• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that collect the Linker Optimization Hint (LOH).
11 // This pass should be run at the very end of the compilation flow, just before
12 // assembly printer.
13 // To be useful for the linker, the LOH must be printed into the assembly file.
14 //
15 // A LOH describes a sequence of instructions that may be optimized by the
16 // linker.
17 // This same sequence cannot be optimized by the compiler because some of
18 // the information will be known at link time.
19 // For instance, consider the following sequence:
20 //     L1: adrp xA, sym@PAGE
21 //     L2: add xB, xA, sym@PAGEOFF
22 //     L3: ldr xC, [xB, #imm]
23 // This sequence can be turned into:
24 // A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
25 //     L3: ldr xC, sym+#imm
26 // It may also be turned into either the following more efficient
27 // code sequences:
28 // - If sym@PAGEOFF + #imm fits the encoding space of L3.
29 //     L1: adrp xA, sym@PAGE
30 //     L3: ldr xC, [xB, sym@PAGEOFF + #imm]
31 // - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
32 //     L1: adr xA, sym
33 //     L3: ldr xC, [xB, #imm]
34 //
35 // To be valid a LOH must meet all the requirements needed by all the related
36 // possible linker transformations.
37 // For instance, using the running example, the constraints to emit
38 // ".loh AdrpAddLdr" are:
39 // - L1, L2, and L3 instructions are of the expected type, i.e.,
40 //   respectively ADRP, ADD (immediate), and LD.
41 // - The result of L1 is used only by L2.
42 // - The register argument (xA) used in the ADD instruction is defined
43 //   only by L1.
44 // - The result of L2 is used only by L3.
45 // - The base address (xB) in L3 is defined only L2.
46 // - The ADRP in L1 and the ADD in L2 must reference the same symbol using
47 //   @PAGE/@PAGEOFF with no additional constants
48 //
49 // Currently supported LOHs are:
50 // * So called non-ADRP-related:
51 //   - .loh AdrpAddLdr L1, L2, L3:
52 //     L1: adrp xA, sym@PAGE
53 //     L2: add xB, xA, sym@PAGEOFF
54 //     L3: ldr xC, [xB, #imm]
55 //   - .loh AdrpLdrGotLdr L1, L2, L3:
56 //     L1: adrp xA, sym@GOTPAGE
57 //     L2: ldr xB, [xA, sym@GOTPAGEOFF]
58 //     L3: ldr xC, [xB, #imm]
59 //   - .loh AdrpLdr L1, L3:
60 //     L1: adrp xA, sym@PAGE
61 //     L3: ldr xC, [xA, sym@PAGEOFF]
62 //   - .loh AdrpAddStr L1, L2, L3:
63 //     L1: adrp xA, sym@PAGE
64 //     L2: add xB, xA, sym@PAGEOFF
65 //     L3: str xC, [xB, #imm]
66 //   - .loh AdrpLdrGotStr L1, L2, L3:
67 //     L1: adrp xA, sym@GOTPAGE
68 //     L2: ldr xB, [xA, sym@GOTPAGEOFF]
69 //     L3: str xC, [xB, #imm]
70 //   - .loh AdrpAdd L1, L2:
71 //     L1: adrp xA, sym@PAGE
72 //     L2: add xB, xA, sym@PAGEOFF
73 //   For all these LOHs, L1, L2, L3 form a simple chain:
74 //   L1 result is used only by L2 and L2 result by L3.
75 //   L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
76 //   by L1.
77 // All these LOHs aim at using more efficient load/store patterns by folding
78 // some instructions used to compute the address directly into the load/store.
79 //
80 // * So called ADRP-related:
81 //  - .loh AdrpAdrp L2, L1:
82 //    L2: ADRP xA, sym1@PAGE
83 //    L1: ADRP xA, sym2@PAGE
84 //    L2 dominates L1 and xA is not redifined between L2 and L1
85 // This LOH aims at getting rid of redundant ADRP instructions.
86 //
87 // The overall design for emitting the LOHs is:
88 // 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
89 // 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
90 //     1. Associates them a label.
91 //     2. Emits them in a MCStreamer (EmitLOHDirective).
92 //         - The MCMachOStreamer records them into the MCAssembler.
93 //         - The MCAsmStreamer prints them.
94 //         - Other MCStreamers ignore them.
95 //     3. Closes the MCStreamer:
96 //         - The MachObjectWriter gets them from the MCAssembler and writes
97 //           them in the object file.
98 //         - Other ObjectWriters ignore them.
