1 //===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements divergence analysis which determines whether a branch
11 // in a GPU program is divergent.It can help branch optimizations such as jump
12 // threading and loop unswitching to make better decisions.
13 //
14 // GPU programs typically use the SIMD execution model, where multiple threads
15 // in the same execution group have to execute in lock-step. Therefore, if the
16 // code contains divergent branches (i.e., threads in a group do not agree on
17 // which path of the branch to take), the group of threads has to execute all
18 // the paths from that branch with different subsets of threads enabled until
19 // they converge at the immediately post-dominating BB of the paths.
20 //
21 // Due to this execution model, some optimizations such as jump
22 // threading and loop unswitching can be unfortunately harmful when performed on
23 // divergent branches. Therefore, an analysis that computes which branches in a
24 // GPU program are divergent can help the compiler to selectively run these
25 // optimizations.
26 //
27 // This file defines divergence analysis which computes a conservative but
28 // non-trivial approximation of all divergent branches in a GPU program. It
29 // partially implements the approach described in
30 //
31 // Divergence Analysis
32 // Sampaio, Souza, Collange, Pereira
33 // TOPLAS '13
34 //
35 // The divergence analysis identifies the sources of divergence (e.g., special
36 // variables that hold the thread ID), and recursively marks variables that are
37 // data or sync dependent on a source of divergence as divergent.
38 //
39 // While data dependency is a well-known concept, the notion of sync dependency
40 // is worth more explanation. Sync dependence characterizes the control flow
41 // aspect of the propagation of branch divergence. For example,
42 //
43 // %cond = icmp slt i32 %tid, 10
44 // br i1 %cond, label %then, label %else
45 // then:
46 // br label %merge
47 // else:
48 // br label %merge
49 // merge:
50 // %a = phi i32 [ 0, %then ], [ 1, %else ]
51 //
52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53 // because %tid is not on its use-def chains, %a is sync dependent on %tid
54 // because the branch "br i1 %cond" depends on %tid and affects which value %a
55 // is assigned to.
56 //
57 // The current implementation has the following limitations:
58 // 1. intra-procedural. It conservatively considers the arguments of a
59 // non-kernel-entry function and the return value of a function call as
60 // divergent.
61 // 2. memory as black box. It conservatively considers values loaded from
62 // generic or local address as divergent. This can be improved by leveraging
63 // pointer analysis.
64 //
65 //===----------------------------------------------------------------------===//
66
67 #include "llvm/Analysis/DivergenceAnalysis.h"
68 #include "llvm/Analysis/Passes.h"
69 #include "llvm/Analysis/PostDominators.h"
70 #include "llvm/Analysis/TargetTransformInfo.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/InstIterator.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Value.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/Scalar.h"
80 #include <vector>
81 using namespace llvm;
82
83 namespace {
84
85 class DivergencePropagator {
86 public:
DivergencePropagator(Function & F,TargetTransformInfo & TTI,DominatorTree & DT,PostDominatorTree & PDT,DenseSet<const Value * > & DV)87 DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
88 PostDominatorTree &PDT, DenseSet<const Value *> &DV)
89 : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
90 void populateWithSourcesOfDivergence();
91 void propagate();
92
93 private:
94 // A helper function that explores data dependents of V.
95 void exploreDataDependency(Value *V);
96 // A helper function that explores sync dependents of TI.
97 void exploreSyncDependency(TerminatorInst *TI);
98 // Computes the influence region from Start to End. This region includes all
99 // basic blocks on any simple path from Start to End.
100 void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
101 DenseSet<BasicBlock *> &InfluenceRegion);
102 // Finds all users of I that are outside the influence region, and add these
103 // users to Worklist.
104 void findUsersOutsideInfluenceRegion(
105 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
106
107 Function &F;
108 TargetTransformInfo &TTI;
109 DominatorTree &DT;
110 PostDominatorTree &PDT;
111 std::vector<Value *> Worklist; // Stack for DFS.
