• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2  //
3  //                     The LLVM Compiler Infrastructure
4  //
5  // This file is distributed under the University of Illinois Open Source
6  // License. See LICENSE.TXT for details.
7  //
8  //===----------------------------------------------------------------------===//
9  //
10  // This file contains the SplitAnalysis class as well as mutator functions for
11  // live range splitting.
12  //
13  //===----------------------------------------------------------------------===//
14  
15  #include "SplitKit.h"
16  #include "llvm/ADT/Statistic.h"
17  #include "llvm/CodeGen/LiveIntervalAnalysis.h"
18  #include "llvm/CodeGen/LiveRangeEdit.h"
19  #include "llvm/CodeGen/MachineDominators.h"
20  #include "llvm/CodeGen/MachineInstrBuilder.h"
21  #include "llvm/CodeGen/MachineLoopInfo.h"
22  #include "llvm/CodeGen/MachineRegisterInfo.h"
23  #include "llvm/CodeGen/VirtRegMap.h"
24  #include "llvm/Support/Debug.h"
25  #include "llvm/Support/raw_ostream.h"
26  #include "llvm/Target/TargetInstrInfo.h"
27  #include "llvm/Target/TargetMachine.h"
28  
29  using namespace llvm;
30  
31  #define DEBUG_TYPE "regalloc"
32  
33  STATISTIC(NumFinished, "Number of splits finished");
34  STATISTIC(NumSimple,   "Number of splits that were simple");
35  STATISTIC(NumCopies,   "Number of copies inserted for splitting");
36  STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
37  STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
38  
39  //===----------------------------------------------------------------------===//
40  //                                 Split Analysis
41  //===----------------------------------------------------------------------===//
42  
SplitAnalysis(const VirtRegMap & vrm,const LiveIntervals & lis,const MachineLoopInfo & mli)43  SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
44                               const MachineLoopInfo &mli)
45      : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
46        TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr),
47        LastSplitPoint(MF.getNumBlockIDs()) {}
48  
clear()49  void SplitAnalysis::clear() {
50    UseSlots.clear();
51    UseBlocks.clear();
52    ThroughBlocks.clear();
53    CurLI = nullptr;
54    DidRepairRange = false;
55  }
56  
computeLastSplitPoint(unsigned Num)57  SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
58    const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
59    // FIXME: Handle multiple EH pad successors.
60    const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
61    std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
62    SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
63  
64    // Compute split points on the first call. The pair is independent of the
65    // current live interval.
66    if (!LSP.first.isValid()) {
67      MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
68      if (FirstTerm == MBB->end())
69        LSP.first = MBBEnd;
70      else
71        LSP.first = LIS.getInstructionIndex(FirstTerm);
72  
73      // If there is a landing pad successor, also find the call instruction.
74      if (!LPad)
75        return LSP.first;
76      // There may not be a call instruction (?) in which case we ignore LPad.
77      LSP.second = LSP.first;
78      for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
79           I != E;) {
80        --I;
81        if (I->isCall()) {
82          LSP.second = LIS.getInstructionIndex(I);
83          break;
84        }
85      }
86    }
87  
88    // If CurLI is live into a landing pad successor, move the last split point
89    // back to the call that may throw.
90    if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
91      return LSP.first;
92  
93    // Find the value leaving MBB.
94    const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
95    if (!VNI)
96      return LSP.first;
97  
98    // If the value leaving MBB was defined after the call in MBB, it can't
99    // really be live-in to the landing pad.  This can happen if the landing pad
100    // has a PHI, and this register is undef on the exceptional edge.
101    // <rdar://problem/10664933>
102    if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
103      return LSP.first;
104  
105    // Value is properly live-in to the landing pad.
106    // Only allow splits before the call.
107    return LSP.second;
108  }
109  
110  MachineBasicBlock::iterator
getLastSplitPointIter(MachineBasicBlock * MBB)111  SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
112    SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
113    if (LSP == LIS.getMBBEndIdx(MBB))
114      return MBB->end();
115    return LIS.getInstructionFromIndex(LSP);
116  }
117  
118  /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
analyzeUses()119  void SplitAnalysis::analyzeUses() {
120    assert(UseSlots.empty() && "Call clear first");
121  
122    // First get all the defs from the interval values. This provides the correct
123    // slots for early clobbers.
124    for (const VNInfo *VNI : CurLI->valnos)
125      if (!VNI->isPHIDef() && !VNI->isUnused())
126        UseSlots.push_back(VNI->def);
127  
128    // Get use slots form the use-def chain.
129    const MachineRegisterInfo &MRI = MF.getRegInfo();
130    for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
131      if (!MO.isUndef())
132        UseSlots.push_back(LIS.getInstructionIndex(MO.getParent()).getRegSlot());
133  
134    array_pod_sort(UseSlots.begin(), UseSlots.end());
135  
136    // Remove duplicates, keeping the smaller slot for each instruction.
137    // That is what we want for early clobbers.
138    UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
139                               SlotIndex::isSameInstr),
140                   UseSlots.end());
141  
142    // Compute per-live block info.
143    if (!calcLiveBlockInfo()) {
144      // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
145      // I am looking at you, RegisterCoalescer!
146      DidRepairRange = true;
147      ++NumRepairs;
148      DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
149      const_cast<LiveIntervals&>(LIS)
150        .shrinkToUses(const_cast<LiveInterval*>(CurLI));
151      UseBlocks.clear();
152      ThroughBlocks.clear();
153      bool fixed = calcLiveBlockInfo();
154      (void)fixed;
155      assert(fixed && "Couldn't fix broken live interval");
156    }
157  
158    DEBUG(dbgs() << "Analyze counted "
159                 << UseSlots.size() << " instrs in "
160                 << UseBlocks.size() << " blocks, through "
161                 << NumThroughBlocks << " blocks.\n");
162  }
163  
164  /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
165  /// where CurLI is live.
calcLiveBlockInfo()166  bool SplitAnalysis::calcLiveBlockInfo() {
167    ThroughBlocks.resize(MF.getNumBlockIDs());
168    NumThroughBlocks = NumGapBlocks = 0;
169    if (CurLI->empty())
170      return true;
171  
172    LiveInterval::const_iterator LVI = CurLI->begin();
173    LiveInterval::const_iterator LVE = CurLI->end();
174  
175    SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
176    UseI = UseSlots.begin();
177    UseE = UseSlots.end();
178  
179    // Loop over basic blocks where CurLI is live.
