1 //===-- MachineFunction.cpp -----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect native machine code information for a function. This allows
11 // target-specific information about the generated code to be stored with each
12 // function.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/CodeGen/MachineConstantPool.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionInitializer.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/WinEHFuncInfo.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/ModuleSlotTracker.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCContext.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetFrameLowering.h"
43 #include "llvm/Target/TargetLowering.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 using namespace llvm;
47
48 #define DEBUG_TYPE "codegen"
49
anchor()50 void MachineFunctionInitializer::anchor() {}
51
52 //===----------------------------------------------------------------------===//
53 // MachineFunction implementation
54 //===----------------------------------------------------------------------===//
55
56 // Out-of-line virtual method.
~MachineFunctionInfo()57 MachineFunctionInfo::~MachineFunctionInfo() {}
58
deleteNode(MachineBasicBlock * MBB)59 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
60 MBB->getParent()->DeleteMachineBasicBlock(MBB);
61 }
62
MachineFunction(const Function * F,const TargetMachine & TM,unsigned FunctionNum,MachineModuleInfo & mmi)63 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
64 unsigned FunctionNum, MachineModuleInfo &mmi)
65 : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()),
66 MMI(mmi) {
67 if (STI->getRegisterInfo())
68 RegInfo = new (Allocator) MachineRegisterInfo(this);
69 else
70 RegInfo = nullptr;
71
72 MFInfo = nullptr;
73 FrameInfo = new (Allocator)
74 MachineFrameInfo(STI->getFrameLowering()->getStackAlignment(),
75 STI->getFrameLowering()->isStackRealignable(),
76 !F->hasFnAttribute("no-realign-stack"));
77
78 if (Fn->hasFnAttribute(Attribute::StackAlignment))
79 FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment());
80
81 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
82 Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
83
84 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn.
85 // FIXME: Use Function::optForSize().
86 if (!Fn->hasFnAttribute(Attribute::OptimizeForSize))
87 Alignment = std::max(Alignment,
88 STI->getTargetLowering()->getPrefFunctionAlignment());
89
90 FunctionNumber = FunctionNum;
91 JumpTableInfo = nullptr;
92
93 if (isFuncletEHPersonality(classifyEHPersonality(
94 F->hasPersonalityFn() ? F->getPersonalityFn() : nullptr))) {
95 WinEHInfo = new (Allocator) WinEHFuncInfo();
96 }
97
98 assert(TM.isCompatibleDataLayout(getDataLayout()) &&
99 "Can't create a MachineFunction using a Module with a "
100 "Target-incompatible DataLayout attached\n");
101
102 PSVManager = llvm::make_unique<PseudoSourceValueManager>();
103 }
104
~MachineFunction()105 MachineFunction::~MachineFunction() {
106 // Don't call destructors on MachineInstr and MachineOperand. All of their
107 // memory comes from the BumpPtrAllocator which is about to be purged.
108 //
109 // Do call MachineBasicBlock destructors, it contains std::vectors.
110 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
111 I->Insts.clearAndLeakNodesUnsafely();
112
113 InstructionRecycler.clear(Allocator);
114 OperandRecycler.clear(Allocator);
115 BasicBlockRecycler.clear(Allocator);
116 if (RegInfo) {
117 RegInfo->~MachineRegisterInfo();
118 Allocator.Deallocate(RegInfo);
119 }
120 if (MFInfo) {
121 MFInfo->~MachineFunctionInfo();
122 Allocator.Deallocate(MFInfo);
123 }
124
125 FrameInfo->~MachineFrameInfo();
126 Allocator.Deallocate(FrameInfo);
127
128 ConstantPool->~MachineConstantPool();
129 Allocator.Deallocate(ConstantPool);
130
131 if (JumpTableInfo) {
132 JumpTableInfo->~MachineJumpTableInfo();
133 Allocator.Deallocate(JumpTableInfo);
134 }
135
136 if (WinEHInfo) {
137 WinEHInfo->~WinEHFuncInfo();
138 Allocator.Deallocate(WinEHInfo);
139 }
140 }
141
getDataLayout() const142 const DataLayout &MachineFunction::getDataLayout() const {
143 return Fn->getParent()->getDataLayout();
144 }
145
146 /// Get the JumpTableInfo for this function.