99 //===----------------------------------------------------------------------===//
100 
101 #include "AArch64.h"
102 #include "AArch64InstrInfo.h"
103 #include "AArch64MachineFunctionInfo.h"
104 #include "AArch64Subtarget.h"
105 #include "MCTargetDesc/AArch64AddressingModes.h"
106 #include "llvm/ADT/BitVector.h"
107 #include "llvm/ADT/DenseMap.h"
108 #include "llvm/ADT/MapVector.h"
109 #include "llvm/ADT/SetVector.h"
110 #include "llvm/ADT/SmallVector.h"
111 #include "llvm/ADT/Statistic.h"
112 #include "llvm/CodeGen/MachineBasicBlock.h"
113 #include "llvm/CodeGen/MachineDominators.h"
114 #include "llvm/CodeGen/MachineFunctionPass.h"
115 #include "llvm/CodeGen/MachineInstr.h"
116 #include "llvm/CodeGen/MachineInstrBuilder.h"
117 #include "llvm/Support/CommandLine.h"
118 #include "llvm/Support/Debug.h"
119 #include "llvm/Support/ErrorHandling.h"
120 #include "llvm/Support/raw_ostream.h"
121 #include "llvm/Target/TargetInstrInfo.h"
122 #include "llvm/Target/TargetMachine.h"
123 #include "llvm/Target/TargetRegisterInfo.h"
124 using namespace llvm;
125 
126 #define DEBUG_TYPE "aarch64-collect-loh"
127 
128 static cl::opt<bool>
129 PreCollectRegister("aarch64-collect-loh-pre-collect-register", cl::Hidden,
130                    cl::desc("Restrict analysis to registers invovled"
131                             " in LOHs"),
132                    cl::init(true));
133 
134 static cl::opt<bool>
135 BasicBlockScopeOnly("aarch64-collect-loh-bb-only", cl::Hidden,
136                     cl::desc("Restrict analysis at basic block scope"),
137                     cl::init(true));
138 
139 STATISTIC(NumADRPSimpleCandidate,
140           "Number of simplifiable ADRP dominate by another");
141 STATISTIC(NumADRPComplexCandidate2,
142           "Number of simplifiable ADRP reachable by 2 defs");
143 STATISTIC(NumADRPComplexCandidate3,
144           "Number of simplifiable ADRP reachable by 3 defs");
145 STATISTIC(NumADRPComplexCandidateOther,
146           "Number of simplifiable ADRP reachable by 4 or more defs");
147 STATISTIC(NumADDToSTRWithImm,
148           "Number of simplifiable STR with imm reachable by ADD");
149 STATISTIC(NumLDRToSTRWithImm,
150           "Number of simplifiable STR with imm reachable by LDR");
151 STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
152 STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
153 STATISTIC(NumADDToLDRWithImm,
154           "Number of simplifiable LDR with imm reachable by ADD");
155 STATISTIC(NumLDRToLDRWithImm,
156           "Number of simplifiable LDR with imm reachable by LDR");
157 STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
158 STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
159 STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
160 STATISTIC(NumCplxLvl1, "Number of complex case of level 1");
161 STATISTIC(NumTooCplxLvl1, "Number of too complex case of level 1");
162 STATISTIC(NumCplxLvl2, "Number of complex case of level 2");
163 STATISTIC(NumTooCplxLvl2, "Number of too complex case of level 2");
164 STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
165 STATISTIC(NumADRComplexCandidate, "Number of too complex ADRP + ADD");
166 
167 namespace llvm {
168 void initializeAArch64CollectLOHPass(PassRegistry &);
169 }
170 
171 #define AARCH64_COLLECT_LOH_NAME "AArch64 Collect Linker Optimization Hint (LOH)"
172 
173 namespace {
174 struct AArch64CollectLOH : public MachineFunctionPass {
175   static char ID;
AArch64CollectLOH__anonc80aa5de0111::AArch64CollectLOH176   AArch64CollectLOH() : MachineFunctionPass(ID) {
177     initializeAArch64CollectLOHPass(*PassRegistry::getPassRegistry());
178   }
179 
180   bool runOnMachineFunction(MachineFunction &MF) override;
181 
getPassName__anonc80aa5de0111::AArch64CollectLOH182   const char *getPassName() const override {
183     return AARCH64_COLLECT_LOH_NAME;
184   }
185 
getAnalysisUsage__anonc80aa5de0111::AArch64CollectLOH186   void getAnalysisUsage(AnalysisUsage &AU) const override {
187     AU.setPreservesAll();
188     MachineFunctionPass::getAnalysisUsage(AU);
189     AU.addRequired<MachineDominatorTree>();
190   }
191 
192 private:
193 };
194 
195 /// A set of MachineInstruction.
196 typedef SetVector<const MachineInstr *> SetOfMachineInstr;
197 /// Map a basic block to a set of instructions per register.
198 /// This is used to represent the exposed uses of a basic block
199 /// per register.
200 typedef MapVector<const MachineBasicBlock *,
201                   std::unique_ptr<SetOfMachineInstr[]>>
202 BlockToSetOfInstrsPerColor;
203 /// Map a basic block to an instruction per register.
204 /// This is used to represent the live-out definitions of a basic block
205 /// per register.
206 typedef MapVector<const MachineBasicBlock *,
207                   std::unique_ptr<const MachineInstr *[]>>
208 BlockToInstrPerColor;
209 /// Map an instruction to a set of instructions. Used to represent the
210 /// mapping def to reachable uses or use to definitions.
211 typedef MapVector<const MachineInstr *, SetOfMachineInstr> InstrToInstrs;
212 /// Map a basic block to a BitVector.
213 /// This is used to record the kill registers per basic block.
214 typedef MapVector<const MachineBasicBlock *, BitVector> BlockToRegSet;
215 
216 /// Map a register to a dense id.
217 typedef DenseMap<unsigned, unsigned> MapRegToId;
218 /// Map a dense id to a register. Used for debug purposes.
219 typedef SmallVector<unsigned, 32> MapIdToReg;
220 } // end anonymous namespace.
221 
222 char AArch64CollectLOH::ID = 0;
223 
224 INITIALIZE_PASS_BEGIN(AArch64CollectLOH, "aarch64-collect-loh",
225                       AARCH64_COLLECT_LOH_NAME, false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)226 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
227 INITIALIZE_PASS_END(AArch64CollectLOH, "aarch64-collect-loh",
228                     AARCH64_COLLECT_LOH_NAME, false, false)
229 
230 /// Given a couple (MBB, reg) get the corresponding set of instruction from
231 /// the given "sets".
232 /// If this couple does not reference any set, an empty set is added to "sets"
233 /// for this couple and returned.
234 /// \param nbRegs is used internally allocate some memory. It must be consistent
235 /// with the way sets is used.
236 static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets,
237                                  const MachineBasicBlock &MBB, unsigned reg,
238                                  unsigned nbRegs) {
239   SetOfMachineInstr *result;
240   BlockToSetOfInstrsPerColor::iterator it = sets.find(&MBB);
241   if (it != sets.end())
242     result = it->second.get();
243   else
244     result = (sets[&MBB] = make_unique<SetOfMachineInstr[]>(nbRegs)).get();
245 
246   return result[reg];
247 }
248 
249 /// Given a couple (reg, MI) get the corresponding set of instructions from the
250 /// the given "sets".
251 /// This is used to get the uses record in sets of a definition identified by
252 /// MI and reg, i.e., MI defines reg.
253 /// If the couple does not reference anything, an empty set is added to
254 /// "sets[reg]".
255 /// \pre set[reg] is valid.
getUses(InstrToInstrs * sets,unsigned reg,const MachineInstr & MI)256 static SetOfMachineInstr &getUses(InstrToInstrs *sets, unsigned reg,
257                                   const MachineInstr &MI) {
258   return sets[reg][&MI];
259 }
260 
261 /// Same as getUses but does not modify the input map: sets.