180    MachineFunction::iterator MFI =
181        LIS.getMBBFromIndex(LVI->start)->getIterator();
182    for (;;) {
183      BlockInfo BI;
184      BI.MBB = &*MFI;
185      SlotIndex Start, Stop;
186      std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
187  
188      // If the block contains no uses, the range must be live through. At one
189      // point, RegisterCoalescer could create dangling ranges that ended
190      // mid-block.
191      if (UseI == UseE || *UseI >= Stop) {
192        ++NumThroughBlocks;
193        ThroughBlocks.set(BI.MBB->getNumber());
194        // The range shouldn't end mid-block if there are no uses. This shouldn't
195        // happen.
196        if (LVI->end < Stop)
197          return false;
198      } else {
199        // This block has uses. Find the first and last uses in the block.
200        BI.FirstInstr = *UseI;
201        assert(BI.FirstInstr >= Start);
202        do ++UseI;
203        while (UseI != UseE && *UseI < Stop);
204        BI.LastInstr = UseI[-1];
205        assert(BI.LastInstr < Stop);
206  
207        // LVI is the first live segment overlapping MBB.
208        BI.LiveIn = LVI->start <= Start;
209  
210        // When not live in, the first use should be a def.
211        if (!BI.LiveIn) {
212          assert(LVI->start == LVI->valno->def && "Dangling Segment start");
213          assert(LVI->start == BI.FirstInstr && "First instr should be a def");
214          BI.FirstDef = BI.FirstInstr;
215        }
216  
217        // Look for gaps in the live range.
218        BI.LiveOut = true;
219        while (LVI->end < Stop) {
220          SlotIndex LastStop = LVI->end;
221          if (++LVI == LVE || LVI->start >= Stop) {
222            BI.LiveOut = false;
223            BI.LastInstr = LastStop;
224            break;
225          }
226  
227          if (LastStop < LVI->start) {
228            // There is a gap in the live range. Create duplicate entries for the
229            // live-in snippet and the live-out snippet.
230            ++NumGapBlocks;
231  
232            // Push the Live-in part.
233            BI.LiveOut = false;
234            UseBlocks.push_back(BI);
235            UseBlocks.back().LastInstr = LastStop;
236  
237            // Set up BI for the live-out part.
238            BI.LiveIn = false;
239            BI.LiveOut = true;
240            BI.FirstInstr = BI.FirstDef = LVI->start;
241          }
242  
243          // A Segment that starts in the middle of the block must be a def.
244          assert(LVI->start == LVI->valno->def && "Dangling Segment start");
245          if (!BI.FirstDef)
246            BI.FirstDef = LVI->start;
247        }
248  
249        UseBlocks.push_back(BI);
250  
251        // LVI is now at LVE or LVI->end >= Stop.
252        if (LVI == LVE)
253          break;
254      }
255  
256      // Live segment ends exactly at Stop. Move to the next segment.
257      if (LVI->end == Stop && ++LVI == LVE)
258        break;
259  
260      // Pick the next basic block.
261      if (LVI->start < Stop)
262        ++MFI;
263      else
264        MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
265    }
266  
267    assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
268    return true;
269  }
270  
countLiveBlocks(const LiveInterval * cli) const271  unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
272    if (cli->empty())
273      return 0;
274    LiveInterval *li = const_cast<LiveInterval*>(cli);
275    LiveInterval::iterator LVI = li->begin();
276    LiveInterval::iterator LVE = li->end();
277    unsigned Count = 0;
278  
279    // Loop over basic blocks where li is live.
280    MachineFunction::const_iterator MFI =
281        LIS.getMBBFromIndex(LVI->start)->getIterator();
282    SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
283    for (;;) {
284      ++Count;
285      LVI = li->advanceTo(LVI, Stop);
286      if (LVI == LVE)
287        return Count;
288      do {
289        ++MFI;
290        Stop = LIS.getMBBEndIdx(&*MFI);
291      } while (Stop <= LVI->start);
292    }
293  }
294  
isOriginalEndpoint(SlotIndex Idx) const295  bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
296    unsigned OrigReg = VRM.getOriginal(CurLI->reg);
297    const LiveInterval &Orig = LIS.getInterval(OrigReg);
298    assert(!Orig.empty() && "Splitting empty interval?");
299    LiveInterval::const_iterator I = Orig.find(Idx);
300  
301    // Range containing Idx should begin at Idx.
302    if (I != Orig.end() && I->start <= Idx)
303      return I->start == Idx;
304  
305    // Range does not contain Idx, previous must end at Idx.
306    return I != Orig.begin() && (--I)->end == Idx;
307  }
308  
analyze(const LiveInterval * li)309  void SplitAnalysis::analyze(const LiveInterval *li) {
310    clear();
311    CurLI = li;
312    analyzeUses();
313  }
314  
315  
316  //===----------------------------------------------------------------------===//
317  //                               Split Editor
318  //===----------------------------------------------------------------------===//
319  
320  /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor(SplitAnalysis & sa,LiveIntervals & lis,VirtRegMap & vrm,MachineDominatorTree & mdt,MachineBlockFrequencyInfo & mbfi)321  SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
322                           MachineDominatorTree &mdt,
323                           MachineBlockFrequencyInfo &mbfi)
324      : SA(sa), LIS(lis), VRM(vrm), MRI(vrm.getMachineFunction().getRegInfo()),
325        MDT(mdt), TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
326        TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
327        MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition),
328        RegAssign(Allocator) {}
329  
reset(LiveRangeEdit & LRE,ComplementSpillMode SM)330  void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
331    Edit = &LRE;
332    SpillMode = SM;
333    OpenIdx = 0;
334    RegAssign.clear();
335    Values.clear();
336  
337    // Reset the LiveRangeCalc instances needed for this spill mode.
338    LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
339                    &LIS.getVNInfoAllocator());
340    if (SpillMode)
341      LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
342                      &LIS.getVNInfoAllocator());
343  
344    // We don't need an AliasAnalysis since we will only be performing
345    // cheap-as-a-copy remats anyway.