147 /// If it does not already exist, allocate one.
148 MachineJumpTableInfo *MachineFunction::
getOrCreateJumpTableInfo(unsigned EntryKind)149 getOrCreateJumpTableInfo(unsigned EntryKind) {
150 if (JumpTableInfo) return JumpTableInfo;
151
152 JumpTableInfo = new (Allocator)
153 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
154 return JumpTableInfo;
155 }
156
157 /// Should we be emitting segmented stack stuff for the function
shouldSplitStack()158 bool MachineFunction::shouldSplitStack() {
159 return getFunction()->hasFnAttribute("split-stack");
160 }
161
162 /// This discards all of the MachineBasicBlock numbers and recomputes them.
163 /// This guarantees that the MBB numbers are sequential, dense, and match the
164 /// ordering of the blocks within the function. If a specific MachineBasicBlock
165 /// is specified, only that block and those after it are renumbered.
RenumberBlocks(MachineBasicBlock * MBB)166 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
167 if (empty()) { MBBNumbering.clear(); return; }
168 MachineFunction::iterator MBBI, E = end();
169 if (MBB == nullptr)
170 MBBI = begin();
171 else
172 MBBI = MBB->getIterator();
173
174 // Figure out the block number this should have.
175 unsigned BlockNo = 0;
176 if (MBBI != begin())
177 BlockNo = std::prev(MBBI)->getNumber() + 1;
178
179 for (; MBBI != E; ++MBBI, ++BlockNo) {
180 if (MBBI->getNumber() != (int)BlockNo) {
181 // Remove use of the old number.
182 if (MBBI->getNumber() != -1) {
183 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
184 "MBB number mismatch!");
185 MBBNumbering[MBBI->getNumber()] = nullptr;
186 }
187
188 // If BlockNo is already taken, set that block's number to -1.
189 if (MBBNumbering[BlockNo])
190 MBBNumbering[BlockNo]->setNumber(-1);
191
192 MBBNumbering[BlockNo] = &*MBBI;
193 MBBI->setNumber(BlockNo);
194 }
195 }
196
197 // Okay, all the blocks are renumbered. If we have compactified the block
198 // numbering, shrink MBBNumbering now.
199 assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
200 MBBNumbering.resize(BlockNo);
201 }
202
203 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
204 MachineInstr *
CreateMachineInstr(const MCInstrDesc & MCID,DebugLoc DL,bool NoImp)205 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
206 DebugLoc DL, bool NoImp) {
207 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
208 MachineInstr(*this, MCID, DL, NoImp);
209 }
210
211 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
212 /// identical in all ways except the instruction has no parent, prev, or next.
213 MachineInstr *
CloneMachineInstr(const MachineInstr * Orig)214 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
215 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
216 MachineInstr(*this, *Orig);
217 }
218
219 /// Delete the given MachineInstr.
220 ///
221 /// This function also serves as the MachineInstr destructor - the real
222 /// ~MachineInstr() destructor must be empty.
223 void
DeleteMachineInstr(MachineInstr * MI)224 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
225 // Strip it for parts. The operand array and the MI object itself are
226 // independently recyclable.
227 if (MI->Operands)
228 deallocateOperandArray(MI->CapOperands, MI->Operands);
229 // Don't call ~MachineInstr() which must be trivial anyway because
230 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
231 // destructors.
232 InstructionRecycler.Deallocate(Allocator, MI);
233 }
234
235 /// Allocate a new MachineBasicBlock. Use this instead of
236 /// `new MachineBasicBlock'.
237 MachineBasicBlock *
CreateMachineBasicBlock(const BasicBlock * bb)238 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
239 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
240 MachineBasicBlock(*this, bb);
241 }
242
243 /// Delete the given MachineBasicBlock.
