 Function *codegen();
getName() const198 const std::string &getName() const { return Name; }
199 };
200
201 /// FunctionAST - This class represents a function definition itself.
202 class FunctionAST {
203 std::unique_ptr<PrototypeAST> Proto;
204 std::unique_ptr<ExprAST> Body;
205
206 public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,std::unique_ptr<ExprAST> Body)207 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
208 std::unique_ptr<ExprAST> Body)
209 : Proto(std::move(Proto)), Body(std::move(Body)) {}
210 Function *codegen();
211 };
212 } // end anonymous namespace
213
214 //===----------------------------------------------------------------------===//
215 // Parser
216 //===----------------------------------------------------------------------===//
217
218 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
219 /// token the parser is looking at. getNextToken reads another token from the
220 /// lexer and updates CurTok with its results.
221 static int CurTok;
getNextToken()222 static int getNextToken() { return CurTok = gettok(); }
223
224 /// BinopPrecedence - This holds the precedence for each binary operator that is
225 /// defined.
226 static std::map<char, int> BinopPrecedence;
227
228 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()229 static int GetTokPrecedence() {
230 if (!isascii(CurTok))
231 return -1;
232
233 // Make sure it's a declared binop.
234 int TokPrec = BinopPrecedence[CurTok];
235 if (TokPrec <= 0)
236 return -1;
237 return TokPrec;
238 }
239
240 /// Error* - These are little helper functions for error handling.
Error(const char * Str)241 std::unique_ptr<ExprAST> Error(const char *Str) {
242 fprintf(stderr, "Error: %s\n", Str);
243 return nullptr;
244 }
245
ErrorP(const char * Str)246 std::unique_ptr<PrototypeAST> ErrorP(const char *Str) {
247 Error(Str);
248 return nullptr;
249 }
250
251 static std::unique_ptr<ExprAST> ParseExpression();
252
253 /// numberexpr ::= number
ParseNumberExpr()254 static std::unique_ptr<ExprAST> ParseNumberExpr() {
255 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
256 getNextToken(); // consume the number
257 return std::move(Result);
258 }
259
260 /// parenexpr ::= '(' expression ')'
ParseParenExpr()261 static std::unique_ptr<ExprAST> ParseParenExpr() {
262 getNextToken(); // eat (.
263 auto V = ParseExpression();
264 if (!V)
265 return nullptr;
266
267 if (CurTok != ')')
268 return Error("expected ')'");
269 getNextToken(); // eat ).
270 return V;
271 }
272
273 /// identifierexpr
274 /// ::= identifier
275 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()276 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
277 std::string IdName = IdentifierStr;
278
279 getNextToken(); // eat identifier.
280
281 if (CurTok != '(') // Simple variable ref.
282 return llvm::make_unique<VariableExprAST>(IdName);
283
284 // Call.
285 getNextToken(); // eat (
286 std::vector<std::unique_ptr<ExprAST>> Args;
287 if (CurTok != ')') {
288 while (1) {
289 if (auto Arg = ParseExpression())
290 Args.push_back(std::move(Arg));
291 else
292 return nullptr;
293
294 if (CurTok == ')')
295 break;
296
297 if (CurTok != ',')
298 return Error("Expected ')' or ',' in argument list");
299 getNextToken();
300 }
301 }
302
303 // Eat the ')'.
304 getNextToken();
305
306 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
307 }
308
309 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()310 static std::unique_ptr<ExprAST> ParseIfExpr() {
311 getNextToken(); // eat the if.
312
313 // condition.
314 auto Cond = ParseExpression();
315 if (!Cond)
316 return nullptr;
317
318 if (CurTok != tok_then)
319 return Error("expected then");
320 getNextToken(); // eat the then
321
322 auto Then = ParseExpression();
323 if (!Then)
324 return nullptr;
325
326 if (CurTok != tok_else)
327 return Error("expected else");
328
329 getNextToken();
330
331 auto Else = ParseExpression();
332 if (!Else)
333 return nullptr;
334
335 return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
336 std::move(Else));
337 }
338
339 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()340 static std::unique_ptr<ExprAST> ParseForExpr() {
341 getNextToken(); // eat the for.
342
343 if (CurTok != tok_identifier)
344 return Error("expected identifier after for");
345
346 std::string IdName = IdentifierStr;
347 getNextToken(); // eat identifier.
348
349 if (CurTok != '=')
350 return Error("expected '=' after for");
351 getNextToken(); // eat '='.