346    Edit->anyRematerializable(nullptr);
347  }
348  
349  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const350  void SplitEditor::dump() const {
351    if (RegAssign.empty()) {
352      dbgs() << " empty\n";
353      return;
354    }
355  
356    for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
357      dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
358    dbgs() << '\n';
359  }
360  #endif
361  
defValue(unsigned RegIdx,const VNInfo * ParentVNI,SlotIndex Idx)362  VNInfo *SplitEditor::defValue(unsigned RegIdx,
363                                const VNInfo *ParentVNI,
364                                SlotIndex Idx) {
365    assert(ParentVNI && "Mapping  NULL value");
366    assert(Idx.isValid() && "Invalid SlotIndex");
367    assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
368    LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
369  
370    // Create a new value.
371    VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
372  
373    // Use insert for lookup, so we can add missing values with a second lookup.
374    std::pair<ValueMap::iterator, bool> InsP =
375      Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
376                                   ValueForcePair(VNI, false)));
377  
378    // This was the first time (RegIdx, ParentVNI) was mapped.
379    // Keep it as a simple def without any liveness.
380    if (InsP.second)
381      return VNI;
382  
383    // If the previous value was a simple mapping, add liveness for it now.
384    if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
385      SlotIndex Def = OldVNI->def;
386      LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
387      // No longer a simple mapping.  Switch to a complex, non-forced mapping.
388      InsP.first->second = ValueForcePair();
389    }
390  
391    // This is a complex mapping, add liveness for VNI
392    SlotIndex Def = VNI->def;
393    LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
394  
395    return VNI;
396  }
397  
forceRecompute(unsigned RegIdx,const VNInfo * ParentVNI)398  void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
399    assert(ParentVNI && "Mapping  NULL value");
400    ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
401    VNInfo *VNI = VFP.getPointer();
402  
403    // ParentVNI was either unmapped or already complex mapped. Either way, just
404    // set the force bit.
405    if (!VNI) {
406      VFP.setInt(true);
407      return;
408    }
409  
410    // This was previously a single mapping. Make sure the old def is represented
411    // by a trivial live range.
412    SlotIndex Def = VNI->def;
413    LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
414    LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
415    // Mark as complex mapped, forced.
416    VFP = ValueForcePair(nullptr, true);
417  }
418  
defFromParent(unsigned RegIdx,VNInfo * ParentVNI,SlotIndex UseIdx,MachineBasicBlock & MBB,MachineBasicBlock::iterator I)419  VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
420                                     VNInfo *ParentVNI,
421                                     SlotIndex UseIdx,
422                                     MachineBasicBlock &MBB,
423                                     MachineBasicBlock::iterator I) {
424    MachineInstr *CopyMI = nullptr;
425    SlotIndex Def;
426    LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
427  
428    // We may be trying to avoid interference that ends at a deleted instruction,
429    // so always begin RegIdx 0 early and all others late.
430    bool Late = RegIdx != 0;
431  
432    // Attempt cheap-as-a-copy rematerialization.
433    LiveRangeEdit::Remat RM(ParentVNI);
434    if (Edit->canRematerializeAt(RM, UseIdx, true)) {
435      Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
436      ++NumRemats;
437    } else {
438      // Can't remat, just insert a copy from parent.
439      CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
440                 .addReg(Edit->getReg());
441      Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
442              .getRegSlot();
443      ++NumCopies;
444    }
445  
446    // Define the value in Reg.
447    return defValue(RegIdx, ParentVNI, Def);
448  }
449  
450  /// Create a new virtual register and live interval.
openIntv()451  unsigned SplitEditor::openIntv() {
452    // Create the complement as index 0.
453    if (Edit->empty())
454      Edit->createEmptyInterval();
455  
456    // Create the open interval.
457    OpenIdx = Edit->size();
458    Edit->createEmptyInterval();
459    return OpenIdx;
460  }
461  
selectIntv(unsigned Idx)462  void SplitEditor::selectIntv(unsigned Idx) {
463    assert(Idx != 0 && "Cannot select the complement interval");
464    assert(Idx < Edit->size() && "Can only select previously opened interval");
465    DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
466    OpenIdx = Idx;
467  }
468  
enterIntvBefore(SlotIndex Idx)469  SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
470    assert(OpenIdx && "openIntv not called before enterIntvBefore");
471    DEBUG(dbgs() << "    enterIntvBefore " << Idx);
472    Idx = Idx.getBaseIndex();
473    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
474    if (!ParentVNI) {
475      DEBUG(dbgs() << ": not live\n");
476      return Idx;
477    }
478    DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
479    MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
480    assert(MI && "enterIntvBefore called with invalid index");
481  
482    VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
483    return VNI->def;
484  }
485  
enterIntvAfter(SlotIndex Idx)486  SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
487    assert(OpenIdx && "openIntv not called before enterIntvAfter");
488    DEBUG(dbgs() << "    enterIntvAfter " << Idx);
489    Idx = Idx.getBoundaryIndex();
490    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
491    if (!ParentVNI) {
492      DEBUG(dbgs() << ": not live\n");
493      return Idx;
494    }
495    DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
496    MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
497    assert(MI && "enterIntvAfter called with invalid index");
498  
499    VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
500                                std::next(MachineBasicBlock::iterator(MI)));
501    return VNI->def;
502  }
503  
enterIntvAtEnd(MachineBasicBlock & MBB)504  SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
505    assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
506    SlotIndex End = LIS.getMBBEndIdx(&MBB);
507    SlotIndex Last = End.getPrevSlot();
508    DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
509    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
510    if (!ParentVNI) {
511      DEBUG(dbgs() << ": not live\n");
512      return End;
513    }
514    DEBUG(dbgs() << ": valno " << ParentVNI->id);
515    VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
516                                SA.getLastSplitPointIter(&MBB));
517    RegAssign.insert(VNI->def, End, OpenIdx);
518    DEBUG(dump());
519    return VNI->def;
520  }
521  
522  /// useIntv - indicate that all instructions in MBB should use OpenLI.
useIntv(const MachineBasicBlock & MBB)523  void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
524    useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
525  }
526  
useIntv(SlotIndex Start,SlotIndex End)527  void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
528    assert(OpenIdx && "openIntv not called before useIntv");
529    DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
530    RegAssign.insert(Start, End, OpenIdx);
531    DEBUG(dump());
532  }
533  
leaveIntvAfter(SlotIndex Idx)534  SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
535    assert(OpenIdx && "openIntv not called before leaveIntvAfter");
536    DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
537  
538    // The interval must be live beyond the instruction at Idx.