244 void
DeleteMachineBasicBlock(MachineBasicBlock * MBB)245 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
246 assert(MBB->getParent() == this && "MBB parent mismatch!");
247 MBB->~MachineBasicBlock();
248 BasicBlockRecycler.Deallocate(Allocator, MBB);
249 }
250
251 MachineMemOperand *
getMachineMemOperand(MachinePointerInfo PtrInfo,unsigned f,uint64_t s,unsigned base_alignment,const AAMDNodes & AAInfo,const MDNode * Ranges)252 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f,
253 uint64_t s, unsigned base_alignment,
254 const AAMDNodes &AAInfo,
255 const MDNode *Ranges) {
256 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment,
257 AAInfo, Ranges);
258 }
259
260 MachineMemOperand *
getMachineMemOperand(const MachineMemOperand * MMO,int64_t Offset,uint64_t Size)261 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
262 int64_t Offset, uint64_t Size) {
263 if (MMO->getValue())
264 return new (Allocator)
265 MachineMemOperand(MachinePointerInfo(MMO->getValue(),
266 MMO->getOffset()+Offset),
267 MMO->getFlags(), Size,
268 MMO->getBaseAlignment());
269 return new (Allocator)
270 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(),
271 MMO->getOffset()+Offset),
272 MMO->getFlags(), Size,
273 MMO->getBaseAlignment());
274 }
275
276 MachineInstr::mmo_iterator
allocateMemRefsArray(unsigned long Num)277 MachineFunction::allocateMemRefsArray(unsigned long Num) {
278 return Allocator.Allocate<MachineMemOperand *>(Num);
279 }
280
281 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
extractLoadMemRefs(MachineInstr::mmo_iterator Begin,MachineInstr::mmo_iterator End)282 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
283 MachineInstr::mmo_iterator End) {
284 // Count the number of load mem refs.
285 unsigned Num = 0;
286 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
287 if ((*I)->isLoad())
288 ++Num;
289
290 // Allocate a new array and populate it with the load information.
291 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
292 unsigned Index = 0;
293 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
294 if ((*I)->isLoad()) {
295 if (!(*I)->isStore())
296 // Reuse the MMO.
297 Result[Index] = *I;
298 else {
299 // Clone the MMO and unset the store flag.
300 MachineMemOperand *JustLoad =
301 getMachineMemOperand((*I)->getPointerInfo(),
302 (*I)->getFlags() & ~MachineMemOperand::MOStore,
303 (*I)->getSize(), (*I)->getBaseAlignment(),
304 (*I)->getAAInfo());
305 Result[Index] = JustLoad;
306 }
307 ++Index;
308 }
309 }
310 return std::make_pair(Result, Result + Num);
311 }
312
313 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
extractStoreMemRefs(MachineInstr::mmo_iterator Begin,MachineInstr::mmo_iterator End)314 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
315 MachineInstr::mmo_iterator End) {
316 // Count the number of load mem refs.
317 unsigned Num = 0;
318 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
319 if ((*I)->isStore())
320 ++Num;
321
322 // Allocate a new array and populate it with the store information.
323 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
324 unsigned Index = 0;
325 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
326 if ((*I)->isStore()) {
327 if (!(*I)->isLoad())
328 // Reuse the MMO.
329 Result[Index] = *I;
330 else {
331 // Clone the MMO and unset the load flag.
332 MachineMemOperand *JustStore =
333 getMachineMemOperand((*I)->getPointerInfo(),
334 (*I)->getFlags() & ~MachineMemOperand::MOLoad,
335 (*I)->getSize(), (*I)->getBaseAlignment(),
336 (*I)->getAAInfo());
337 Result[Index] = JustStore;
338 }
339 ++Index;
340 }
341 }
342 return std::make_pair(Result, Result + Num);
343 }
344
createExternalSymbolName(StringRef Name)345 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
346 char *Dest = Allocator.Allocate<char>(Name.size() + 1);
347 std::copy(Name.begin(), Name.end(), Dest);
348 Dest[Name.size()] = 0;
349 return Dest;
350 }
351
352 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const353 void MachineFunction::dump() const {
354 print(dbgs());
355 }
356 #endif
357
getName() const358 StringRef MachineFunction::getName() const {