112 DenseSet<const Value *> &DV; // Stores all divergent values.
113 };
114
populateWithSourcesOfDivergence()115 void DivergencePropagator::populateWithSourcesOfDivergence() {
116 Worklist.clear();
117 DV.clear();
118 for (auto &I : instructions(F)) {
119 if (TTI.isSourceOfDivergence(&I)) {
120 Worklist.push_back(&I);
121 DV.insert(&I);
122 }
123 }
124 for (auto &Arg : F.args()) {
125 if (TTI.isSourceOfDivergence(&Arg)) {
126 Worklist.push_back(&Arg);
127 DV.insert(&Arg);
128 }
129 }
130 }
131
exploreSyncDependency(TerminatorInst * TI)132 void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) {
133 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
134 // immediate post dominator are divergent. This rule handles if-then-else
135 // patterns. For example,
136 //
137 // if (tid < 5)
138 // a1 = 1;
139 // else
140 // a2 = 2;
141 // a = phi(a1, a2); // sync dependent on (tid < 5)
142 BasicBlock *ThisBB = TI->getParent();
143 BasicBlock *IPostDom = PDT.getNode(ThisBB)->getIDom()->getBlock();
144 if (IPostDom == nullptr)
145 return;
146
147 for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
148 // A PHINode is uniform if it returns the same value no matter which path is
149 // taken.
150 if (!cast<PHINode>(I)->hasConstantValue() && DV.insert(&*I).second)
151 Worklist.push_back(&*I);
152 }
153
154 // Propagation rule 2: if a value defined in a loop is used outside, the user
155 // is sync dependent on the condition of the loop exits that dominate the
156 // user. For example,
157 //
158 // int i = 0;
159 // do {
160 // i++;
161 // if (foo(i)) ... // uniform
162 // } while (i < tid);
163 // if (bar(i)) ... // divergent
164 //
165 // A program may contain unstructured loops. Therefore, we cannot leverage
166 // LoopInfo, which only recognizes natural loops.
167 //
168 // The algorithm used here handles both natural and unstructured loops. Given
169 // a branch TI, we first compute its influence region, the union of all simple
170 // paths from TI to its immediate post dominator (IPostDom). Then, we search
171 // for all the values defined in the influence region but used outside. All
172 // these users are sync dependent on TI.
173 DenseSet<BasicBlock *> InfluenceRegion;
174 computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
175 // An insight that can speed up the search process is that all the in-region
176 // values that are used outside must dominate TI. Therefore, instead of
177 // searching every basic blocks in the influence region, we search all the
178 // dominators of TI until it is outside the influence region.
179 BasicBlock *InfluencedBB = ThisBB;
180 while (InfluenceRegion.count(InfluencedBB)) {
181 for (auto &I : *InfluencedBB)
182 findUsersOutsideInfluenceRegion(I, InfluenceRegion);
183 DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
184 if (IDomNode == nullptr)
185 break;
186 InfluencedBB = IDomNode->getBlock();
187 }
188 }
189
findUsersOutsideInfluenceRegion(Instruction & I,const DenseSet<BasicBlock * > & InfluenceRegion)190 void DivergencePropagator::findUsersOutsideInfluenceRegion(
191 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
192 for (User *U : I.users()) {
193 Instruction *UserInst = cast<Instruction>(U);
194 if (!InfluenceRegion.count(UserInst->getParent())) {
195 if (DV.insert(UserInst).second)
196 Worklist.push_back(UserInst);
197 }
198 }
199 }
200
201 // A helper function for computeInfluenceRegion that adds successors of "ThisBB"
202 // to the influence region.