539    SlotIndex Boundary = Idx.getBoundaryIndex();
540    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
541    if (!ParentVNI) {
542      DEBUG(dbgs() << ": not live\n");
543      return Boundary.getNextSlot();
544    }
545    DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
546    MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
547    assert(MI && "No instruction at index");
548  
549    // In spill mode, make live ranges as short as possible by inserting the copy
550    // before MI.  This is only possible if that instruction doesn't redefine the
551    // value.  The inserted COPY is not a kill, and we don't need to recompute
552    // the source live range.  The spiller also won't try to hoist this copy.
553    if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
554        MI->readsVirtualRegister(Edit->getReg())) {
555      forceRecompute(0, ParentVNI);
556      defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
557      return Idx;
558    }
559  
560    VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
561                                std::next(MachineBasicBlock::iterator(MI)));
562    return VNI->def;
563  }
564  
leaveIntvBefore(SlotIndex Idx)565  SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
566    assert(OpenIdx && "openIntv not called before leaveIntvBefore");
567    DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
568  
569    // The interval must be live into the instruction at Idx.
570    Idx = Idx.getBaseIndex();
571    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
572    if (!ParentVNI) {
573      DEBUG(dbgs() << ": not live\n");
574      return Idx.getNextSlot();
575    }
576    DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
577  
578    MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
579    assert(MI && "No instruction at index");
580    VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
581    return VNI->def;
582  }
583  
leaveIntvAtTop(MachineBasicBlock & MBB)584  SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
585    assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
586    SlotIndex Start = LIS.getMBBStartIdx(&MBB);
587    DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
588  
589    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
590    if (!ParentVNI) {
591      DEBUG(dbgs() << ": not live\n");
592      return Start;
593    }
594  
595    VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
596                                MBB.SkipPHIsAndLabels(MBB.begin()));
597    RegAssign.insert(Start, VNI->def, OpenIdx);
598    DEBUG(dump());
599    return VNI->def;
600  }
601  
overlapIntv(SlotIndex Start,SlotIndex End)602  void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
603    assert(OpenIdx && "openIntv not called before overlapIntv");
604    const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
605    assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
606           "Parent changes value in extended range");
607    assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
608           "Range cannot span basic blocks");
609  
610    // The complement interval will be extended as needed by LRCalc.extend().
611    if (ParentVNI)
612      forceRecompute(0, ParentVNI);
613    DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
614    RegAssign.insert(Start, End, OpenIdx);
615    DEBUG(dump());
616  }
617  
618  //===----------------------------------------------------------------------===//
619  //                                  Spill modes
620  //===----------------------------------------------------------------------===//
621  
removeBackCopies(SmallVectorImpl<VNInfo * > & Copies)622  void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
623    LiveInterval *LI = &LIS.getInterval(Edit->get(0));
624    DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
625    RegAssignMap::iterator AssignI;
626    AssignI.setMap(RegAssign);
627  
628    for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
629      SlotIndex Def = Copies[i]->def;
630      MachineInstr *MI = LIS.getInstructionFromIndex(Def);
631      assert(MI && "No instruction for back-copy");
632  
633      MachineBasicBlock *MBB = MI->getParent();
634      MachineBasicBlock::iterator MBBI(MI);
635      bool AtBegin;
636      do AtBegin = MBBI == MBB->begin();
637      while (!AtBegin && (--MBBI)->isDebugValue());
638  
639      DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
640      LIS.removeVRegDefAt(*LI, Def);
641      LIS.RemoveMachineInstrFromMaps(MI);
642      MI->eraseFromParent();
643  
644      // Adjust RegAssign if a register assignment is killed at Def. We want to
645      // avoid calculating the live range of the source register if possible.
646      AssignI.find(Def.getPrevSlot());
647      if (!AssignI.valid() || AssignI.start() >= Def)
648        continue;
649      // If MI doesn't kill the assigned register, just leave it.
650      if (AssignI.stop() != Def)
651        continue;
652      unsigned RegIdx = AssignI.value();
653      if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
654        DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
655        forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
656      } else {
657        SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
658        DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
659        AssignI.setStop(Kill);
660      }
661    }
662  }
663  
664  MachineBasicBlock*
findShallowDominator(MachineBasicBlock * MBB,MachineBasicBlock * DefMBB)665  SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
666                                    MachineBasicBlock *DefMBB) {
667    if (MBB == DefMBB)
668      return MBB;
669    assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
670  
671    const MachineLoopInfo &Loops = SA.Loops;
672    const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
673    MachineDomTreeNode *DefDomNode = MDT[DefMBB];
674  
675    // Best candidate so far.
676    MachineBasicBlock *BestMBB = MBB;
677    unsigned BestDepth = UINT_MAX;
678  
679    for (;;) {
680      const MachineLoop *Loop = Loops.getLoopFor(MBB);
681  
682      // MBB isn't in a loop, it doesn't get any better.  All dominators have a
683      // higher frequency by definition.
684      if (!Loop) {
685        DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
686                     << MBB->getNumber() << " at depth 0\n");
687        return MBB;
688      }
689  
690      // We'll never be able to exit the DefLoop.
691      if (Loop == DefLoop) {
692        DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
693                     << MBB->getNumber() << " in the same loop\n");
694        return MBB;
695      }
696  
697      // Least busy dominator seen so far.
698      unsigned Depth = Loop->getLoopDepth();
699      if (Depth < BestDepth) {
700        BestMBB = MBB;
701        BestDepth = Depth;
702        DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
703                     << MBB->getNumber() << " at depth " << Depth << '\n');
704      }
705  
706      // Leave loop by going to the immediate dominator of the loop header.
707      // This is a bigger stride than simply walking up the dominator tree.