359 assert(getFunction() && "No function!");
360 return getFunction()->getName();
361 }
362
print(raw_ostream & OS,SlotIndexes * Indexes) const363 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const {
364 OS << "# Machine code for function " << getName() << ": ";
365 if (RegInfo) {
366 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA");
367 if (!RegInfo->tracksLiveness())
368 OS << ", not tracking liveness";
369 }
370 OS << '\n';
371
372 // Print Frame Information
373 FrameInfo->print(*this, OS);
374
375 // Print JumpTable Information
376 if (JumpTableInfo)
377 JumpTableInfo->print(OS);
378
379 // Print Constant Pool
380 ConstantPool->print(OS);
381
382 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
383
384 if (RegInfo && !RegInfo->livein_empty()) {
385 OS << "Function Live Ins: ";
386 for (MachineRegisterInfo::livein_iterator
387 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
388 OS << PrintReg(I->first, TRI);
389 if (I->second)
390 OS << " in " << PrintReg(I->second, TRI);
391 if (std::next(I) != E)
392 OS << ", ";
393 }
394 OS << '\n';
395 }
396
397 ModuleSlotTracker MST(getFunction()->getParent());
398 MST.incorporateFunction(*getFunction());
399 for (const auto &BB : *this) {
400 OS << '\n';
401 BB.print(OS, MST, Indexes);
402 }
403
404 OS << "\n# End machine code for function " << getName() << ".\n\n";
405 }
406
407 namespace llvm {
408 template<>
409 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
410
DOTGraphTraitsllvm::DOTGraphTraits411 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
412
getGraphNamellvm::DOTGraphTraits413 static std::string getGraphName(const MachineFunction *F) {
414 return ("CFG for '" + F->getName() + "' function").str();
415 }
416
getNodeLabelllvm::DOTGraphTraits417 std::string getNodeLabel(const MachineBasicBlock *Node,
418 const MachineFunction *Graph) {
419 std::string OutStr;
420 {
421 raw_string_ostream OSS(OutStr);
422
423 if (isSimple()) {
424 OSS << "BB#" << Node->getNumber();
425 if (const BasicBlock *BB = Node->getBasicBlock())
426 OSS << ": " << BB->getName();
427 } else
428 Node->print(OSS);
429 }
430
431 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
432
433 // Process string output to make it nicer...
434 for (unsigned i = 0; i != OutStr.length(); ++i)
435 if (OutStr[i] == '\n') { // Left justify
436 OutStr[i] = '\\';
437 OutStr.insert(OutStr.begin()+i+1, 'l');
438 }
439 return OutStr;
440 }
441 };
442 }
443
viewCFG() const444 void MachineFunction::viewCFG() const
445 {
446 #ifndef NDEBUG
447 ViewGraph(this, "mf" + getName());
448 #else
449 errs() << "MachineFunction::viewCFG is only available in debug builds on "
450 << "systems with Graphviz or gv!\n";
451 #endif // NDEBUG
452 }
453
viewCFGOnly() const454 void MachineFunction::viewCFGOnly() const
455 {
456 #ifndef NDEBUG
457 ViewGraph(this, "mf" + getName(), true);
458 #else
459 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
460 << "systems with Graphviz or gv!\n";
461 #endif // NDEBUG
462 }
463
464 /// Add the specified physical register as a live-in value and
465 /// create a corresponding virtual register for it.
addLiveIn(unsigned PReg,const TargetRegisterClass * RC)466 unsigned MachineFunction::addLiveIn(unsigned PReg,
467 const TargetRegisterClass *RC) {
468 MachineRegisterInfo &MRI = getRegInfo();
469 unsigned VReg = MRI.getLiveInVirtReg(PReg);
470 if (VReg) {
471 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
472 (void)VRegRC;
473 // A physical register can be added several times.
474 // Between two calls, the register class of the related virtual register
475 // may have been constrained to match some operation constraints.
476 // In that case, check that the current register class includes the
477 // physical register and is a sub class of the specified RC.
478 assert((VRegRC == RC || (VRegRC->contains(PReg) &&
479 RC->hasSubClassEq(VRegRC))) &&
480 "Register class mismatch!");
481 return VReg;
482 }
483 VReg = MRI.createVirtualRegister(RC);
484 MRI.addLiveIn(PReg, VReg);
485 return VReg;
486 }
487
488 /// Return the MCSymbol for the specified non-empty jump table.