262 /// \return NULL if the couple (reg, MI) is not in sets.
getUses(const InstrToInstrs * sets,unsigned reg,const MachineInstr & MI)263 static const SetOfMachineInstr *getUses(const InstrToInstrs *sets, unsigned reg,
264                                         const MachineInstr &MI) {
265   InstrToInstrs::const_iterator Res = sets[reg].find(&MI);
266   if (Res != sets[reg].end())
267     return &(Res->second);
268   return nullptr;
269 }
270 
271 /// Initialize the reaching definition algorithm:
272 /// For each basic block BB in MF, record:
273 /// - its kill set.
274 /// - its reachable uses (uses that are exposed to BB's predecessors).
275 /// - its the generated definitions.
276 /// \param DummyOp if not NULL, specifies a Dummy Operation to be added to
277 /// the list of uses of exposed defintions.
278 /// \param ADRPMode specifies to only consider ADRP instructions for generated
279 /// definition. It also consider definitions of ADRP instructions as uses and
280 /// ignore other uses. The ADRPMode is used to collect the information for LHO
281 /// that involve ADRP operation only.
initReachingDef(const MachineFunction & MF,InstrToInstrs * ColorOpToReachedUses,BlockToInstrPerColor & Gen,BlockToRegSet & Kill,BlockToSetOfInstrsPerColor & ReachableUses,const MapRegToId & RegToId,const MachineInstr * DummyOp,bool ADRPMode)282 static void initReachingDef(const MachineFunction &MF,
283                             InstrToInstrs *ColorOpToReachedUses,
284                             BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
285                             BlockToSetOfInstrsPerColor &ReachableUses,
286                             const MapRegToId &RegToId,
287                             const MachineInstr *DummyOp, bool ADRPMode) {
288   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
289   unsigned NbReg = RegToId.size();
290 
291   for (const MachineBasicBlock &MBB : MF) {
292     auto &BBGen = Gen[&MBB];
293     BBGen = make_unique<const MachineInstr *[]>(NbReg);
294     std::fill(BBGen.get(), BBGen.get() + NbReg, nullptr);
295 
296     BitVector &BBKillSet = Kill[&MBB];
297     BBKillSet.resize(NbReg);
298     for (const MachineInstr &MI : MBB) {
299       bool IsADRP = MI.getOpcode() == AArch64::ADRP;
300 
301       // Process uses first.
302       if (IsADRP || !ADRPMode)
303         for (const MachineOperand &MO : MI.operands()) {
304           // Treat ADRP def as use, as the goal of the analysis is to find
305           // ADRP defs reached by other ADRP defs.
306           if (!MO.isReg() || (!ADRPMode && !MO.isUse()) ||
307               (ADRPMode && (!IsADRP || !MO.isDef())))
308             continue;
309           unsigned CurReg = MO.getReg();
310           MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
311           if (ItCurRegId == RegToId.end())
312             continue;
313           CurReg = ItCurRegId->second;
314 
315           // if CurReg has not been defined, this use is reachable.
316           if (!BBGen[CurReg] && !BBKillSet.test(CurReg))
317             getSet(ReachableUses, MBB, CurReg, NbReg).insert(&MI);
318           // current basic block definition for this color, if any, is in Gen.
319           if (BBGen[CurReg])
320             getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(&MI);
321         }
322 
323       // Process clobbers.
324       for (const MachineOperand &MO : MI.operands()) {
325         if (!MO.isRegMask())
326           continue;
327         // Clobbers kill the related colors.
328         const uint32_t *PreservedRegs = MO.getRegMask();
329 
330         // Set generated regs.
331         for (const auto &Entry : RegToId) {
332           unsigned Reg = Entry.second;
333           // Use the global register ID when querying APIs external to this
334           // pass.
335           if (MachineOperand::clobbersPhysReg(PreservedRegs, Entry.first)) {
336             // Do not register clobbered definition for no ADRP.
337             // This definition is not used anyway (otherwise register
338             // allocation is wrong).
339             BBGen[Reg] = ADRPMode ? &MI : nullptr;
340             BBKillSet.set(Reg);
341           }
342         }
343       }
344 
345       // Process register defs.
346       for (const MachineOperand &MO : MI.operands()) {
347         if (!MO.isReg() || !MO.isDef())
348           continue;
349         unsigned CurReg = MO.getReg();
350         MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
351         if (ItCurRegId == RegToId.end())
352           continue;
353 
354         for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI) {
355           MapRegToId::const_iterator ItRegId = RegToId.find(*AI);
356           // If this alias has not been recorded, then it is not interesting
357           // for the current analysis.
358           // We can end up in this situation because of tuple registers.
359           // E.g., Let say we are interested in S1. When we register
360           // S1, we will also register its aliases and in particular
361           // the tuple Q1_Q2.
362           // Now, when we encounter Q1_Q2, we will look through its aliases
363           // and will find that S2 is not registered.
364           if (ItRegId == RegToId.end())
365             continue;
366 
367           BBKillSet.set(ItRegId->second);
368           BBGen[ItRegId->second] = &MI;
369         }
370         BBGen[ItCurRegId->second] = &MI;
371       }
372     }
373 
374     // If we restrict our analysis to basic block scope, conservatively add a
375     // dummy
376     // use for each generated value.