708      MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
709  
710      // Too far up the dominator tree?
711      if (!IDom || !MDT.dominates(DefDomNode, IDom))
712        return BestMBB;
713  
714      MBB = IDom->getBlock();
715    }
716  }
717  
hoistCopiesForSize()718  void SplitEditor::hoistCopiesForSize() {
719    // Get the complement interval, always RegIdx 0.
720    LiveInterval *LI = &LIS.getInterval(Edit->get(0));
721    LiveInterval *Parent = &Edit->getParent();
722  
723    // Track the nearest common dominator for all back-copies for each ParentVNI,
724    // indexed by ParentVNI->id.
725    typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
726    SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
727  
728    // Find the nearest common dominator for parent values with multiple
729    // back-copies.  If a single back-copy dominates, put it in DomPair.second.
730    for (VNInfo *VNI : LI->valnos) {
731      if (VNI->isUnused())
732        continue;
733      VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
734      assert(ParentVNI && "Parent not live at complement def");
735  
736      // Don't hoist remats.  The complement is probably going to disappear
737      // completely anyway.
738      if (Edit->didRematerialize(ParentVNI))
739        continue;
740  
741      MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
742      DomPair &Dom = NearestDom[ParentVNI->id];
743  
744      // Keep directly defined parent values.  This is either a PHI or an
745      // instruction in the complement range.  All other copies of ParentVNI
746      // should be eliminated.
747      if (VNI->def == ParentVNI->def) {
748        DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
749        Dom = DomPair(ValMBB, VNI->def);
750        continue;
751      }
752      // Skip the singly mapped values.  There is nothing to gain from hoisting a
753      // single back-copy.
754      if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
755        DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
756        continue;
757      }
758  
759      if (!Dom.first) {
760        // First time we see ParentVNI.  VNI dominates itself.
761        Dom = DomPair(ValMBB, VNI->def);
762      } else if (Dom.first == ValMBB) {
763        // Two defs in the same block.  Pick the earlier def.
764        if (!Dom.second.isValid() || VNI->def < Dom.second)
765          Dom.second = VNI->def;
766      } else {
767        // Different basic blocks. Check if one dominates.
768        MachineBasicBlock *Near =
769          MDT.findNearestCommonDominator(Dom.first, ValMBB);
770        if (Near == ValMBB)
771          // Def ValMBB dominates.
772          Dom = DomPair(ValMBB, VNI->def);
773        else if (Near != Dom.first)
774          // None dominate. Hoist to common dominator, need new def.
775          Dom = DomPair(Near, SlotIndex());
776      }
777  
778      DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
779                   << " for parent " << ParentVNI->id << '@' << ParentVNI->def
780                   << " hoist to BB#" << Dom.first->getNumber() << ' '
781                   << Dom.second << '\n');
782    }
783  
784    // Insert the hoisted copies.
785    for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
786      DomPair &Dom = NearestDom[i];
787      if (!Dom.first || Dom.second.isValid())
788        continue;
789      // This value needs a hoisted copy inserted at the end of Dom.first.
790      VNInfo *ParentVNI = Parent->getValNumInfo(i);
791      MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
792      // Get a less loopy dominator than Dom.first.
793      Dom.first = findShallowDominator(Dom.first, DefMBB);
794      SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
795      Dom.second =
796        defFromParent(0, ParentVNI, Last, *Dom.first,
797                      SA.getLastSplitPointIter(Dom.first))->def;
798    }
799  
800    // Remove redundant back-copies that are now known to be dominated by another
801    // def with the same value.
802    SmallVector<VNInfo*, 8> BackCopies;
803    for (VNInfo *VNI : LI->valnos) {
804      if (VNI->isUnused())
805        continue;
806      VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
807      const DomPair &Dom = NearestDom[ParentVNI->id];
808      if (!Dom.first || Dom.second == VNI->def)
809        continue;
810      BackCopies.push_back(VNI);
811      forceRecompute(0, ParentVNI);
812    }
813    removeBackCopies(BackCopies);
814  }
815  
816  
817  /// transferValues - Transfer all possible values to the new live ranges.
818  /// Values that were rematerialized are left alone, they need LRCalc.extend().
transferValues()819  bool SplitEditor::transferValues() {
820    bool Skipped = false;
821    RegAssignMap::const_iterator AssignI = RegAssign.begin();
822    for (const LiveRange::Segment &S : Edit->getParent()) {
823      DEBUG(dbgs() << "  blit " << S << ':');
824      VNInfo *ParentVNI = S.valno;
825      // RegAssign has holes where RegIdx 0 should be used.
826      SlotIndex Start = S.start;
827      AssignI.advanceTo(Start);
828      do {
829        unsigned RegIdx;
830        SlotIndex End = S.end;
831        if (!AssignI.valid()) {
832          RegIdx = 0;
833        } else if (AssignI.start() <= Start) {
834          RegIdx = AssignI.value();
835          if (AssignI.stop() < End) {
836            End = AssignI.stop();
837            ++AssignI;
838          }
839        } else {
840          RegIdx = 0;
841          End = std::min(End, AssignI.start());
842        }
843  
844        // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
845        DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
846        LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
847  
848        // Check for a simply defined value that can be blitted directly.
849        ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
850        if (VNInfo *VNI = VFP.getPointer()) {
851          DEBUG(dbgs() << ':' << VNI->id);
852          LR.addSegment(LiveInterval::Segment(Start, End, VNI));
853          Start = End;
854          continue;
855        }
856  
857        // Skip values with forced recomputation.
858        if (VFP.getInt()) {
859          DEBUG(dbgs() << "(recalc)");
860          Skipped = true;
861          Start = End;
862          continue;
863        }
864  
865        LiveRangeCalc &LRC = getLRCalc(RegIdx);
866  
867        // This value has multiple defs in RegIdx, but it wasn't rematerialized,
868        // so the live range is accurate. Add live-in blocks in [Start;End) to the
869        // LiveInBlocks.
870        MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
871        SlotIndex BlockStart, BlockEnd;
872        std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
873  
874        // The first block may be live-in, or it may have its own def.
875        if (Start != BlockStart) {
876          VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
877          assert(VNI && "Missing def for complex mapped value");
878          DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
879          // MBB has its own def. Is it also live-out?