489 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
490 /// normal 'L' label is returned.
getJTISymbol(unsigned JTI,MCContext & Ctx,bool isLinkerPrivate) const491 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
492 bool isLinkerPrivate) const {
493 const DataLayout &DL = getDataLayout();
494 assert(JumpTableInfo && "No jump tables");
495 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
496
497 const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
498 : DL.getPrivateGlobalPrefix();
499 SmallString<60> Name;
500 raw_svector_ostream(Name)
501 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
502 return Ctx.getOrCreateSymbol(Name);
503 }
504
505 /// Return a function-local symbol to represent the PIC base.
getPICBaseSymbol() const506 MCSymbol *MachineFunction::getPICBaseSymbol() const {
507 const DataLayout &DL = getDataLayout();
508 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
509 Twine(getFunctionNumber()) + "$pb");
510 }
511
512 //===----------------------------------------------------------------------===//
513 // MachineFrameInfo implementation
514 //===----------------------------------------------------------------------===//
515
516 /// Make sure the function is at least Align bytes aligned.
ensureMaxAlignment(unsigned Align)517 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) {
518 if (!StackRealignable || !RealignOption)
519 assert(Align <= StackAlignment &&
520 "For targets without stack realignment, Align is out of limit!");
521 if (MaxAlignment < Align) MaxAlignment = Align;
522 }
523
524 /// Clamp the alignment if requested and emit a warning.
clampStackAlignment(bool ShouldClamp,unsigned Align,unsigned StackAlign)525 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align,
526 unsigned StackAlign) {
527 if (!ShouldClamp || Align <= StackAlign)
528 return Align;
529 DEBUG(dbgs() << "Warning: requested alignment " << Align
530 << " exceeds the stack alignment " << StackAlign
531 << " when stack realignment is off" << '\n');
532 return StackAlign;
533 }
534
535 /// Create a new statically sized stack object, returning a nonnegative
536 /// identifier to represent it.
CreateStackObject(uint64_t Size,unsigned Alignment,bool isSS,const AllocaInst * Alloca)537 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment,
538 bool isSS, const AllocaInst *Alloca) {
539 assert(Size != 0 && "Cannot allocate zero size stack objects!");
540 Alignment = clampStackAlignment(!StackRealignable || !RealignOption,
541 Alignment, StackAlignment);
542 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca,
543 !isSS));
544 int Index = (int)Objects.size() - NumFixedObjects - 1;
545 assert(Index >= 0 && "Bad frame index!");
546 ensureMaxAlignment(Alignment);
547 return Index;
548 }
549
550 /// Create a new statically sized stack object that represents a spill slot,
551 /// returning a nonnegative identifier to represent it.
CreateSpillStackObject(uint64_t Size,unsigned Alignment)552 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size,
553 unsigned Alignment) {
554 Alignment = clampStackAlignment(!StackRealignable || !RealignOption,
555 Alignment, StackAlignment);
556 CreateStackObject(Size, Alignment, true);
557 int Index = (int)Objects.size() - NumFixedObjects - 1;
558 ensureMaxAlignment(Alignment);
559 return Index;
560 }
561
562 /// Notify the MachineFrameInfo object that a variable sized object has been
563 /// created. This must be created whenever a variable sized object is created,
564 /// whether or not the index returned is actually used.
CreateVariableSizedObject(unsigned Alignment,const AllocaInst * Alloca)565 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment,
566 const AllocaInst *Alloca) {
567 HasVarSizedObjects = true;
568 Alignment = clampStackAlignment(!StackRealignable || !RealignOption,
569 Alignment, StackAlignment);
570 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true));
571 ensureMaxAlignment(Alignment);
572 return (int)Objects.size()-NumFixedObjects-1;
573 }
574
575 /// Create a new object at a fixed location on the stack.
576 /// All fixed objects should be created before other objects are created for
577 /// efficiency. By default, fixed objects are immutable. This returns an
578 /// index with a negative value.
CreateFixedObject(uint64_t Size,int64_t SPOffset,bool Immutable,bool isAliased)579 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
580 bool Immutable, bool isAliased) {
581 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
582 // The alignment of the frame index can be determined from its offset from
583 // the incoming frame position. If the frame object is at offset 32 and
584 // the stack is guaranteed to be 16-byte aligned, then we know that the
585 // object is 16-byte aligned.
586 unsigned Align = MinAlign(SPOffset, StackAlignment);
587 Align = clampStackAlignment(!StackRealignable || !RealignOption, Align,
588 StackAlignment);
589 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable,
590 /*isSS*/ false,
591 /*Alloca*/ nullptr, isAliased));
592 return -++NumFixedObjects;
593 }
594
595 /// Create a spill slot at a fixed location on the stack.
596 /// Returns an index with a negative value.