377     if (!ADRPMode && DummyOp && !MBB.succ_empty())
378       for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg)
379         if (BBGen[CurReg])
380           getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(DummyOp);
381   }
382 }
383 
384 /// Reaching def core algorithm:
385 /// while an Out has changed
386 ///    for each bb
387 ///       for each color
388 ///           In[bb][color] = U Out[bb.predecessors][color]
389 ///           insert reachableUses[bb][color] in each in[bb][color]
390 ///                 op.reachedUses
391 ///
392 ///           Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
reachingDefAlgorithm(const MachineFunction & MF,InstrToInstrs * ColorOpToReachedUses,BlockToSetOfInstrsPerColor & In,BlockToSetOfInstrsPerColor & Out,BlockToInstrPerColor & Gen,BlockToRegSet & Kill,BlockToSetOfInstrsPerColor & ReachableUses,unsigned NbReg)393 static void reachingDefAlgorithm(const MachineFunction &MF,
394                                  InstrToInstrs *ColorOpToReachedUses,
395                                  BlockToSetOfInstrsPerColor &In,
396                                  BlockToSetOfInstrsPerColor &Out,
397                                  BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
398                                  BlockToSetOfInstrsPerColor &ReachableUses,
399                                  unsigned NbReg) {
400   bool HasChanged;
401   do {
402     HasChanged = false;
403     for (const MachineBasicBlock &MBB : MF) {
404       unsigned CurReg;
405       for (CurReg = 0; CurReg < NbReg; ++CurReg) {
406         SetOfMachineInstr &BBInSet = getSet(In, MBB, CurReg, NbReg);
407         SetOfMachineInstr &BBReachableUses =
408             getSet(ReachableUses, MBB, CurReg, NbReg);
409         SetOfMachineInstr &BBOutSet = getSet(Out, MBB, CurReg, NbReg);
410         unsigned Size = BBOutSet.size();
411         //   In[bb][color] = U Out[bb.predecessors][color]
412         for (const MachineBasicBlock *PredMBB : MBB.predecessors()) {
413           SetOfMachineInstr &PredOutSet = getSet(Out, *PredMBB, CurReg, NbReg);
414           BBInSet.insert(PredOutSet.begin(), PredOutSet.end());
415         }
416         //   insert reachableUses[bb][color] in each in[bb][color] op.reachedses
417         for (const MachineInstr *MI : BBInSet) {
418           SetOfMachineInstr &OpReachedUses =
419               getUses(ColorOpToReachedUses, CurReg, *MI);
420           OpReachedUses.insert(BBReachableUses.begin(), BBReachableUses.end());
421         }
422         //           Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
423         if (!Kill[&MBB].test(CurReg))
424           BBOutSet.insert(BBInSet.begin(), BBInSet.end());
425         if (Gen[&MBB][CurReg])
426           BBOutSet.insert(Gen[&MBB][CurReg]);
427         HasChanged |= BBOutSet.size() != Size;
428       }
429     }
430   } while (HasChanged);
431 }
432 
433 /// Reaching definition algorithm.
434 /// \param MF function on which the algorithm will operate.
435 /// \param[out] ColorOpToReachedUses will contain the result of the reaching
436 /// def algorithm.
437 /// \param ADRPMode specify whether the reaching def algorithm should be tuned
438 /// for ADRP optimization. \see initReachingDef for more details.
439 /// \param DummyOp if not NULL, the algorithm will work at
440 /// basic block scope and will set for every exposed definition a use to
441 /// @p DummyOp.
442 /// \pre ColorOpToReachedUses is an array of at least number of registers of
443 /// InstrToInstrs.
reachingDef(const MachineFunction & MF,InstrToInstrs * ColorOpToReachedUses,const MapRegToId & RegToId,bool ADRPMode=false,const MachineInstr * DummyOp=nullptr)444 static void reachingDef(const MachineFunction &MF,
445                         InstrToInstrs *ColorOpToReachedUses,
446                         const MapRegToId &RegToId, bool ADRPMode = false,
447                         const MachineInstr *DummyOp = nullptr) {
448   // structures:
449   // For each basic block.
450   // Out: a set per color of definitions that reach the
451   //      out boundary of this block.
452   // In: Same as Out but for in boundary.
453   // Gen: generated color in this block (one operation per color).
454   // Kill: register set of killed color in this block.
455   // ReachableUses: a set per color of uses (operation) reachable
456   //                for "In" definitions.
457   BlockToSetOfInstrsPerColor Out, In, ReachableUses;
458   BlockToInstrPerColor Gen;
459   BlockToRegSet Kill;
460 
461   // Initialize Gen, kill and reachableUses.
462   initReachingDef(MF, ColorOpToReachedUses, Gen, Kill, ReachableUses, RegToId,
463                   DummyOp, ADRPMode);
464 
465   // Algo.
466   if (!DummyOp)
467     reachingDefAlgorithm(MF, ColorOpToReachedUses, In, Out, Gen, Kill,
468                          ReachableUses, RegToId.size());
469 }
470 
471 #ifndef NDEBUG
472 /// print the result of the reaching definition algorithm.
printReachingDef(const InstrToInstrs * ColorOpToReachedUses,unsigned NbReg,const TargetRegisterInfo * TRI,const MapIdToReg & IdToReg)473 static void printReachingDef(const InstrToInstrs *ColorOpToReachedUses,
474                              unsigned NbReg, const TargetRegisterInfo *TRI,
475                              const MapIdToReg &IdToReg) {
476   unsigned CurReg;
477   for (CurReg = 0; CurReg < NbReg; ++CurReg) {
478     if (ColorOpToReachedUses[CurReg].empty())
479       continue;
480     DEBUG(dbgs() << "*** Reg " << PrintReg(IdToReg[CurReg], TRI) << " ***\n");
481 
482     for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
483       DEBUG(dbgs() << "Def:\n");
484       DEBUG(DefsIt.first->print(dbgs()));
485       DEBUG(dbgs() << "Reachable uses:\n");
486       for (const MachineInstr *MI : DefsIt.second) {
487         DEBUG(MI->print(dbgs()));
488       }
489     }
490   }
491 }
492 #endif // NDEBUG
493 
494 /// Answer the following question: Can Def be one of the definition
495 /// involved in a part of a LOH?
canDefBePartOfLOH(const MachineInstr * Def)496 static bool canDefBePartOfLOH(const MachineInstr *Def) {
497   unsigned Opc = Def->getOpcode();
498   // Accept ADRP, ADDLow and LOADGot.
499   switch (Opc) {
500   default:
501     return false;
502   case AArch64::ADRP:
503     return true;
504   case AArch64::ADDXri:
505     // Check immediate to see if the immediate is an address.
506     switch (Def->getOperand(2).getType()) {
507     default:
508       return false;
509     case MachineOperand::MO_GlobalAddress:
510     case MachineOperand::MO_JumpTableIndex:
511     case MachineOperand::MO_ConstantPoolIndex:
512     case MachineOperand::MO_BlockAddress:
513       return true;
514     }
515   case AArch64::LDRXui:
516     // Check immediate to see if the immediate is an address.
517     switch (Def->getOperand(2).getType()) {
518     default:
519       return false;
520     case MachineOperand::MO_GlobalAddress:
521       return true;
522     }
523   }
524   // Unreachable.