880          if (BlockEnd <= End)
881            LRC.setLiveOutValue(&*MBB, VNI);
882  
883          // Skip to the next block for live-in.
884          ++MBB;
885          BlockStart = BlockEnd;
886        }
887  
888        // Handle the live-in blocks covered by [Start;End).
889        assert(Start <= BlockStart && "Expected live-in block");
890        while (BlockStart < End) {
891          DEBUG(dbgs() << ">BB#" << MBB->getNumber());
892          BlockEnd = LIS.getMBBEndIdx(&*MBB);
893          if (BlockStart == ParentVNI->def) {
894            // This block has the def of a parent PHI, so it isn't live-in.
895            assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
896            VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
897            assert(VNI && "Missing def for complex mapped parent PHI");
898            if (End >= BlockEnd)
899              LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
900          } else {
901            // This block needs a live-in value.  The last block covered may not
902            // be live-out.
903            if (End < BlockEnd)
904              LRC.addLiveInBlock(LR, MDT[&*MBB], End);
905            else {
906              // Live-through, and we don't know the value.
907              LRC.addLiveInBlock(LR, MDT[&*MBB]);
908              LRC.setLiveOutValue(&*MBB, nullptr);
909            }
910          }
911          BlockStart = BlockEnd;
912          ++MBB;
913        }
914        Start = End;
915      } while (Start != S.end);
916      DEBUG(dbgs() << '\n');
917    }
918  
919    LRCalc[0].calculateValues();
920    if (SpillMode)
921      LRCalc[1].calculateValues();
922  
923    return Skipped;
924  }
925  
extendPHIKillRanges()926  void SplitEditor::extendPHIKillRanges() {
927      // Extend live ranges to be live-out for successor PHI values.
928    for (const VNInfo *PHIVNI : Edit->getParent().valnos) {
929      if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
930        continue;
931      unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
932      LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
933      LiveRangeCalc &LRC = getLRCalc(RegIdx);
934      MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
935      for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
936           PE = MBB->pred_end(); PI != PE; ++PI) {
937        SlotIndex End = LIS.getMBBEndIdx(*PI);
938        SlotIndex LastUse = End.getPrevSlot();
939        // The predecessor may not have a live-out value. That is OK, like an
940        // undef PHI operand.
941        if (Edit->getParent().liveAt(LastUse)) {
942          assert(RegAssign.lookup(LastUse) == RegIdx &&
943                 "Different register assignment in phi predecessor");
944          LRC.extend(LR, End);
945        }
946      }
947    }
948  }
949  
950  /// rewriteAssigned - Rewrite all uses of Edit->getReg().
rewriteAssigned(bool ExtendRanges)951  void SplitEditor::rewriteAssigned(bool ExtendRanges) {
952    for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
953         RE = MRI.reg_end(); RI != RE;) {
954      MachineOperand &MO = *RI;
955      MachineInstr *MI = MO.getParent();
956      ++RI;
957      // LiveDebugVariables should have handled all DBG_VALUE instructions.
958      if (MI->isDebugValue()) {
959        DEBUG(dbgs() << "Zapping " << *MI);
960        MO.setReg(0);
961        continue;
962      }
963  
964      // <undef> operands don't really read the register, so it doesn't matter
965      // which register we choose.  When the use operand is tied to a def, we must
966      // use the same register as the def, so just do that always.
967      SlotIndex Idx = LIS.getInstructionIndex(MI);
968      if (MO.isDef() || MO.isUndef())
969        Idx = Idx.getRegSlot(MO.isEarlyClobber());
970  
971      // Rewrite to the mapped register at Idx.
972      unsigned RegIdx = RegAssign.lookup(Idx);
973      LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
974      MO.setReg(LI->reg);
975      DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
976                   << Idx << ':' << RegIdx << '\t' << *MI);
977  
978      // Extend liveness to Idx if the instruction reads reg.
979      if (!ExtendRanges || MO.isUndef())
980        continue;
981  
982      // Skip instructions that don't read Reg.
983      if (MO.isDef()) {
984        if (!MO.getSubReg() && !MO.isEarlyClobber())
985          continue;
986        // We may wan't to extend a live range for a partial redef, or for a use
987        // tied to an early clobber.
988        Idx = Idx.getPrevSlot();
989        if (!Edit->getParent().liveAt(Idx))
990          continue;
991      } else
992        Idx = Idx.getRegSlot(true);
993  
994      getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
995    }
996  }
997  
deleteRematVictims()998  void SplitEditor::deleteRematVictims() {
999    SmallVector<MachineInstr*, 8> Dead;
1000    for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1001      LiveInterval *LI = &LIS.getInterval(*I);
1002      for (const LiveRange::Segment &S : LI->segments) {
1003        // Dead defs end at the dead slot.
1004        if (S.end != S.valno->def.getDeadSlot())
1005          continue;
1006        MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1007        assert(MI && "Missing instruction for dead def");
1008        MI->addRegisterDead(LI->reg, &TRI);
1009  
1010        if (!MI->allDefsAreDead())
1011          continue;
1012  
1013        DEBUG(dbgs() << "All defs dead: " << *MI);
1014        Dead.push_back(MI);
1015      }
1016    }
1017  
1018    if (Dead.empty())
1019      return;
1020  
1021    Edit->eliminateDeadDefs(Dead);
1022  }
1023  
finish(SmallVectorImpl<unsigned> * LRMap)1024  void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1025    ++NumFinished;
1026  
1027    // At this point, the live intervals in Edit contain VNInfos corresponding to
1028    // the inserted copies.
1029  
1030    // Add the original defs from the parent interval.
1031    for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1032      if (ParentVNI->isUnused())
1033        continue;
1034      unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1035      defValue(RegIdx, ParentVNI, ParentVNI->def);
1036  
1037      // Force rematted values to be recomputed everywhere.
1038      // The new live ranges may be truncated.
1039      if (Edit->didRematerialize(ParentVNI))
1040        for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1041          forceRecompute(i, ParentVNI);
1042    }
1043  
1044    // Hoist back-copies to the complement interval when in spill mode.