CreateFixedSpillStackObject(uint64_t Size,int64_t SPOffset)597 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size,
598 int64_t SPOffset) {
599 unsigned Align = MinAlign(SPOffset, StackAlignment);
600 Align = clampStackAlignment(!StackRealignable || !RealignOption, Align,
601 StackAlignment);
602 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset,
603 /*Immutable*/ true,
604 /*isSS*/ true,
605 /*Alloca*/ nullptr,
606 /*isAliased*/ false));
607 return -++NumFixedObjects;
608 }
609
getPristineRegs(const MachineFunction & MF) const610 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const {
611 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
612 BitVector BV(TRI->getNumRegs());
613
614 // Before CSI is calculated, no registers are considered pristine. They can be
615 // freely used and PEI will make sure they are saved.
616 if (!isCalleeSavedInfoValid())
617 return BV;
618
619 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
620 BV.set(*CSR);
621
622 // Saved CSRs are not pristine.
623 for (auto &I : getCalleeSavedInfo())
624 for (MCSubRegIterator S(I.getReg(), TRI, true); S.isValid(); ++S)
625 BV.reset(*S);
626
627 return BV;
628 }
629
estimateStackSize(const MachineFunction & MF) const630 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const {
631 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
632 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
633 unsigned MaxAlign = getMaxAlignment();
634 int Offset = 0;
635
636 // This code is very, very similar to PEI::calculateFrameObjectOffsets().
637 // It really should be refactored to share code. Until then, changes
638 // should keep in mind that there's tight coupling between the two.
639
640 for (int i = getObjectIndexBegin(); i != 0; ++i) {
641 int FixedOff = -getObjectOffset(i);
642 if (FixedOff > Offset) Offset = FixedOff;
643 }
644 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) {
645 if (isDeadObjectIndex(i))
646 continue;
647 Offset += getObjectSize(i);
648 unsigned Align = getObjectAlignment(i);
649 // Adjust to alignment boundary
650 Offset = (Offset+Align-1)/Align*Align;
651
652 MaxAlign = std::max(Align, MaxAlign);
653 }
654
655 if (adjustsStack() && TFI->hasReservedCallFrame(MF))
656 Offset += getMaxCallFrameSize();
657
658 // Round up the size to a multiple of the alignment. If the function has
659 // any calls or alloca's, align to the target's StackAlignment value to
660 // ensure that the callee's frame or the alloca data is suitably aligned;
661 // otherwise, for leaf functions, align to the TransientStackAlignment
662 // value.
663 unsigned StackAlign;
664 if (adjustsStack() || hasVarSizedObjects() ||
665 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0))
666 StackAlign = TFI->getStackAlignment();
667 else
668 StackAlign = TFI->getTransientStackAlignment();
669
670 // If the frame pointer is eliminated, all frame offsets will be relative to
671 // SP not FP. Align to MaxAlign so this works.
672 StackAlign = std::max(StackAlign, MaxAlign);
673 unsigned AlignMask = StackAlign - 1;
674 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask);
675
676 return (unsigned)Offset;
677 }
678
print(const MachineFunction & MF,raw_ostream & OS) const679 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{
680 if (Objects.empty()) return;
681
682 const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering();
683 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
684
685 OS << "Frame Objects:\n";
686
687 for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
688 const StackObject &SO = Objects[i];
689 OS << " fi#" << (int)(i-NumFixedObjects) << ": ";
690 if (SO.Size == ~0ULL) {
691 OS << "dead\n";
692 continue;
693 }
694 if (SO.Size == 0)
695 OS << "variable sized";
696 else
697 OS << "size=" << SO.Size;
698 OS << ", align=" << SO.Alignment;
699
700 if (i < NumFixedObjects)
701 OS << ", fixed";
702 if (i < NumFixedObjects || SO.SPOffset != -1) {
703 int64_t Off = SO.SPOffset - ValOffset;
704 OS << ", at location [SP";
705 if (Off > 0)
706 OS << "+" << Off;
707 else if (Off < 0)
708 OS << Off;
709 OS << "]";
710 }
711 OS << "\n";
712 }
713 }
714
715 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump(const MachineFunction & MF) const716 void MachineFrameInfo::dump(const MachineFunction &MF) const {
717 print(MF, dbgs());
718 }
719 #endif
720
721 //===----------------------------------------------------------------------===//
722 // MachineJumpTableInfo implementation
723 //===----------------------------------------------------------------------===//
724
725 /// Return the size of each entry in the jump table.
getEntrySize(const DataLayout & TD) const726 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
727 // The size of a jump table entry is 4 bytes unless the entry is just the
728 // address of a block, in which case it is the pointer size.
