• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements divergence analysis which determines whether a branch
11 // in a GPU program is divergent.It can help branch optimizations such as jump
12 // threading and loop unswitching to make better decisions.
13 //
14 // GPU programs typically use the SIMD execution model, where multiple threads
15 // in the same execution group have to execute in lock-step. Therefore, if the
16 // code contains divergent branches (i.e., threads in a group do not agree on
17 // which path of the branch to take), the group of threads has to execute all
18 // the paths from that branch with different subsets of threads enabled until
19 // they converge at the immediately post-dominating BB of the paths.
20 //
21 // Due to this execution model, some optimizations such as jump
22 // threading and loop unswitching can be unfortunately harmful when performed on
23 // divergent branches. Therefore, an analysis that computes which branches in a
24 // GPU program are divergent can help the compiler to selectively run these
25 // optimizations.
26 //
27 // This file defines divergence analysis which computes a conservative but
28 // non-trivial approximation of all divergent branches in a GPU program. It
29 // partially implements the approach described in
30 //
31 //   Divergence Analysis
32 //   Sampaio, Souza, Collange, Pereira
33 //   TOPLAS '13
34 //
35 // The divergence analysis identifies the sources of divergence (e.g., special
36 // variables that hold the thread ID), and recursively marks variables that are
37 // data or sync dependent on a source of divergence as divergent.
38 //
39 // While data dependency is a well-known concept, the notion of sync dependency
40 // is worth more explanation. Sync dependence characterizes the control flow
41 // aspect of the propagation of branch divergence. For example,
42 //
43 //   %cond = icmp slt i32 %tid, 10
44 //   br i1 %cond, label %then, label %else
45 // then:
46 //   br label %merge
47 // else:
48 //   br label %merge
49 // merge:
50 //   %a = phi i32 [ 0, %then ], [ 1, %else ]
51 //
52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53 // because %tid is not on its use-def chains, %a is sync dependent on %tid
54 // because the branch "br i1 %cond" depends on %tid and affects which value %a
55 // is assigned to.
56 //
57 // The current implementation has the following limitations:
58 // 1. intra-procedural. It conservatively considers the arguments of a
59 //    non-kernel-entry function and the return value of a function call as
60 //    divergent.
61 // 2. memory as black box. It conservatively considers values loaded from
62 //    generic or local address as divergent. This can be improved by leveraging
63 //    pointer analysis.
64 //
65 //===----------------------------------------------------------------------===//
66 
67 #include "llvm/Analysis/DivergenceAnalysis.h"
68 #include "llvm/Analysis/Passes.h"
69 #include "llvm/Analysis/PostDominators.h"
70 #include "llvm/Analysis/TargetTransformInfo.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/InstIterator.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Value.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/Scalar.h"
80 #include <vector>
81 using namespace llvm;
82 
83 namespace {
84 
85 class DivergencePropagator {
86 public:
DivergencePropagator(Function & F,TargetTransformInfo & TTI,DominatorTree & DT,PostDominatorTree & PDT,DenseSet<const Value * > & DV)87   DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
88                        PostDominatorTree &PDT, DenseSet<const Value *> &DV)
89       : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
90   void populateWithSourcesOfDivergence();
91   void propagate();
92 
93 private:
94   // A helper function that explores data dependents of V.
95   void exploreDataDependency(Value *V);
96   // A helper function that explores sync dependents of TI.
97   void exploreSyncDependency(TerminatorInst *TI);
98   // Computes the influence region from Start to End. This region includes all
99   // basic blocks on any simple path from Start to End.
100   void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
101                               DenseSet<BasicBlock *> &InfluenceRegion);
102   // Finds all users of I that are outside the influence region, and add these
103   // users to Worklist.
104   void findUsersOutsideInfluenceRegion(
105       Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
106 
107   Function &F;
108   TargetTransformInfo &TTI;
109   DominatorTree &DT;
110   PostDominatorTree &PDT;
111   std::vector<Value *> Worklist; // Stack for DFS.
