1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The machine combiner pass uses machine trace metrics to ensure the combined
11 // instructions does not lengthen the critical path or the resource depth.
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "machine-combiner"
15
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/MachineTraceMetrics.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/TargetSchedule.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Target/TargetInstrInfo.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Target/TargetSubtargetInfo.h"
33
34 using namespace llvm;
35
36 STATISTIC(NumInstCombined, "Number of machineinst combined");
37
38 namespace {
39 class MachineCombiner : public MachineFunctionPass {
40 const TargetInstrInfo *TII;
41 const TargetRegisterInfo *TRI;
42 MCSchedModel SchedModel;
43 MachineRegisterInfo *MRI;
44 MachineTraceMetrics *Traces;
45 MachineTraceMetrics::Ensemble *MinInstr;
46
47 TargetSchedModel TSchedModel;
48
49 /// True if optimizing for code size.
50 bool OptSize;
51
52 public:
53 static char ID;
MachineCombiner()54 MachineCombiner() : MachineFunctionPass(ID) {
55 initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
56 }
57 void getAnalysisUsage(AnalysisUsage &AU) const override;
58 bool runOnMachineFunction(MachineFunction &MF) override;
getPassName() const59 const char *getPassName() const override { return "Machine InstCombiner"; }
60
61 private:
62 bool doSubstitute(unsigned NewSize, unsigned OldSize);
63 bool combineInstructions(MachineBasicBlock *);
64 MachineInstr *getOperandDef(const MachineOperand &MO);
65 unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
66 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
67 MachineTraceMetrics::Trace BlockTrace);
68 unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
69 MachineTraceMetrics::Trace BlockTrace);
70 bool
71 improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
72 MachineTraceMetrics::Trace BlockTrace,
73 SmallVectorImpl<MachineInstr *> &InsInstrs,
74 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
75 MachineCombinerPattern Pattern);
76 bool preservesResourceLen(MachineBasicBlock *MBB,
77 MachineTraceMetrics::Trace BlockTrace,
78 SmallVectorImpl<MachineInstr *> &InsInstrs,
79 SmallVectorImpl<MachineInstr *> &DelInstrs);
80 void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
81 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
82 };
83 }
84
85 char MachineCombiner::ID = 0;
86 char &llvm::MachineCombinerID = MachineCombiner::ID;
87
88 INITIALIZE_PASS_BEGIN(MachineCombiner, "machine-combiner",
89 "Machine InstCombiner", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)90 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
91 INITIALIZE_PASS_END(MachineCombiner, "machine-combiner", "Machine InstCombiner",
92 false, false)
93
94 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
95 AU.setPreservesCFG();
96 AU.addPreserved<MachineDominatorTree>();
97 AU.addPreserved<MachineLoopInfo>();
98 AU.addRequired<MachineTraceMetrics>();
99 AU.addPreserved<MachineTraceMetrics>();
100 MachineFunctionPass::getAnalysisUsage(AU);
101 }
102
getOperandDef(const MachineOperand & MO)103 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
104 MachineInstr *DefInstr = nullptr;
105 // We need a virtual register definition.
106 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
107 DefInstr = MRI->getUniqueVRegDef(MO.getReg());
108 // PHI's have no depth etc.
109 if (DefInstr && DefInstr->isPHI())
110 DefInstr = nullptr;
111 return DefInstr;
112 }
113
114 /// Computes depth of instructions in vector \InsInstr.
115 ///
116 /// \param InsInstrs is a vector of machine instructions
117 /// \param InstrIdxForVirtReg is a dense map of virtual register to index
118 /// of defining machine instruction in \p InsInstrs
119 /// \param BlockTrace is a trace of machine instructions
120 ///
121 /// \returns Depth of last instruction in \InsInstrs ("NewRoot")
122 unsigned
getDepth(SmallVectorImpl<MachineInstr * > & InsInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg,MachineTraceMetrics::Trace BlockTrace)123 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
124 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
125 MachineTraceMetrics::Trace BlockTrace) {
126 SmallVector<unsigned, 16> InstrDepth;
127 assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
128 "Missing machine model\n");
129
130 // For each instruction in the new sequence compute the depth based on the
131 // operands. Use the trace information when possible. For new operands which
132 // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
133 for (auto *InstrPtr : InsInstrs) { // for each Use
134 unsigned IDepth = 0;
135 DEBUG(dbgs() << "NEW INSTR "; InstrPtr->dump(); dbgs() << "\n";);
136 for (const MachineOperand &MO : InstrPtr->operands()) {
137 // Check for virtual register operand.