729 switch (getEntryKind()) {
730 case MachineJumpTableInfo::EK_BlockAddress:
731 return TD.getPointerSize();
732 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
733 return 8;
734 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
735 case MachineJumpTableInfo::EK_LabelDifference32:
736 case MachineJumpTableInfo::EK_Custom32:
737 return 4;
738 case MachineJumpTableInfo::EK_Inline:
739 return 0;
740 }
741 llvm_unreachable("Unknown jump table encoding!");
742 }
743
744 /// Return the alignment of each entry in the jump table.
getEntryAlignment(const DataLayout & TD) const745 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
746 // The alignment of a jump table entry is the alignment of int32 unless the
747 // entry is just the address of a block, in which case it is the pointer
748 // alignment.
749 switch (getEntryKind()) {
750 case MachineJumpTableInfo::EK_BlockAddress:
751 return TD.getPointerABIAlignment();
752 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
753 return TD.getABIIntegerTypeAlignment(64);
754 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
755 case MachineJumpTableInfo::EK_LabelDifference32:
756 case MachineJumpTableInfo::EK_Custom32:
757 return TD.getABIIntegerTypeAlignment(32);
758 case MachineJumpTableInfo::EK_Inline:
759 return 1;
760 }
761 llvm_unreachable("Unknown jump table encoding!");
762 }
763
764 /// Create a new jump table entry in the jump table info.
createJumpTableIndex(const std::vector<MachineBasicBlock * > & DestBBs)765 unsigned MachineJumpTableInfo::createJumpTableIndex(
766 const std::vector<MachineBasicBlock*> &DestBBs) {
767 assert(!DestBBs.empty() && "Cannot create an empty jump table!");
768 JumpTables.push_back(MachineJumpTableEntry(DestBBs));
769 return JumpTables.size()-1;
770 }
771
772 /// If Old is the target of any jump tables, update the jump tables to branch
773 /// to New instead.
ReplaceMBBInJumpTables(MachineBasicBlock * Old,MachineBasicBlock * New)774 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
775 MachineBasicBlock *New) {
776 assert(Old != New && "Not making a change?");
777 bool MadeChange = false;
778 for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
779 ReplaceMBBInJumpTable(i, Old, New);
780 return MadeChange;
781 }
782
783 /// If Old is a target of the jump tables, update the jump table to branch to
784 /// New instead.
ReplaceMBBInJumpTable(unsigned Idx,MachineBasicBlock * Old,MachineBasicBlock * New)785 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
786 MachineBasicBlock *Old,
787 MachineBasicBlock *New) {
788 assert(Old != New && "Not making a change?");
789 bool MadeChange = false;
790 MachineJumpTableEntry &JTE = JumpTables[Idx];
791 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
792 if (JTE.MBBs[j] == Old) {
793 JTE.MBBs[j] = New;
794 MadeChange = true;
795 }
796 return MadeChange;
797 }
798
print(raw_ostream & OS) const799 void MachineJumpTableInfo::print(raw_ostream &OS) const {
800 if (JumpTables.empty()) return;
801
802 OS << "Jump Tables:\n";
803
804 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
805 OS << " jt#" << i << ": ";
806 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
807 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber();
808 }
809
810 OS << '\n';
811 }
812
813 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const814 void MachineJumpTableInfo::dump() const { print(dbgs()); }
815 #endif
816
817
818 //===----------------------------------------------------------------------===//
819 // MachineConstantPool implementation
820 //===----------------------------------------------------------------------===//
821
anchor()822 void MachineConstantPoolValue::anchor() { }
823
getType() const824 Type *MachineConstantPoolEntry::getType() const {
825 if (isMachineConstantPoolEntry())
826 return Val.MachineCPVal->getType();
827 return Val.ConstVal->getType();
828 }
829
needsRelocation() const830 bool MachineConstantPoolEntry::needsRelocation() const {
831 if (isMachineConstantPoolEntry())
832 return true;
833 return Val.ConstVal->needsRelocation();
834 }
835
836 SectionKind
getSectionKind(const DataLayout * DL) const837 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
838 if (needsRelocation())
839 return SectionKind::getReadOnlyWithRel();
840 switch (DL->getTypeAllocSize(getType())) {
841 case 4:
842 return SectionKind::getMergeableConst4();
843 case 8:
844 return SectionKind::getMergeableConst8();
845 case 16:
846 return SectionKind::getMergeableConst16();
847 default:
848 return SectionKind::getReadOnly();
849 }
850 }
851
~MachineConstantPool()852 MachineConstantPool::~MachineConstantPool() {
853 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
854 if (Constants[i].isMachineConstantPoolEntry())
855 delete Constants[i].Val.MachineCPVal;
856 for (DenseSet<MachineConstantPoolValue*>::iterator I =
857 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
858 I != E; ++I)
859 delete *I;
860 }
861
862 /// Test whether the given two constants can be allocated the same constant pool
863 /// entry.