203 static void
addSuccessorsToInfluenceRegion(BasicBlock * ThisBB,BasicBlock * End,DenseSet<BasicBlock * > & InfluenceRegion,std::vector<BasicBlock * > & InfluenceStack)204 addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
205 DenseSet<BasicBlock *> &InfluenceRegion,
206 std::vector<BasicBlock *> &InfluenceStack) {
207 for (BasicBlock *Succ : successors(ThisBB)) {
208 if (Succ != End && InfluenceRegion.insert(Succ).second)
209 InfluenceStack.push_back(Succ);
210 }
211 }
212
computeInfluenceRegion(BasicBlock * Start,BasicBlock * End,DenseSet<BasicBlock * > & InfluenceRegion)213 void DivergencePropagator::computeInfluenceRegion(
214 BasicBlock *Start, BasicBlock *End,
215 DenseSet<BasicBlock *> &InfluenceRegion) {
216 assert(PDT.properlyDominates(End, Start) &&
217 "End does not properly dominate Start");
218
219 // The influence region starts from the end of "Start" to the beginning of
220 // "End". Therefore, "Start" should not be in the region unless "Start" is in
221 // a loop that doesn't contain "End".
222 std::vector<BasicBlock *> InfluenceStack;
223 addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
224 while (!InfluenceStack.empty()) {
225 BasicBlock *BB = InfluenceStack.back();
226 InfluenceStack.pop_back();
227 addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
228 }
229 }
230
exploreDataDependency(Value * V)231 void DivergencePropagator::exploreDataDependency(Value *V) {
232 // Follow def-use chains of V.
233 for (User *U : V->users()) {
234 Instruction *UserInst = cast<Instruction>(U);
235 if (DV.insert(UserInst).second)
236 Worklist.push_back(UserInst);
237 }
238 }
239
propagate()240 void DivergencePropagator::propagate() {
241 // Traverse the dependency graph using DFS.
242 while (!Worklist.empty()) {
243 Value *V = Worklist.back();
244 Worklist.pop_back();
245 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) {
246 // Terminators with less than two successors won't introduce sync
247 // dependency. Ignore them.
248 if (TI->getNumSuccessors() > 1)
249 exploreSyncDependency(TI);
250 }
251 exploreDataDependency(V);
252 }
253 }
254
255 } /// end namespace anonymous
256
257 // Register this pass.
258 char DivergenceAnalysis::ID = 0;
259 INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis",
260 false, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)261 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
262 INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
263 INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis",
264 false, true)
265
266 FunctionPass *llvm::createDivergenceAnalysisPass() {
267 return new DivergenceAnalysis();
268 }
269
getAnalysisUsage(AnalysisUsage & AU) const270 void DivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
271 AU.addRequired<DominatorTreeWrapperPass>();
272 AU.addRequired<PostDominatorTree>();
273 AU.setPreservesAll();
274 }
275
runOnFunction(Function & F)276 bool DivergenceAnalysis::runOnFunction(Function &F) {
277 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
278 if (TTIWP == nullptr)
279 return false;
280
281 TargetTransformInfo &TTI = TTIWP->getTTI(F);
282 // Fast path: if the target does not have branch divergence, we do not mark
283 // any branch as divergent.
284 if (!TTI.hasBranchDivergence())
285 return false;
286
287 DivergentValues.clear();
288 DivergencePropagator DP(F, TTI,
289 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
290 getAnalysis<PostDominatorTree>(), DivergentValues);
291 DP.populateWithSourcesOfDivergence();
292 DP.propagate();
293 return false;
294 }
295
print(raw_ostream & OS,const Module *) const296 void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
297 if (DivergentValues.empty())
298 return;
299 const Value *FirstDivergentValue = *DivergentValues.begin();
300 const Function *F;
301 if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
302 F = Arg->getParent();
303 } else if (const Instruction *I =
304 dyn_cast<Instruction>(FirstDivergentValue)) {
305 F = I->getParent()->getParent();
306 } else {
307 llvm_unreachable("Only arguments and instructions can be divergent");
308 }
309
310 // Dumps all divergent values in F, arguments and then instructions.
311 for (auto &Arg : F->args()) {
312 if (DivergentValues.count(&Arg))
313 OS << "DIVERGENT: " << Arg << "\n";
314 }
315 // Iterate instructions using instructions() to ensure a deterministic order.
316 for (auto &I : instructions(F)) {
317 if (DivergentValues.count(&I))
318 OS << "DIVERGENT:" << I << "\n";
319 }
320 }
321