525   return false;
526 }
527 
528 /// Check whether the given instruction can the end of a LOH chain involving a
529 /// store.
isCandidateStore(const MachineInstr * Instr)530 static bool isCandidateStore(const MachineInstr *Instr) {
531   switch (Instr->getOpcode()) {
532   default:
533     return false;
534   case AArch64::STRBBui:
535   case AArch64::STRHHui:
536   case AArch64::STRBui:
537   case AArch64::STRHui:
538   case AArch64::STRWui:
539   case AArch64::STRXui:
540   case AArch64::STRSui:
541   case AArch64::STRDui:
542   case AArch64::STRQui:
543     // In case we have str xA, [xA, #imm], this is two different uses
544     // of xA and we cannot fold, otherwise the xA stored may be wrong,
545     // even if #imm == 0.
546     if (Instr->getOperand(0).getReg() != Instr->getOperand(1).getReg())
547       return true;
548   }
549   return false;
550 }
551 
552 /// Given the result of a reaching definition algorithm in ColorOpToReachedUses,
553 /// Build the Use to Defs information and filter out obvious non-LOH candidates.
554 /// In ADRPMode, non-LOH candidates are "uses" with non-ADRP definitions.
555 /// In non-ADRPMode, non-LOH candidates are "uses" with several definition,
556 /// i.e., no simple chain.
557 /// \param ADRPMode -- \see initReachingDef.
reachedUsesToDefs(InstrToInstrs & UseToReachingDefs,const InstrToInstrs * ColorOpToReachedUses,const MapRegToId & RegToId,bool ADRPMode=false)558 static void reachedUsesToDefs(InstrToInstrs &UseToReachingDefs,
559                               const InstrToInstrs *ColorOpToReachedUses,
560                               const MapRegToId &RegToId,
561                               bool ADRPMode = false) {
562 
563   SetOfMachineInstr NotCandidate;
564   unsigned NbReg = RegToId.size();
565   MapRegToId::const_iterator EndIt = RegToId.end();
566   for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg) {
567     // If this color is never defined, continue.
568     if (ColorOpToReachedUses[CurReg].empty())
569       continue;
570 
571     for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
572       for (const MachineInstr *MI : DefsIt.second) {
573         const MachineInstr *Def = DefsIt.first;
574         MapRegToId::const_iterator It;
575         // if all the reaching defs are not adrp, this use will not be
576         // simplifiable.
577         if ((ADRPMode && Def->getOpcode() != AArch64::ADRP) ||
578             (!ADRPMode && !canDefBePartOfLOH(Def)) ||
579             (!ADRPMode && isCandidateStore(MI) &&
580              // store are LOH candidate iff the end of the chain is used as
581              // base.
582              ((It = RegToId.find((MI)->getOperand(1).getReg())) == EndIt ||
583               It->second != CurReg))) {
584           NotCandidate.insert(MI);
585           continue;
586         }
587         // Do not consider self reaching as a simplifiable case for ADRP.
588         if (!ADRPMode || MI != DefsIt.first) {
589           UseToReachingDefs[MI].insert(DefsIt.first);
590           // If UsesIt has several reaching definitions, it is not
591           // candidate for simplificaton in non-ADRPMode.
592           if (!ADRPMode && UseToReachingDefs[MI].size() > 1)
593             NotCandidate.insert(MI);
594         }
595       }
596     }
597   }
598   for (const MachineInstr *Elem : NotCandidate) {
599     DEBUG(dbgs() << "Too many reaching defs: " << *Elem << "\n");
600     // It would have been better if we could just remove the entry
601     // from the map.  Because of that, we have to filter the garbage
602     // (second.empty) in the subsequence analysis.
603     UseToReachingDefs[Elem].clear();
604   }
605 }
606 
607 /// Based on the use to defs information (in ADRPMode), compute the
608 /// opportunities of LOH ADRP-related.
computeADRP(const InstrToInstrs & UseToDefs,AArch64FunctionInfo & AArch64FI,const MachineDominatorTree * MDT)609 static void computeADRP(const InstrToInstrs &UseToDefs,
610                         AArch64FunctionInfo &AArch64FI,
611                         const MachineDominatorTree *MDT) {
612   DEBUG(dbgs() << "*** Compute LOH for ADRP\n");
613   for (const auto &Entry : UseToDefs) {
614     unsigned Size = Entry.second.size();
615     if (Size == 0)
616       continue;
617     if (Size == 1) {
618       const MachineInstr *L2 = *Entry.second.begin();
619       const MachineInstr *L1 = Entry.first;
620       if (!MDT->dominates(L2, L1)) {
621         DEBUG(dbgs() << "Dominance check failed:\n" << *L2 << '\n' << *L1
622                      << '\n');
623         continue;
624       }
625       DEBUG(dbgs() << "Record AdrpAdrp:\n" << *L2 << '\n' << *L1 << '\n');
626       SmallVector<const MachineInstr *, 2> Args;
627       Args.push_back(L2);
628       Args.push_back(L1);
629       AArch64FI.addLOHDirective(MCLOH_AdrpAdrp, Args);
630       ++NumADRPSimpleCandidate;
631     }
632 #ifdef DEBUG
633     else if (Size == 2)
634       ++NumADRPComplexCandidate2;
635     else if (Size == 3)
636       ++NumADRPComplexCandidate3;
637     else
638       ++NumADRPComplexCandidateOther;
639 #endif
640     // if Size < 1, the use should have been removed from the candidates
641     assert(Size >= 1 && "No reaching defs for that use!");
642   }
643 }
644 
645 /// Check whether the given instruction can be the end of a LOH chain
646 /// involving a load.
isCandidateLoad(const MachineInstr * Instr)647 static bool isCandidateLoad(const MachineInstr *Instr) {
648   switch (Instr->getOpcode()) {
649   default:
650     return false;
651   case AArch64::LDRSBWui:
652   case AArch64::LDRSBXui:
653   case AArch64::LDRSHWui:
654   case AArch64::LDRSHXui:
655   case AArch64::LDRSWui:
656   case AArch64::LDRBui:
657   case AArch64::LDRHui:
658   case AArch64::LDRWui:
659   case AArch64::LDRXui:
660   case AArch64::LDRSui:
661   case AArch64::LDRDui:
662   case AArch64::LDRQui:
663     if (Instr->getOperand(2).getTargetFlags() & AArch64II::MO_GOT)
664       return false;
665     return true;
666   }
667   // Unreachable.