CanShareConstantPoolEntry(const Constant * A,const Constant * B,const DataLayout & DL)864 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
865 const DataLayout &DL) {
866 // Handle the trivial case quickly.
867 if (A == B) return true;
868
869 // If they have the same type but weren't the same constant, quickly
870 // reject them.
871 if (A->getType() == B->getType()) return false;
872
873 // We can't handle structs or arrays.
874 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
875 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
876 return false;
877
878 // For now, only support constants with the same size.
879 uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
880 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
881 return false;
882
883 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
884
885 // Try constant folding a bitcast of both instructions to an integer. If we
886 // get two identical ConstantInt's, then we are good to share them. We use
887 // the constant folding APIs to do this so that we get the benefit of
888 // DataLayout.
889 if (isa<PointerType>(A->getType()))
890 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy,
891 const_cast<Constant *>(A), DL);
892 else if (A->getType() != IntTy)
893 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy,
894 const_cast<Constant *>(A), DL);
895 if (isa<PointerType>(B->getType()))
896 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy,
897 const_cast<Constant *>(B), DL);
898 else if (B->getType() != IntTy)
899 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy,
900 const_cast<Constant *>(B), DL);
901
902 return A == B;
903 }
904
905 /// Create a new entry in the constant pool or return an existing one.
906 /// User must specify the log2 of the minimum required alignment for the object.
getConstantPoolIndex(const Constant * C,unsigned Alignment)907 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
908 unsigned Alignment) {
909 assert(Alignment && "Alignment must be specified!");
910 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
911
912 // Check to see if we already have this constant.
913 //
914 // FIXME, this could be made much more efficient for large constant pools.
915 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
916 if (!Constants[i].isMachineConstantPoolEntry() &&
917 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
918 if ((unsigned)Constants[i].getAlignment() < Alignment)
919 Constants[i].Alignment = Alignment;
920 return i;
921 }
922
923 Constants.push_back(MachineConstantPoolEntry(C, Alignment));
924 return Constants.size()-1;
925 }
926
getConstantPoolIndex(MachineConstantPoolValue * V,unsigned Alignment)927 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
928 unsigned Alignment) {
929 assert(Alignment && "Alignment must be specified!");
930 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
931
932 // Check to see if we already have this constant.
933 //
934 // FIXME, this could be made much more efficient for large constant pools.
935 int Idx = V->getExistingMachineCPValue(this, Alignment);
936 if (Idx != -1) {
937 MachineCPVsSharingEntries.insert(V);
938 return (unsigned)Idx;
939 }
940
941 Constants.push_back(MachineConstantPoolEntry(V, Alignment));
942 return Constants.size()-1;
943 }
944
print(raw_ostream & OS) const945 void MachineConstantPool::print(raw_ostream &OS) const {
946 if (Constants.empty()) return;
947
948 OS << "Constant Pool:\n";
949 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
950 OS << " cp#" << i << ": ";
951 if (Constants[i].isMachineConstantPoolEntry())
952 Constants[i].Val.MachineCPVal->print(OS);
953 else
954 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
955 OS << ", align=" << Constants[i].getAlignment();
956 OS << "\n";
957 }
958 }
959
960 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const961 void MachineConstantPool::dump() const { print(dbgs()); }
962 #endif
963