1045    switch (SpillMode) {
1046    case SM_Partition:
1047      // Leave all back-copies as is.
1048      break;
1049    case SM_Size:
1050      hoistCopiesForSize();
1051      break;
1052    case SM_Speed:
1053      llvm_unreachable("Spill mode 'speed' not implemented yet");
1054    }
1055  
1056    // Transfer the simply mapped values, check if any are skipped.
1057    bool Skipped = transferValues();
1058    if (Skipped)
1059      extendPHIKillRanges();
1060    else
1061      ++NumSimple;
1062  
1063    // Rewrite virtual registers, possibly extending ranges.
1064    rewriteAssigned(Skipped);
1065  
1066    // Delete defs that were rematted everywhere.
1067    if (Skipped)
1068      deleteRematVictims();
1069  
1070    // Get rid of unused values and set phi-kill flags.
1071    for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
1072      LiveInterval &LI = LIS.getInterval(*I);
1073      LI.RenumberValues();
1074    }
1075  
1076    // Provide a reverse mapping from original indices to Edit ranges.
1077    if (LRMap) {
1078      LRMap->clear();
1079      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1080        LRMap->push_back(i);
1081    }
1082  
1083    // Now check if any registers were separated into multiple components.
1084    ConnectedVNInfoEqClasses ConEQ(LIS);
1085    for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1086      // Don't use iterators, they are invalidated by create() below.
1087      unsigned VReg = Edit->get(i);
1088      LiveInterval &LI = LIS.getInterval(VReg);
1089      SmallVector<LiveInterval*, 8> SplitLIs;
1090      LIS.splitSeparateComponents(LI, SplitLIs);
1091      unsigned Original = VRM.getOriginal(VReg);
1092      for (LiveInterval *SplitLI : SplitLIs)
1093        VRM.setIsSplitFromReg(SplitLI->reg, Original);
1094  
1095      // The new intervals all map back to i.
1096      if (LRMap)
1097        LRMap->resize(Edit->size(), i);
1098    }
1099  
1100    // Calculate spill weight and allocation hints for new intervals.
1101    Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1102  
1103    assert(!LRMap || LRMap->size() == Edit->size());
1104  }
1105  
1106  
1107  //===----------------------------------------------------------------------===//
1108  //                            Single Block Splitting
1109  //===----------------------------------------------------------------------===//
1110  
shouldSplitSingleBlock(const BlockInfo & BI,bool SingleInstrs) const1111  bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1112                                             bool SingleInstrs) const {
1113    // Always split for multiple instructions.
1114    if (!BI.isOneInstr())
1115      return true;
1116    // Don't split for single instructions unless explicitly requested.
1117    if (!SingleInstrs)
1118      return false;
1119    // Splitting a live-through range always makes progress.
1120    if (BI.LiveIn && BI.LiveOut)
1121      return true;
1122    // No point in isolating a copy. It has no register class constraints.
1123    if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1124      return false;
1125    // Finally, don't isolate an end point that was created by earlier splits.
1126    return isOriginalEndpoint(BI.FirstInstr);
1127  }
1128  
splitSingleBlock(const SplitAnalysis::BlockInfo & BI)1129  void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1130    openIntv();
1131    SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1132    SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1133      LastSplitPoint));
1134    if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1135      useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1136    } else {
1137        // The last use is after the last valid split point.
1138      SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1139      useIntv(SegStart, SegStop);
1140      overlapIntv(SegStop, BI.LastInstr);
1141    }
1142  }
1143  
1144  
1145  //===----------------------------------------------------------------------===//
1146  //                    Global Live Range Splitting Support
1147  //===----------------------------------------------------------------------===//
1148  
1149  // These methods support a method of global live range splitting that uses a
1150  // global algorithm to decide intervals for CFG edges. They will insert split
1151  // points and color intervals in basic blocks while avoiding interference.
1152  //
1153  // Note that splitSingleBlock is also useful for blocks where both CFG edges
1154  // are on the stack.
1155  
splitLiveThroughBlock(unsigned MBBNum,unsigned IntvIn,SlotIndex LeaveBefore,unsigned IntvOut,SlotIndex EnterAfter)1156  void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1157                                          unsigned IntvIn, SlotIndex LeaveBefore,
1158                                          unsigned IntvOut, SlotIndex EnterAfter){
1159    SlotIndex Start, Stop;
1160    std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1161  
1162    DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1163                 << ") intf " << LeaveBefore << '-' << EnterAfter
1164                 << ", live-through " << IntvIn << " -> " << IntvOut);
1165  
1166    assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1167  
1168    assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1169    assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1170    assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1171  
1172    MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1173  
1174    if (!IntvOut) {
1175      DEBUG(dbgs() << ", spill on entry.\n");
1176      //
1177      //        <<<<<<<<<    Possible LeaveBefore interference.
1178      //    |-----------|    Live through.
1179      //    -____________    Spill on entry.
1180      //
1181      selectIntv(IntvIn);
1182      SlotIndex Idx = leaveIntvAtTop(*MBB);
1183      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1184      (void)Idx;
1185      return;
1186    }
1187  
1188    if (!IntvIn) {
1189      DEBUG(dbgs() << ", reload on exit.\n");
1190      //
1191      //    >>>>>>>          Possible EnterAfter interference.
1192      //    |-----------|    Live through.
1193      //    ___________--    Reload on exit.
1194      //
1195      selectIntv(IntvOut);
1196      SlotIndex Idx = enterIntvAtEnd(*MBB);
1197      assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1198      (void)Idx;
1199      return;
1200    }
1201  
1202    if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1203      DEBUG(dbgs() << ", straight through.\n");
1204      //
1205      //    |-----------|    Live through.
1206      //    -------------    Straight through, same intv, no interference.
1207      //
1208      selectIntv(IntvOut);
1209      useIntv(Start, Stop);
1210      return;
1211    }
1212  
1213    // We cannot legally insert splits after LSP.
1214    SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1215    assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1216  
1217    if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1218                    LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1219      DEBUG(dbgs() << ", switch avoiding interference.\n");
1220      //
1221      //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1222      //    |-----------|    Live through.
1223      //    ------=======    Switch intervals between interference.