138 if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
139 continue;
140 if (!MO.isUse())
141 continue;
142 unsigned DepthOp = 0;
143 unsigned LatencyOp = 0;
144 DenseMap<unsigned, unsigned>::iterator II =
145 InstrIdxForVirtReg.find(MO.getReg());
146 if (II != InstrIdxForVirtReg.end()) {
147 // Operand is new virtual register not in trace
148 assert(II->second < InstrDepth.size() && "Bad Index");
149 MachineInstr *DefInstr = InsInstrs[II->second];
150 assert(DefInstr &&
151 "There must be a definition for a new virtual register");
152 DepthOp = InstrDepth[II->second];
153 LatencyOp = TSchedModel.computeOperandLatency(
154 DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
155 InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
156 } else {
157 MachineInstr *DefInstr = getOperandDef(MO);
158 if (DefInstr) {
159 DepthOp = BlockTrace.getInstrCycles(DefInstr).Depth;
160 LatencyOp = TSchedModel.computeOperandLatency(
161 DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
162 InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
163 }
164 }
165 IDepth = std::max(IDepth, DepthOp + LatencyOp);
166 }
167 InstrDepth.push_back(IDepth);
168 }
169 unsigned NewRootIdx = InsInstrs.size() - 1;
170 return InstrDepth[NewRootIdx];
171 }
172
173 /// Computes instruction latency as max of latency of defined operands.
174 ///
175 /// \param Root is a machine instruction that could be replaced by NewRoot.
176 /// It is used to compute a more accurate latency information for NewRoot in
177 /// case there is a dependent instruction in the same trace (\p BlockTrace)
178 /// \param NewRoot is the instruction for which the latency is computed
179 /// \param BlockTrace is a trace of machine instructions
180 ///
181 /// \returns Latency of \p NewRoot
getLatency(MachineInstr * Root,MachineInstr * NewRoot,MachineTraceMetrics::Trace BlockTrace)182 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
183 MachineTraceMetrics::Trace BlockTrace) {
184 assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
185 "Missing machine model\n");
186
187 // Check each definition in NewRoot and compute the latency
188 unsigned NewRootLatency = 0;
189
190 for (const MachineOperand &MO : NewRoot->operands()) {
191 // Check for virtual register operand.
192 if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
193 continue;
194 if (!MO.isDef())
195 continue;
196 // Get the first instruction that uses MO
197 MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
198 RI++;
199 MachineInstr *UseMO = RI->getParent();
200 unsigned LatencyOp = 0;
201 if (UseMO && BlockTrace.isDepInTrace(Root, UseMO)) {
202 LatencyOp = TSchedModel.computeOperandLatency(
203 NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
204 UseMO->findRegisterUseOperandIdx(MO.getReg()));
205 } else {
206 LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
207 }
208 NewRootLatency = std::max(NewRootLatency, LatencyOp);
209 }
210 return NewRootLatency;
211 }
212
213 /// The combiner's goal may differ based on which pattern it is attempting
214 /// to optimize.
215 enum class CombinerObjective {
216 MustReduceDepth, // The data dependency chain must be improved.
217 Default // The critical path must not be lengthened.
218 };
219
getCombinerObjective(MachineCombinerPattern P)220 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
221 // TODO: If C++ ever gets a real enum class, make this part of the
222 // MachineCombinerPattern class.
223 switch (P) {
224 case MachineCombinerPattern::REASSOC_AX_BY:
225 case MachineCombinerPattern::REASSOC_AX_YB:
226 case MachineCombinerPattern::REASSOC_XA_BY:
227 case MachineCombinerPattern::REASSOC_XA_YB:
228 return CombinerObjective::MustReduceDepth;
229 default:
230 return CombinerObjective::Default;
231 }
232 }
233
234 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
235 /// The new code sequence ends in MI NewRoot. A necessary condition for the new
236 /// sequence to replace the old sequence is that it cannot lengthen the critical
237 /// path. The definition of "improve" may be restricted by specifying that the
238 /// new path improves the data dependency chain (MustReduceDepth).
improvesCriticalPathLen(MachineBasicBlock * MBB,MachineInstr * Root,MachineTraceMetrics::Trace BlockTrace,SmallVectorImpl<MachineInstr * > & InsInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg,MachineCombinerPattern Pattern)239 bool MachineCombiner::improvesCriticalPathLen(
240 MachineBasicBlock *MBB, MachineInstr *Root,
241 MachineTraceMetrics::Trace BlockTrace,
242 SmallVectorImpl<MachineInstr *> &InsInstrs,
243 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
244 MachineCombinerPattern Pattern) {
245 assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
246 "Missing machine model\n");
247 // NewRoot is the last instruction in the \p InsInstrs vector.