352
353 auto Start = ParseExpression();
354 if (!Start)
355 return nullptr;
356 if (CurTok != ',')
357 return Error("expected ',' after for start value");
358 getNextToken();
359
360 auto End = ParseExpression();
361 if (!End)
362 return nullptr;
363
364 // The step value is optional.
365 std::unique_ptr<ExprAST> Step;
366 if (CurTok == ',') {
367 getNextToken();
368 Step = ParseExpression();
369 if (!Step)
370 return nullptr;
371 }
372
373 if (CurTok != tok_in)
374 return Error("expected 'in' after for");
375 getNextToken(); // eat 'in'.
376
377 auto Body = ParseExpression();
378 if (!Body)
379 return nullptr;
380
381 return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
382 std::move(Step), std::move(Body));
383 }
384
385 /// primary
386 /// ::= identifierexpr
387 /// ::= numberexpr
388 /// ::= parenexpr
389 /// ::= ifexpr
390 /// ::= forexpr
ParsePrimary()391 static std::unique_ptr<ExprAST> ParsePrimary() {
392 switch (CurTok) {
393 default:
394 return Error("unknown token when expecting an expression");
395 case tok_identifier:
396 return ParseIdentifierExpr();
397 case tok_number:
398 return ParseNumberExpr();
399 case '(':
400 return ParseParenExpr();
401 case tok_if:
402 return ParseIfExpr();
403 case tok_for:
404 return ParseForExpr();
405 }
406 }
407
408 /// binoprhs
409 /// ::= ('+' primary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)410 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
411 std::unique_ptr<ExprAST> LHS) {
412 // If this is a binop, find its precedence.
413 while (1) {
414 int TokPrec = GetTokPrecedence();
415
416 // If this is a binop that binds at least as tightly as the current binop,
417 // consume it, otherwise we are done.
418 if (TokPrec < ExprPrec)
419 return LHS;
420
421 // Okay, we know this is a binop.
422 int BinOp = CurTok;
423 getNextToken(); // eat binop
424
425 // Parse the primary expression after the binary operator.
426 auto RHS = ParsePrimary();
427 if (!RHS)
428 return nullptr;
429
430 // If BinOp binds less tightly with RHS than the operator after RHS, let
431 // the pending operator take RHS as its LHS.
432 int NextPrec = GetTokPrecedence();
433 if (TokPrec < NextPrec) {
434 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
435 if (!RHS)
436 return nullptr;
437 }
438
439 // Merge LHS/RHS.
440 LHS =
441 llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
442 }
443 }
444
445 /// expression
446 /// ::= primary binoprhs
447 ///
ParseExpression()448 static std::unique_ptr<ExprAST> ParseExpression() {
449 auto LHS = ParsePrimary();
450 if (!LHS)
451 return nullptr;
452
453 return ParseBinOpRHS(0, std::move(LHS));
454 }
455
456 /// prototype
457 /// ::= id '(' id* ')'
ParsePrototype()458 static std::unique_ptr<PrototypeAST> ParsePrototype() {
459 if (CurTok != tok_identifier)
460 return ErrorP("Expected function name in prototype");
461
462 std::string FnName = IdentifierStr;
463 getNextToken();
464
465 if (CurTok != '(')
466 return ErrorP("Expected '(' in prototype");
467
468 std::vector<std::string> ArgNames;
469 while (getNextToken() == tok_identifier)
470 ArgNames.push_back(IdentifierStr);
471 if (CurTok != ')')
472 return ErrorP("Expected ')' in prototype");
473
474 // success.
475 getNextToken(); // eat ')'.
476
477 return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
478 }
479
480 /// definition ::= 'def' prototype expression
ParseDefinition()481 static std::unique_ptr<FunctionAST> ParseDefinition() {
482 getNextToken(); // eat def.
483 auto Proto = ParsePrototype();
484 if (!Proto)
485 return nullptr;
486
487 if (auto E = ParseExpression())
488 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
489 return nullptr;
490 }
491
492 /// toplevelexpr ::= expression
ParseTopLevelExpr()493 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
494 if (auto E = ParseExpression()) {
495 // Make an anonymous proto.
496 auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
497 std::vector<std::string>());
498 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
499 }
500 return nullptr;
501 }
502
503 /// external ::= 'extern' prototype
ParseExtern()504 static std::unique_ptr<PrototypeAST> ParseExtern() {
505 getNextToken(); // eat extern.