1224      //
1225      selectIntv(IntvOut);
1226      SlotIndex Idx;
1227      if (LeaveBefore && LeaveBefore < LSP) {
1228        Idx = enterIntvBefore(LeaveBefore);
1229        useIntv(Idx, Stop);
1230      } else {
1231        Idx = enterIntvAtEnd(*MBB);
1232      }
1233      selectIntv(IntvIn);
1234      useIntv(Start, Idx);
1235      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1236      assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1237      return;
1238    }
1239  
1240    DEBUG(dbgs() << ", create local intv for interference.\n");
1241    //
1242    //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1243    //    |-----------|    Live through.
1244    //    ==---------==    Switch intervals before/after interference.
1245    //
1246    assert(LeaveBefore <= EnterAfter && "Missed case");
1247  
1248    selectIntv(IntvOut);
1249    SlotIndex Idx = enterIntvAfter(EnterAfter);
1250    useIntv(Idx, Stop);
1251    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1252  
1253    selectIntv(IntvIn);
1254    Idx = leaveIntvBefore(LeaveBefore);
1255    useIntv(Start, Idx);
1256    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1257  }
1258  
1259  
splitRegInBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvIn,SlotIndex LeaveBefore)1260  void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1261                                    unsigned IntvIn, SlotIndex LeaveBefore) {
1262    SlotIndex Start, Stop;
1263    std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1264  
1265    DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1266                 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1267                 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1268                 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1269  
1270    assert(IntvIn && "Must have register in");
1271    assert(BI.LiveIn && "Must be live-in");
1272    assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1273  
1274    if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1275      DEBUG(dbgs() << " before interference.\n");
1276      //
1277      //               <<<    Interference after kill.
1278      //     |---o---x   |    Killed in block.
1279      //     =========        Use IntvIn everywhere.
1280      //
1281      selectIntv(IntvIn);
1282      useIntv(Start, BI.LastInstr);
1283      return;
1284    }
1285  
1286    SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1287  
1288    if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1289      //
1290      //               <<<    Possible interference after last use.
1291      //     |---o---o---|    Live-out on stack.
1292      //     =========____    Leave IntvIn after last use.
1293      //
1294      //                 <    Interference after last use.
1295      //     |---o---o--o|    Live-out on stack, late last use.
1296      //     ============     Copy to stack after LSP, overlap IntvIn.
1297      //            \_____    Stack interval is live-out.
1298      //
1299      if (BI.LastInstr < LSP) {
1300        DEBUG(dbgs() << ", spill after last use before interference.\n");
1301        selectIntv(IntvIn);
1302        SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1303        useIntv(Start, Idx);
1304        assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1305      } else {
1306        DEBUG(dbgs() << ", spill before last split point.\n");
1307        selectIntv(IntvIn);
1308        SlotIndex Idx = leaveIntvBefore(LSP);
1309        overlapIntv(Idx, BI.LastInstr);
1310        useIntv(Start, Idx);
1311        assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1312      }
1313      return;
1314    }
1315  
1316    // The interference is overlapping somewhere we wanted to use IntvIn. That
1317    // means we need to create a local interval that can be allocated a
1318    // different register.
1319    unsigned LocalIntv = openIntv();
1320    (void)LocalIntv;
1321    DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1322  
1323    if (!BI.LiveOut || BI.LastInstr < LSP) {
1324      //
1325      //           <<<<<<<    Interference overlapping uses.
1326      //     |---o---o---|    Live-out on stack.
1327      //     =====----____    Leave IntvIn before interference, then spill.
1328      //
1329      SlotIndex To = leaveIntvAfter(BI.LastInstr);
1330      SlotIndex From = enterIntvBefore(LeaveBefore);
1331      useIntv(From, To);
1332      selectIntv(IntvIn);
1333      useIntv(Start, From);
1334      assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1335      return;
1336    }
1337  
1338    //           <<<<<<<    Interference overlapping uses.
1339    //     |---o---o--o|    Live-out on stack, late last use.
1340    //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1341    //            \_____    Stack interval is live-out.
1342    //
1343    SlotIndex To = leaveIntvBefore(LSP);
1344    overlapIntv(To, BI.LastInstr);
1345    SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1346    useIntv(From, To);
1347    selectIntv(IntvIn);
1348    useIntv(Start, From);
1349    assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1350  }
1351  
splitRegOutBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvOut,SlotIndex EnterAfter)1352  void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1353                                     unsigned IntvOut, SlotIndex EnterAfter) {
1354    SlotIndex Start, Stop;
1355    std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1356  
1357    DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1358                 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1359                 << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1360                 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1361  
1362    SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1363  
1364    assert(IntvOut && "Must have register out");
1365    assert(BI.LiveOut && "Must be live-out");
1366    assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1367  
1368    if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1369      DEBUG(dbgs() << " after interference.\n");
1370      //
1371      //    >>>>             Interference before def.
1372      //    |   o---o---|    Defined in block.
1373      //        =========    Use IntvOut everywhere.
1374      //
1375      selectIntv(IntvOut);
1376      useIntv(BI.FirstInstr, Stop);
1377      return;
1378    }
1379  
1380    if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1381      DEBUG(dbgs() << ", reload after interference.\n");
1382      //
1383      //    >>>>             Interference before def.
1384      //    |---o---o---|    Live-through, stack-in.
1385      //    ____=========    Enter IntvOut before first use.
1386      //
1387      selectIntv(IntvOut);
1388      SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1389      useIntv(Idx, Stop);
1390      assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1391      return;
1392    }
1393  
1394    // The interference is overlapping somewhere we wanted to use IntvOut. That
1395    // means we need to create a local interval that can be allocated a
1396    // different register.
1397    DEBUG(dbgs() << ", interference overlaps uses.\n");
1398    //
1399    //    >>>>>>>          Interference overlapping uses.
1400    //    |---o---o---|    Live-through, stack-in.
1401    //    ____---======    Create local interval for interference range.
1402    //
1403    selectIntv(IntvOut);
1404    SlotIndex Idx = enterIntvAfter(EnterAfter);
1405    useIntv(Idx, Stop);
1406    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1407  
1408    openIntv();
1409    SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1410    useIntv(From, Idx);
1411  }
1412