248 unsigned NewRootIdx = InsInstrs.size() - 1;
249 MachineInstr *NewRoot = InsInstrs[NewRootIdx];
250
251 // Get depth and latency of NewRoot and Root.
252 unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
253 unsigned RootDepth = BlockTrace.getInstrCycles(Root).Depth;
254
255 DEBUG(dbgs() << "DEPENDENCE DATA FOR " << Root << "\n";
256 dbgs() << " NewRootDepth: " << NewRootDepth << "\n";
257 dbgs() << " RootDepth: " << RootDepth << "\n");
258
259 // For a transform such as reassociation, the cost equation is
260 // conservatively calculated so that we must improve the depth (data
261 // dependency cycles) in the critical path to proceed with the transform.
262 // Being conservative also protects against inaccuracies in the underlying
263 // machine trace metrics and CPU models.
264 if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth)
265 return NewRootDepth < RootDepth;
266
267 // A more flexible cost calculation for the critical path includes the slack
268 // of the original code sequence. This may allow the transform to proceed
269 // even if the instruction depths (data dependency cycles) become worse.
270 unsigned NewRootLatency = getLatency(Root, NewRoot, BlockTrace);
271 unsigned RootLatency = TSchedModel.computeInstrLatency(Root);
272 unsigned RootSlack = BlockTrace.getInstrSlack(Root);
273
274 DEBUG(dbgs() << " NewRootLatency: " << NewRootLatency << "\n";
275 dbgs() << " RootLatency: " << RootLatency << "\n";
276 dbgs() << " RootSlack: " << RootSlack << "\n";
277 dbgs() << " NewRootDepth + NewRootLatency = "
278 << NewRootDepth + NewRootLatency << "\n";
279 dbgs() << " RootDepth + RootLatency + RootSlack = "
280 << RootDepth + RootLatency + RootSlack << "\n";);
281
282 unsigned NewCycleCount = NewRootDepth + NewRootLatency;
283 unsigned OldCycleCount = RootDepth + RootLatency + RootSlack;
284
285 return NewCycleCount <= OldCycleCount;
286 }
287
288 /// helper routine to convert instructions into SC
instr2instrSC(SmallVectorImpl<MachineInstr * > & Instrs,SmallVectorImpl<const MCSchedClassDesc * > & InstrsSC)289 void MachineCombiner::instr2instrSC(
290 SmallVectorImpl<MachineInstr *> &Instrs,
291 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
292 for (auto *InstrPtr : Instrs) {
293 unsigned Opc = InstrPtr->getOpcode();
294 unsigned Idx = TII->get(Opc).getSchedClass();
295 const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
296 InstrsSC.push_back(SC);
297 }
298 }
299
300 /// True when the new instructions do not increase resource length
preservesResourceLen(MachineBasicBlock * MBB,MachineTraceMetrics::Trace BlockTrace,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs)301 bool MachineCombiner::preservesResourceLen(
302 MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
303 SmallVectorImpl<MachineInstr *> &InsInstrs,
304 SmallVectorImpl<MachineInstr *> &DelInstrs) {
305 if (!TSchedModel.hasInstrSchedModel())
306 return true;
307
308 // Compute current resource length
309
310 //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
311 SmallVector <const MachineBasicBlock *, 1> MBBarr;
312 MBBarr.push_back(MBB);
313 unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
314
315 // Deal with SC rather than Instructions.
316 SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
317 SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
318
319 instr2instrSC(InsInstrs, InsInstrsSC);
320 instr2instrSC(DelInstrs, DelInstrsSC);
321
322 ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
323 ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
324
325 // Compute new resource length.
326 unsigned ResLenAfterCombine =
327 BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
328
329 DEBUG(dbgs() << "RESOURCE DATA: \n";
330 dbgs() << " resource len before: " << ResLenBeforeCombine
331 << " after: " << ResLenAfterCombine << "\n";);
332
333 return ResLenAfterCombine <= ResLenBeforeCombine;
334 }
335
336 /// \returns true when new instruction sequence should be generated
337 /// independent if it lengthens critical path or not
doSubstitute(unsigned NewSize,unsigned OldSize)338 bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
339 if (OptSize && (NewSize < OldSize))
340 return true;
341 if (!TSchedModel.hasInstrSchedModelOrItineraries())
342 return true;
343 return false;
344 }
345
346 /// Substitute a slow code sequence with a faster one by
347 /// evaluating instruction combining pattern.