668   return false;
669 }
670 
671 /// Check whether the given instruction can load a litteral.
supportLoadFromLiteral(const MachineInstr * Instr)672 static bool supportLoadFromLiteral(const MachineInstr *Instr) {
673   switch (Instr->getOpcode()) {
674   default:
675     return false;
676   case AArch64::LDRSWui:
677   case AArch64::LDRWui:
678   case AArch64::LDRXui:
679   case AArch64::LDRSui:
680   case AArch64::LDRDui:
681   case AArch64::LDRQui:
682     return true;
683   }
684   // Unreachable.
685   return false;
686 }
687 
688 /// Check whether the given instruction is a LOH candidate.
689 /// \param UseToDefs is used to check that Instr is at the end of LOH supported
690 /// chain.
691 /// \pre UseToDefs contains only on def per use, i.e., obvious non candidate are
692 /// already been filtered out.
isCandidate(const MachineInstr * Instr,const InstrToInstrs & UseToDefs,const MachineDominatorTree * MDT)693 static bool isCandidate(const MachineInstr *Instr,
694                         const InstrToInstrs &UseToDefs,
695                         const MachineDominatorTree *MDT) {
696   if (!isCandidateLoad(Instr) && !isCandidateStore(Instr))
697     return false;
698 
699   const MachineInstr *Def = *UseToDefs.find(Instr)->second.begin();
700   if (Def->getOpcode() != AArch64::ADRP) {
701     // At this point, Def is ADDXri or LDRXui of the right type of
702     // symbol, because we filtered out the uses that were not defined
703     // by these kind of instructions (+ ADRP).
704 
705     // Check if this forms a simple chain: each intermediate node must
706     // dominates the next one.
707     if (!MDT->dominates(Def, Instr))
708       return false;
709     // Move one node up in the simple chain.
710     if (UseToDefs.find(Def) ==
711             UseToDefs.end()
712             // The map may contain garbage we have to ignore.
713         ||
714         UseToDefs.find(Def)->second.empty())
715       return false;
716     Instr = Def;
717     Def = *UseToDefs.find(Def)->second.begin();
718   }
719   // Check if we reached the top of the simple chain:
720   // - top is ADRP.
721   // - check the simple chain property: each intermediate node must
722   // dominates the next one.
723   if (Def->getOpcode() == AArch64::ADRP)
724     return MDT->dominates(Def, Instr);
725   return false;
726 }
727 
registerADRCandidate(const MachineInstr & Use,const InstrToInstrs & UseToDefs,const InstrToInstrs * DefsPerColorToUses,AArch64FunctionInfo & AArch64FI,SetOfMachineInstr * InvolvedInLOHs,const MapRegToId & RegToId)728 static bool registerADRCandidate(const MachineInstr &Use,
729                                  const InstrToInstrs &UseToDefs,
730                                  const InstrToInstrs *DefsPerColorToUses,
731                                  AArch64FunctionInfo &AArch64FI,
732                                  SetOfMachineInstr *InvolvedInLOHs,
733                                  const MapRegToId &RegToId) {
734   // Look for opportunities to turn ADRP -> ADD or
735   // ADRP -> LDR GOTPAGEOFF into ADR.
736   // If ADRP has more than one use. Give up.
737   if (Use.getOpcode() != AArch64::ADDXri &&
738       (Use.getOpcode() != AArch64::LDRXui ||
739        !(Use.getOperand(2).getTargetFlags() & AArch64II::MO_GOT)))
740     return false;
741   InstrToInstrs::const_iterator It = UseToDefs.find(&Use);
742   // The map may contain garbage that we need to ignore.
743   if (It == UseToDefs.end() || It->second.empty())
744     return false;
745   const MachineInstr &Def = **It->second.begin();
746   if (Def.getOpcode() != AArch64::ADRP)
747     return false;
748   // Check the number of users of ADRP.
749   const SetOfMachineInstr *Users =
750       getUses(DefsPerColorToUses,
751               RegToId.find(Def.getOperand(0).getReg())->second, Def);
752   if (Users->size() > 1) {
753     ++NumADRComplexCandidate;
754     return false;
755   }
756   ++NumADRSimpleCandidate;
757   assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Def)) &&
758          "ADRP already involved in LOH.");
759   assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Use)) &&
760          "ADD already involved in LOH.");
761   DEBUG(dbgs() << "Record AdrpAdd\n" << Def << '\n' << Use << '\n');
762 
763   SmallVector<const MachineInstr *, 2> Args;
764   Args.push_back(&Def);
765   Args.push_back(&Use);
766 
767   AArch64FI.addLOHDirective(Use.getOpcode() == AArch64::ADDXri ? MCLOH_AdrpAdd
768                                                            : MCLOH_AdrpLdrGot,
769                           Args);
770   return true;
771 }
772 
773 /// Based on the use to defs information (in non-ADRPMode), compute the
774 /// opportunities of LOH non-ADRP-related
computeOthers(const InstrToInstrs & UseToDefs,const InstrToInstrs * DefsPerColorToUses,AArch64FunctionInfo & AArch64FI,const MapRegToId & RegToId,const MachineDominatorTree * MDT)775 static void computeOthers(const InstrToInstrs &UseToDefs,
776                           const InstrToInstrs *DefsPerColorToUses,
777                           AArch64FunctionInfo &AArch64FI, const MapRegToId &RegToId,
778                           const MachineDominatorTree *MDT) {
779   SetOfMachineInstr *InvolvedInLOHs = nullptr;
780 #ifdef DEBUG
781   SetOfMachineInstr InvolvedInLOHsStorage;
782   InvolvedInLOHs = &InvolvedInLOHsStorage;
783 #endif // DEBUG
784   DEBUG(dbgs() << "*** Compute LOH for Others\n");
785   // ADRP -> ADD/LDR -> LDR/STR pattern.
786   // Fall back to ADRP -> ADD pattern if we fail to catch the bigger pattern.
787 
788   // FIXME: When the statistics are not important,
789   // This initial filtering loop can be merged into the next loop.
790   // Currently, we didn't do it to have the same code for both DEBUG and
791   // NDEBUG builds. Indeed, the iterator of the second loop would need
792   // to be changed.