506 return ParsePrototype();
507 }
508
509 //===----------------------------------------------------------------------===//
510 // Code Generation
511 //===----------------------------------------------------------------------===//
512
513 static std::unique_ptr<Module> TheModule;
514 static IRBuilder<> Builder(getGlobalContext());
515 static std::map<std::string, Value *> NamedValues;
516 static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
517 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
518 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
519
ErrorV(const char * Str)520 Value *ErrorV(const char *Str) {
521 Error(Str);
522 return nullptr;
523 }
524
getFunction(std::string Name)525 Function *getFunction(std::string Name) {
526 // First, see if the function has already been added to the current module.
527 if (auto *F = TheModule->getFunction(Name))
528 return F;
529
530 // If not, check whether we can codegen the declaration from some existing
531 // prototype.
532 auto FI = FunctionProtos.find(Name);
533 if (FI != FunctionProtos.end())
534 return FI->second->codegen();
535
536 // If no existing prototype exists, return null.
537 return nullptr;
538 }
539
codegen()540 Value *NumberExprAST::codegen() {
541 return ConstantFP::get(getGlobalContext(), APFloat(Val));
542 }
543
codegen()544 Value *VariableExprAST::codegen() {
545 // Look this variable up in the function.
546 Value *V = NamedValues[Name];
547 if (!V)
548 return ErrorV("Unknown variable name");
549 return V;
550 }
551
codegen()552 Value *BinaryExprAST::codegen() {
553 Value *L = LHS->codegen();
554 Value *R = RHS->codegen();
555 if (!L || !R)
556 return nullptr;
557
558 switch (Op) {
559 case '+':
560 return Builder.CreateFAdd(L, R, "addtmp");
561 case '-':
562 return Builder.CreateFSub(L, R, "subtmp");
563 case '*':
564 return Builder.CreateFMul(L, R, "multmp");
565 case '<':
566 L = Builder.CreateFCmpULT(L, R, "cmptmp");
567 // Convert bool 0/1 to double 0.0 or 1.0
568 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
569 "booltmp");
570 default:
571 return ErrorV("invalid binary operator");
572 }
573 }
574
codegen()575 Value *CallExprAST::codegen() {
576 // Look up the name in the global module table.
577 Function *CalleeF = getFunction(Callee);
578 if (!CalleeF)
579 return ErrorV("Unknown function referenced");
580
581 // If argument mismatch error.
582 if (CalleeF->arg_size() != Args.size())
583 return ErrorV("Incorrect # arguments passed");
584
585 std::vector<Value *> ArgsV;
586 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
587 ArgsV.push_back(Args[i]->codegen());
588 if (!ArgsV.back())
589 return nullptr;
590 }
591
592 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
593 }
594
codegen()595 Value *IfExprAST::codegen() {
596 Value *CondV = Cond->codegen();
597 if (!CondV)
598 return nullptr;
599
600 // Convert condition to a bool by comparing equal to 0.0.
601 CondV = Builder.CreateFCmpONE(
602 CondV, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "ifcond");
603
604 Function *TheFunction = Builder.GetInsertBlock()->getParent();
605
606 // Create blocks for the then and else cases. Insert the 'then' block at the
607 // end of the function.
608 BasicBlock *ThenBB =
609 BasicBlock::Create(getGlobalContext(), "then", TheFunction);
610 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
611 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
612
613 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
614
615 // Emit then value.
616 Builder.SetInsertPoint(ThenBB);
617
618 Value *ThenV = Then->codegen();
619 if (!ThenV)
620 return nullptr;
621
622 Builder.CreateBr(MergeBB);
623 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
624 ThenBB = Builder.GetInsertBlock();
625
626 // Emit else block.
627 TheFunction->getBasicBlockList().push_back(ElseBB);
628 Builder.SetInsertPoint(ElseBB);
629
630 Value *ElseV = Else->codegen();
631 if (!ElseV)
632 return nullptr;
633
634 Builder.CreateBr(MergeBB);
635 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
636 ElseBB = Builder.GetInsertBlock();
637
638 // Emit merge block.
639 TheFunction->getBasicBlockList().push_back(MergeBB);
640 Builder.SetInsertPoint(MergeBB);
641 PHINode *PN =
642 Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, "iftmp");
643
644 PN->addIncoming(ThenV, ThenBB);
645 PN->addIncoming(ElseV, ElseBB);
646 return PN;
647 }
648
649 // Output for-loop as:
650 // ...
651 // start = startexpr
652 // goto loop
653 // loop:
654 // variable = phi [start, loopheader], [nextvariable, loopend]
655 // ...
656 // bodyexpr
657 // ...