112   DenseSet<const Value *> &DV;   // Stores all divergent values.
113 };
114 
populateWithSourcesOfDivergence()115 void DivergencePropagator::populateWithSourcesOfDivergence() {
116   Worklist.clear();
117   DV.clear();
118   for (auto &I : instructions(F)) {
119     if (TTI.isSourceOfDivergence(&I)) {
120       Worklist.push_back(&I);
121       DV.insert(&I);
122     }
123   }
124   for (auto &Arg : F.args()) {
125     if (TTI.isSourceOfDivergence(&Arg)) {
126       Worklist.push_back(&Arg);
127       DV.insert(&Arg);
128     }
129   }
130 }
131 
exploreSyncDependency(TerminatorInst * TI)132 void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) {
133   // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
134   // immediate post dominator are divergent. This rule handles if-then-else
135   // patterns. For example,
136   //
137   // if (tid < 5)
138   //   a1 = 1;
139   // else
140   //   a2 = 2;
141   // a = phi(a1, a2); // sync dependent on (tid < 5)
142   BasicBlock *ThisBB = TI->getParent();
143   BasicBlock *IPostDom = PDT.getNode(ThisBB)->getIDom()->getBlock();
144   if (IPostDom == nullptr)
145     return;
146 
147   for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
148     // A PHINode is uniform if it returns the same value no matter which path is
149     // taken.
150     if (!cast<PHINode>(I)->hasConstantValue() && DV.insert(&*I).second)
151       Worklist.push_back(&*I);
152   }
153 
154   // Propagation rule 2: if a value defined in a loop is used outside, the user
155   // is sync dependent on the condition of the loop exits that dominate the
156   // user. For example,
157   //
158   // int i = 0;
159   // do {
160   //   i++;
161   //   if (foo(i)) ... // uniform
162   // } while (i < tid);
163   // if (bar(i)) ...   // divergent
164   //
165   // A program may contain unstructured loops. Therefore, we cannot leverage
166   // LoopInfo, which only recognizes natural loops.
167   //
168   // The algorithm used here handles both natural and unstructured loops.  Given
169   // a branch TI, we first compute its influence region, the union of all simple
170   // paths from TI to its immediate post dominator (IPostDom). Then, we search
171   // for all the values defined in the influence region but used outside. All
172   // these users are sync dependent on TI.
173   DenseSet<BasicBlock *> InfluenceRegion;
174   computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
175   // An insight that can speed up the search process is that all the in-region
176   // values that are used outside must dominate TI. Therefore, instead of
177   // searching every basic blocks in the influence region, we search all the
178   // dominators of TI until it is outside the influence region.
179   BasicBlock *InfluencedBB = ThisBB;
180   while (InfluenceRegion.count(InfluencedBB)) {
181     for (auto &I : *InfluencedBB)
182       findUsersOutsideInfluenceRegion(I, InfluenceRegion);
183     DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
184     if (IDomNode == nullptr)
185       break;
186     InfluencedBB = IDomNode->getBlock();
187   }
188 }
189 
findUsersOutsideInfluenceRegion(Instruction & I,const DenseSet<BasicBlock * > & InfluenceRegion)190 void DivergencePropagator::findUsersOutsideInfluenceRegion(
191     Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
192   for (User *U : I.users()) {
193     Instruction *UserInst = cast<Instruction>(U);
194     if (!InfluenceRegion.count(UserInst->getParent())) {
195       if (DV.insert(UserInst).second)
196         Worklist.push_back(UserInst);
197     }
198   }
199 }
200 
201 // A helper function for computeInfluenceRegion that adds successors of "ThisBB"
202 // to the influence region.