793   SetOfMachineInstr PotentialCandidates;
794   SetOfMachineInstr PotentialADROpportunities;
795   for (auto &Use : UseToDefs) {
796     // If no definition is available, this is a non candidate.
797     if (Use.second.empty())
798       continue;
799     // Keep only instructions that are load or store and at the end of
800     // a ADRP -> ADD/LDR/Nothing chain.
801     // We already filtered out the no-chain cases.
802     if (!isCandidate(Use.first, UseToDefs, MDT)) {
803       PotentialADROpportunities.insert(Use.first);
804       continue;
805     }
806     PotentialCandidates.insert(Use.first);
807   }
808 
809   // Make the following distinctions for statistics as the linker does
810   // know how to decode instructions:
811   // - ADD/LDR/Nothing make there different patterns.
812   // - LDR/STR make two different patterns.
813   // Hence, 6 - 1 base patterns.
814   // (because ADRP-> Nothing -> STR is not simplifiable)
815 
816   // The linker is only able to have a simple semantic, i.e., if pattern A
817   // do B.
818   // However, we want to see the opportunity we may miss if we were able to
819   // catch more complex cases.
820 
821   // PotentialCandidates are result of a chain ADRP -> ADD/LDR ->
822   // A potential candidate becomes a candidate, if its current immediate
823   // operand is zero and all nodes of the chain have respectively only one user
824 #ifdef DEBUG
825   SetOfMachineInstr DefsOfPotentialCandidates;
826 #endif
827   for (const MachineInstr *Candidate : PotentialCandidates) {
828     // Get the definition of the candidate i.e., ADD or LDR.
829     const MachineInstr *Def = *UseToDefs.find(Candidate)->second.begin();
830     // Record the elements of the chain.
831     const MachineInstr *L1 = Def;
832     const MachineInstr *L2 = nullptr;
833     unsigned ImmediateDefOpc = Def->getOpcode();
834     if (Def->getOpcode() != AArch64::ADRP) {
835       // Check the number of users of this node.
836       const SetOfMachineInstr *Users =
837           getUses(DefsPerColorToUses,
838                   RegToId.find(Def->getOperand(0).getReg())->second, *Def);
839       if (Users->size() > 1) {
840 #ifdef DEBUG
841         // if all the uses of this def are in potential candidate, this is
842         // a complex candidate of level 2.
843         bool IsLevel2 = true;
844         for (const MachineInstr *MI : *Users) {
845           if (!PotentialCandidates.count(MI)) {
846             ++NumTooCplxLvl2;
847             IsLevel2 = false;
848             break;
849           }
850         }
851         if (IsLevel2)
852           ++NumCplxLvl2;
853 #endif // DEBUG
854         PotentialADROpportunities.insert(Def);
855         continue;
856       }
857       L2 = Def;
858       Def = *UseToDefs.find(Def)->second.begin();
859       L1 = Def;
860     } // else the element in the middle of the chain is nothing, thus
861       // Def already contains the first element of the chain.
862 
863     // Check the number of users of the first node in the chain, i.e., ADRP
864     const SetOfMachineInstr *Users =
865         getUses(DefsPerColorToUses,
866                 RegToId.find(Def->getOperand(0).getReg())->second, *Def);
867     if (Users->size() > 1) {
868 #ifdef DEBUG
869       // if all the uses of this def are in the defs of the potential candidate,
870       // this is a complex candidate of level 1
871       if (DefsOfPotentialCandidates.empty()) {
872         // lazy init
873         DefsOfPotentialCandidates = PotentialCandidates;
874         for (const MachineInstr *Candidate : PotentialCandidates) {
875           if (!UseToDefs.find(Candidate)->second.empty())
876             DefsOfPotentialCandidates.insert(
877                 *UseToDefs.find(Candidate)->second.begin());
878         }
879       }
880       bool Found = false;
881       for (auto &Use : *Users) {
882         if (!DefsOfPotentialCandidates.count(Use)) {
883           ++NumTooCplxLvl1;
884           Found = true;
885           break;
886         }
887       }
888       if (!Found)
889         ++NumCplxLvl1;
890 #endif // DEBUG
891       continue;
892     }
893 
894     bool IsL2Add = (ImmediateDefOpc == AArch64::ADDXri);
895     // If the chain is three instructions long and ldr is the second element,
896     // then this ldr must load form GOT, otherwise this is not a correct chain.
897     if (L2 && !IsL2Add &&
898         !(L2->getOperand(2).getTargetFlags() & AArch64II::MO_GOT))
899       continue;
900     SmallVector<const MachineInstr *, 3> Args;
901     MCLOHType Kind;
902     if (isCandidateLoad(Candidate)) {
903       if (!L2) {
904         // At this point, the candidate LOH indicates that the ldr instruction
905         // may use a direct access to the symbol. There is not such encoding
906         // for loads of byte and half.