658 // loopend:
659 // step = stepexpr
660 // nextvariable = variable + step
661 // endcond = endexpr
662 // br endcond, loop, endloop
663 // outloop:
codegen()664 Value *ForExprAST::codegen() {
665 // Emit the start code first, without 'variable' in scope.
666 Value *StartVal = Start->codegen();
667 if (!StartVal)
668 return nullptr;
669
670 // Make the new basic block for the loop header, inserting after current
671 // block.
672 Function *TheFunction = Builder.GetInsertBlock()->getParent();
673 BasicBlock *PreheaderBB = Builder.GetInsertBlock();
674 BasicBlock *LoopBB =
675 BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
676
677 // Insert an explicit fall through from the current block to the LoopBB.
678 Builder.CreateBr(LoopBB);
679
680 // Start insertion in LoopBB.
681 Builder.SetInsertPoint(LoopBB);
682
683 // Start the PHI node with an entry for Start.
684 PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()),
685 2, VarName.c_str());
686 Variable->addIncoming(StartVal, PreheaderBB);
687
688 // Within the loop, the variable is defined equal to the PHI node. If it
689 // shadows an existing variable, we have to restore it, so save it now.
690 Value *OldVal = NamedValues[VarName];
691 NamedValues[VarName] = Variable;
692
693 // Emit the body of the loop. This, like any other expr, can change the
694 // current BB. Note that we ignore the value computed by the body, but don't
695 // allow an error.
696 if (!Body->codegen())
697 return nullptr;
698
699 // Emit the step value.
700 Value *StepVal = nullptr;
701 if (Step) {
702 StepVal = Step->codegen();
703 if (!StepVal)
704 return nullptr;
705 } else {
706 // If not specified, use 1.0.
707 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
708 }
709
710 Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
711
712 // Compute the end condition.
713 Value *EndCond = End->codegen();
714 if (!EndCond)
715 return nullptr;
716
717 // Convert condition to a bool by comparing equal to 0.0.
718 EndCond = Builder.CreateFCmpONE(
719 EndCond, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "loopcond");
720
721 // Create the "after loop" block and insert it.
722 BasicBlock *LoopEndBB = Builder.GetInsertBlock();
723 BasicBlock *AfterBB =
724 BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
725
726 // Insert the conditional branch into the end of LoopEndBB.
727 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
728
729 // Any new code will be inserted in AfterBB.
730 Builder.SetInsertPoint(AfterBB);
731
732 // Add a new entry to the PHI node for the backedge.
733 Variable->addIncoming(NextVar, LoopEndBB);
734
735 // Restore the unshadowed variable.
736 if (OldVal)
737 NamedValues[VarName] = OldVal;
738 else
739 NamedValues.erase(VarName);
740
741 // for expr always returns 0.0.
742 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
743 }
744
codegen()745 Function *PrototypeAST::codegen() {
746 // Make the function type: double(double,double) etc.
747 std::vector<Type *> Doubles(Args.size(),
748 Type::getDoubleTy(getGlobalContext()));
749 FunctionType *FT =
750 FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false);
751
752 Function *F =
753 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
754
755 // Set names for all arguments.
756 unsigned Idx = 0;
757 for (auto &Arg : F->args())
758 Arg.setName(Args[Idx++]);
759
760 return F;
761 }
762
codegen()763 Function *FunctionAST::codegen() {
764 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
765 // reference to it for use below.
766 auto &P = *Proto;
767 FunctionProtos[Proto->getName()] = std::move(Proto);
768 Function *TheFunction = getFunction(P.getName());
769 if (!TheFunction)
770 return nullptr;
771
772 // Create a new basic block to start insertion into.
773 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
774 Builder.SetInsertPoint(BB);
775
776 // Record the function arguments in the NamedValues map.
777 NamedValues.clear();
778 for (auto &Arg : TheFunction->args())
779 NamedValues[Arg.getName()] = &Arg;
780
781 if (Value *RetVal = Body->codegen()) {
782 // Finish off the function.
783 Builder.CreateRet(RetVal);
784
785 // Validate the generated code, checking for consistency.
786 verifyFunction(*TheFunction);
787
788 // Run the optimizer on the function.
789 TheFPM->run(*TheFunction);
790
791 return TheFunction;
792 }
793
794 // Error reading body, remove function.
795 TheFunction->eraseFromParent();
796 return nullptr;
797 }
798
799 //===----------------------------------------------------------------------===//
800 // Top-Level parsing and JIT Driver
801 //===----------------------------------------------------------------------===//
802
InitializeModuleAndPassManager()803 static void InitializeModuleAndPassManager() {
804 // Open a new module.