203 static void
addSuccessorsToInfluenceRegion(BasicBlock * ThisBB,BasicBlock * End,DenseSet<BasicBlock * > & InfluenceRegion,std::vector<BasicBlock * > & InfluenceStack)204 addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
205                                DenseSet<BasicBlock *> &InfluenceRegion,
206                                std::vector<BasicBlock *> &InfluenceStack) {
207   for (BasicBlock *Succ : successors(ThisBB)) {
208     if (Succ != End && InfluenceRegion.insert(Succ).second)
209       InfluenceStack.push_back(Succ);
210   }
211 }
212 
computeInfluenceRegion(BasicBlock * Start,BasicBlock * End,DenseSet<BasicBlock * > & InfluenceRegion)213 void DivergencePropagator::computeInfluenceRegion(
214     BasicBlock *Start, BasicBlock *End,
215     DenseSet<BasicBlock *> &InfluenceRegion) {
216   assert(PDT.properlyDominates(End, Start) &&
217          "End does not properly dominate Start");
218 
219   // The influence region starts from the end of "Start" to the beginning of
220   // "End". Therefore, "Start" should not be in the region unless "Start" is in
221   // a loop that doesn't contain "End".
222   std::vector<BasicBlock *> InfluenceStack;
223   addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
224   while (!InfluenceStack.empty()) {
225     BasicBlock *BB = InfluenceStack.back();
226     InfluenceStack.pop_back();
227     addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
228   }
229 }
230 
exploreDataDependency(Value * V)231 void DivergencePropagator::exploreDataDependency(Value *V) {
232   // Follow def-use chains of V.
233   for (User *U : V->users()) {
234     Instruction *UserInst = cast<Instruction>(U);
235     if (DV.insert(UserInst).second)
236       Worklist.push_back(UserInst);
237   }
238 }
239 
propagate()240 void DivergencePropagator::propagate() {
241   // Traverse the dependency graph using DFS.
242   while (!Worklist.empty()) {
243     Value *V = Worklist.back();
244     Worklist.pop_back();
245     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) {
246       // Terminators with less than two successors won't introduce sync
247       // dependency. Ignore them.
248       if (TI->getNumSuccessors() > 1)
249         exploreSyncDependency(TI);
250     }
251     exploreDataDependency(V);
252   }
253 }
254 
255 } /// end namespace anonymous
256 
257 // Register this pass.
258 char DivergenceAnalysis::ID = 0;
259 INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis",
260                       false, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)261 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
262 INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
263 INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis",
264                     false, true)
265 
266 FunctionPass *llvm::createDivergenceAnalysisPass() {
267   return new DivergenceAnalysis();
268 }
269 
getAnalysisUsage(AnalysisUsage & AU) const270 void DivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
271   AU.addRequired<DominatorTreeWrapperPass>();
272   AU.addRequired<PostDominatorTree>();
273   AU.setPreservesAll();
274 }
275 
runOnFunction(Function & F)276 bool DivergenceAnalysis::runOnFunction(Function &F) {
277   auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
278   if (TTIWP == nullptr)
279     return false;
280 
281   TargetTransformInfo &TTI = TTIWP->getTTI(F);
282   // Fast path: if the target does not have branch divergence, we do not mark
283   // any branch as divergent.
284   if (!TTI.hasBranchDivergence())
285     return false;
286 
287   DivergentValues.clear();
288   DivergencePropagator DP(F, TTI,
289                           getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
290                           getAnalysis<PostDominatorTree>(), DivergentValues);
291   DP.populateWithSourcesOfDivergence();
292   DP.propagate();
293   return false;
294 }
295 
print(raw_ostream & OS,const Module *) const296 void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
297   if (DivergentValues.empty())
298     return;
299   const Value *FirstDivergentValue = *DivergentValues.begin();
300   const Function *F;
301   if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
302     F = Arg->getParent();
303   } else if (const Instruction *I =
304                  dyn_cast<Instruction>(FirstDivergentValue)) {
305     F = I->getParent()->getParent();
306   } else {
307     llvm_unreachable("Only arguments and instructions can be divergent");
308   }
309 
310   // Dumps all divergent values in F, arguments and then instructions.
311   for (auto &Arg : F->args()) {
312     if (DivergentValues.count(&Arg))
313       OS << "DIVERGENT:  " << Arg << "\n";
314   }
315   // Iterate instructions using instructions() to ensure a deterministic order.
316   for (auto &I : instructions(F)) {
317     if (DivergentValues.count(&I))
318       OS << "DIVERGENT:" << I << "\n";
319   }
320 }
321