348 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
349 /// combining based on machine trace metrics. Only combine a sequence of
350 /// instructions when this neither lengthens the critical path nor increases
351 /// resource pressure. When optimizing for codesize always combine when the new
352 /// sequence is shorter.
combineInstructions(MachineBasicBlock * MBB)353 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
354 bool Changed = false;
355 DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
356
357 auto BlockIter = MBB->begin();
358
359 while (BlockIter != MBB->end()) {
360 auto &MI = *BlockIter++;
361
362 DEBUG(dbgs() << "INSTR "; MI.dump(); dbgs() << "\n";);
363 SmallVector<MachineCombinerPattern, 16> Patterns;
364 // The motivating example is:
365 //
366 // MUL Other MUL_op1 MUL_op2 Other
367 // \ / \ | /
368 // ADD/SUB => MADD/MSUB
369 // (=Root) (=NewRoot)
370
371 // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
372 // usually beneficial for code size it unfortunately can hurt performance
373 // when the ADD is on the critical path, but the MUL is not. With the
374 // substitution the MUL becomes part of the critical path (in form of the
375 // MADD) and can lengthen it on architectures where the MADD latency is
376 // longer than the ADD latency.
377 //
378 // For each instruction we check if it can be the root of a combiner
379 // pattern. Then for each pattern the new code sequence in form of MI is
380 // generated and evaluated. When the efficiency criteria (don't lengthen
381 // critical path, don't use more resources) is met the new sequence gets
382 // hooked up into the basic block before the old sequence is removed.
383 //
384 // The algorithm does not try to evaluate all patterns and pick the best.
385 // This is only an artificial restriction though. In practice there is
386 // mostly one pattern, and getMachineCombinerPatterns() can order patterns
387 // based on an internal cost heuristic.
388
389 if (!TII->getMachineCombinerPatterns(MI, Patterns))
390 continue;
391
392 for (auto P : Patterns) {
393 SmallVector<MachineInstr *, 16> InsInstrs;
394 SmallVector<MachineInstr *, 16> DelInstrs;
395 DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
396 if (!MinInstr)
397 MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
398 MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
399 Traces->verifyAnalysis();
400 TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
401 InstrIdxForVirtReg);
402 unsigned NewInstCount = InsInstrs.size();
403 unsigned OldInstCount = DelInstrs.size();
404 // Found pattern, but did not generate alternative sequence.
405 // This can happen e.g. when an immediate could not be materialized
406 // in a single instruction.
407 if (!NewInstCount)
408 continue;
409
410 // Substitute when we optimize for codesize and the new sequence has
411 // fewer instructions OR
412 // the new sequence neither lengthens the critical path nor increases
413 // resource pressure.
414 if (doSubstitute(NewInstCount, OldInstCount) ||
415 (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs,
416 InstrIdxForVirtReg, P) &&
417 preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs))) {
418 for (auto *InstrPtr : InsInstrs)
419 MBB->insert((MachineBasicBlock::iterator) &MI, InstrPtr);
420 for (auto *InstrPtr : DelInstrs)
421 InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
422
423 Changed = true;
424 ++NumInstCombined;
425
426 Traces->invalidate(MBB);
427 Traces->verifyAnalysis();
428 // Eagerly stop after the first pattern fires.
429 break;
430 } else {
431 // Cleanup instructions of the alternative code sequence. There is no
432 // use for them.
433 MachineFunction *MF = MBB->getParent();
434 for (auto *InstrPtr : InsInstrs)
435 MF->DeleteMachineInstr(InstrPtr);
436 }
437 InstrIdxForVirtReg.clear();
438 }
439 }
440
441 return Changed;
442 }
443
runOnMachineFunction(MachineFunction & MF)444 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
445 const TargetSubtargetInfo &STI = MF.getSubtarget();
446 TII = STI.getInstrInfo();
447 TRI = STI.getRegisterInfo();
448 SchedModel = STI.getSchedModel();
449 TSchedModel.init(SchedModel, &STI, TII);
450 MRI = &MF.getRegInfo();
451 Traces = &getAnalysis<MachineTraceMetrics>();
452 MinInstr = nullptr;
453 OptSize = MF.getFunction()->optForSize();
454
455 DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
456 if (!TII->useMachineCombiner()) {
457 DEBUG(dbgs() << " Skipping pass: Target does not support machine combiner\n");
458 return false;
459 }
460
461 bool Changed = false;
462
463 // Try to combine instructions.
464 for (auto &MBB : MF)
465 Changed |= combineInstructions(&MBB);
466
467 return Changed;
468 }
469