805 TheModule = llvm::make_unique<Module>("my cool jit", getGlobalContext());
806 TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
807
808 // Create a new pass manager attached to it.
809 TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get());
810
811 // Do simple "peephole" optimizations and bit-twiddling optzns.
812 TheFPM->add(createInstructionCombiningPass());
813 // Reassociate expressions.
814 TheFPM->add(createReassociatePass());
815 // Eliminate Common SubExpressions.
816 TheFPM->add(createGVNPass());
817 // Simplify the control flow graph (deleting unreachable blocks, etc).
818 TheFPM->add(createCFGSimplificationPass());
819
820 TheFPM->doInitialization();
821 }
822
HandleDefinition()823 static void HandleDefinition() {
824 if (auto FnAST = ParseDefinition()) {
825 if (auto *FnIR = FnAST->codegen()) {
826 fprintf(stderr, "Read function definition:");
827 FnIR->dump();
828 TheJIT->addModule(std::move(TheModule));
829 InitializeModuleAndPassManager();
830 }
831 } else {
832 // Skip token for error recovery.
833 getNextToken();
834 }
835 }
836
HandleExtern()837 static void HandleExtern() {
838 if (auto ProtoAST = ParseExtern()) {
839 if (auto *FnIR = ProtoAST->codegen()) {
840 fprintf(stderr, "Read extern: ");
841 FnIR->dump();
842 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
843 }
844 } else {
845 // Skip token for error recovery.
846 getNextToken();
847 }
848 }
849
HandleTopLevelExpression()850 static void HandleTopLevelExpression() {
851 // Evaluate a top-level expression into an anonymous function.
852 if (auto FnAST = ParseTopLevelExpr()) {
853 if (FnAST->codegen()) {
854
855 // JIT the module containing the anonymous expression, keeping a handle so
856 // we can free it later.
857 auto H = TheJIT->addModule(std::move(TheModule));
858 InitializeModuleAndPassManager();
859
860 // Search the JIT for the __anon_expr symbol.
861 auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
862 assert(ExprSymbol && "Function not found");
863
864 // Get the symbol's address and cast it to the right type (takes no
865 // arguments, returns a double) so we can call it as a native function.
866 double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
867 fprintf(stderr, "Evaluated to %f\n", FP());
868
869 // Delete the anonymous expression module from the JIT.
870 TheJIT->removeModule(H);
871 }
872 } else {
873 // Skip token for error recovery.
874 getNextToken();
875 }
876 }
877
878 /// top ::= definition | external | expression | ';'
MainLoop()879 static void MainLoop() {
880 while (1) {
881 fprintf(stderr, "ready> ");
882 switch (CurTok) {
883 case tok_eof:
884 return;
885 case ';': // ignore top-level semicolons.
886 getNextToken();
887 break;
888 case tok_def:
889 HandleDefinition();
890 break;
891 case tok_extern:
892 HandleExtern();
893 break;
894 default:
895 HandleTopLevelExpression();
896 break;
897 }
898 }
899 }
900
901 //===----------------------------------------------------------------------===//
902 // "Library" functions that can be "extern'd" from user code.
903 //===----------------------------------------------------------------------===//
904
905 /// putchard - putchar that takes a double and returns 0.
putchard(double X)906 extern "C" double putchard(double X) {
907 fputc((char)X, stderr);
908 return 0;
909 }
910
911 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)912 extern "C" double printd(double X) {
913 fprintf(stderr, "%f\n", X);
914 return 0;
915 }
916
917 //===----------------------------------------------------------------------===//
918 // Main driver code.
919 //===----------------------------------------------------------------------===//
920
main()921 int main() {
922 InitializeNativeTarget();
923 InitializeNativeTargetAsmPrinter();
924 InitializeNativeTargetAsmParser();
925
926 // Install standard binary operators.
927 // 1 is lowest precedence.
928 BinopPrecedence['<'] = 10;
929 BinopPrecedence['+'] = 20;
930 BinopPrecedence['-'] = 20;
931 BinopPrecedence['*'] = 40; // highest.
932
933 // Prime the first token.
934 fprintf(stderr, "ready> ");
935 getNextToken();
936
937 TheJIT = llvm::make_unique<KaleidoscopeJIT>();
938
939 InitializeModuleAndPassManager();
940
941 // Run the main "interpreter loop" now.
942 MainLoop();
943
944 return 0;
945 }
946