907         if (!supportLoadFromLiteral(Candidate))
908           continue;
909 
910         DEBUG(dbgs() << "Record AdrpLdr:\n" << *L1 << '\n' << *Candidate
911                      << '\n');
912         Kind = MCLOH_AdrpLdr;
913         Args.push_back(L1);
914         Args.push_back(Candidate);
915         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
916                "L1 already involved in LOH.");
917         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
918                "Candidate already involved in LOH.");
919         ++NumADRPToLDR;
920       } else {
921         DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
922                      << "Ldr:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
923                      << '\n');
924 
925         Kind = IsL2Add ? MCLOH_AdrpAddLdr : MCLOH_AdrpLdrGotLdr;
926         Args.push_back(L1);
927         Args.push_back(L2);
928         Args.push_back(Candidate);
929 
930         PotentialADROpportunities.remove(L2);
931         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
932                "L1 already involved in LOH.");
933         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
934                "L2 already involved in LOH.");
935         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
936                "Candidate already involved in LOH.");
937 #ifdef DEBUG
938         // get the immediate of the load
939         if (Candidate->getOperand(2).getImm() == 0)
940           if (ImmediateDefOpc == AArch64::ADDXri)
941             ++NumADDToLDR;
942           else
943             ++NumLDRToLDR;
944         else if (ImmediateDefOpc == AArch64::ADDXri)
945           ++NumADDToLDRWithImm;
946         else
947           ++NumLDRToLDRWithImm;
948 #endif // DEBUG
949       }
950     } else {
951       if (ImmediateDefOpc == AArch64::ADRP)
952         continue;
953       else {
954 
955         DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
956                      << "Str:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
957                      << '\n');
958 
959         Kind = IsL2Add ? MCLOH_AdrpAddStr : MCLOH_AdrpLdrGotStr;
960         Args.push_back(L1);
961         Args.push_back(L2);
962         Args.push_back(Candidate);
963 
964         PotentialADROpportunities.remove(L2);
965         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
966                "L1 already involved in LOH.");
967         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
968                "L2 already involved in LOH.");
969         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
970                "Candidate already involved in LOH.");
971 #ifdef DEBUG
972         // get the immediate of the store
973         if (Candidate->getOperand(2).getImm() == 0)
974           if (ImmediateDefOpc == AArch64::ADDXri)
975             ++NumADDToSTR;
976           else
977             ++NumLDRToSTR;
978         else if (ImmediateDefOpc == AArch64::ADDXri)
979           ++NumADDToSTRWithImm;
980         else
981           ++NumLDRToSTRWithImm;
982 #endif // DEBUG
983       }
984     }
985     AArch64FI.addLOHDirective(Kind, Args);
986   }
987 
988   // Now, we grabbed all the big patterns, check ADR opportunities.
989   for (const MachineInstr *Candidate : PotentialADROpportunities)
990     registerADRCandidate(*Candidate, UseToDefs, DefsPerColorToUses, AArch64FI,
991                          InvolvedInLOHs, RegToId);
992 }
993 
994 /// Look for every register defined by potential LOHs candidates.
995 /// Map these registers with dense id in @p RegToId and vice-versa in
996 /// @p IdToReg. @p IdToReg is populated only in DEBUG mode.
collectInvolvedReg(const MachineFunction & MF,MapRegToId & RegToId,MapIdToReg & IdToReg,const TargetRegisterInfo * TRI)997 static void collectInvolvedReg(const MachineFunction &MF, MapRegToId &RegToId,
998                                MapIdToReg &IdToReg,
999                                const TargetRegisterInfo *TRI) {
1000   unsigned CurRegId = 0;
1001   if (!PreCollectRegister) {
1002     unsigned NbReg = TRI->getNumRegs();
1003     for (; CurRegId < NbReg; ++CurRegId) {
1004       RegToId[CurRegId] = CurRegId;
1005       DEBUG(IdToReg.push_back(CurRegId));
1006       DEBUG(assert(IdToReg[CurRegId] == CurRegId && "Reg index mismatches"));
1007     }
1008     return;
1009   }
1010 
1011   DEBUG(dbgs() << "** Collect Involved Register\n");
1012   for (const auto &MBB : MF) {
1013     for (const MachineInstr &MI : MBB) {
1014       if (!canDefBePartOfLOH(&MI) &&
1015           !isCandidateLoad(&MI) && !isCandidateStore(&MI))
1016         continue;
1017 
1018       // Process defs
1019       for (MachineInstr::const_mop_iterator IO = MI.operands_begin(),
1020                                             IOEnd = MI.operands_end();
1021            IO != IOEnd; ++IO) {
1022         if (!IO->isReg() || !IO->isDef())
1023           continue;
1024         unsigned CurReg = IO->getReg();
1025         for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI)
1026           if (RegToId.find(*AI) == RegToId.end()) {
1027             DEBUG(IdToReg.push_back(*AI);
1028                   assert(IdToReg[CurRegId] == *AI &&
1029                          "Reg index mismatches insertion index."));
1030             RegToId[*AI] = CurRegId++;
1031             DEBUG(dbgs() << "Register: " << PrintReg(*AI, TRI) << '\n');
1032           }
1033       }
1034     }
1035   }
1036 }
1037 
runOnMachineFunction(MachineFunction & MF)1038 bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
1039   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1040   const MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
1041 
1042   MapRegToId RegToId;
1043   MapIdToReg IdToReg;
1044   AArch64FunctionInfo *AArch64FI = MF.getInfo<AArch64FunctionInfo>();
1045   assert(AArch64FI && "No MachineFunctionInfo for this function!");
1046 
1047   DEBUG(dbgs() << "Looking for LOH in " << MF.getName() << '\n');
1048 
1049   collectInvolvedReg(MF, RegToId, IdToReg, TRI);
1050   if (RegToId.empty())
1051     return false;
1052 
1053   MachineInstr *DummyOp = nullptr;
1054   if (BasicBlockScopeOnly) {
1055     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1056     // For local analysis, create a dummy operation to record uses that are not
1057     // local.
1058     DummyOp = MF.CreateMachineInstr(TII->get(AArch64::COPY), DebugLoc());
1059   }
1060 
1061   unsigned NbReg = RegToId.size();
1062   bool Modified = false;
1063 
1064   // Start with ADRP.
1065   InstrToInstrs *ColorOpToReachedUses = new InstrToInstrs[NbReg];
1066 
1067   // Compute the reaching def in ADRP mode, meaning ADRP definitions
1068   // are first considered as uses.
1069   reachingDef(MF, ColorOpToReachedUses, RegToId, true, DummyOp);
1070   DEBUG(dbgs() << "ADRP reaching defs\n");
1071   DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
1072 
1073   // Translate the definition to uses map into a use to definitions map to ease
1074   // statistic computation.
1075   InstrToInstrs ADRPToReachingDefs;
1076   reachedUsesToDefs(ADRPToReachingDefs, ColorOpToReachedUses, RegToId, true);
1077 
1078   // Compute LOH for ADRP.
1079   computeADRP(ADRPToReachingDefs, *AArch64FI, MDT);
1080   delete[] ColorOpToReachedUses;
1081 
1082   // Continue with general ADRP -> ADD/LDR -> LDR/STR pattern.
1083   ColorOpToReachedUses = new InstrToInstrs[NbReg];
1084 
1085   // first perform a regular reaching def analysis.
1086   reachingDef(MF, ColorOpToReachedUses, RegToId, false, DummyOp);
1087   DEBUG(dbgs() << "All reaching defs\n");
1088   DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
1089 
1090   // Turn that into a use to defs to ease statistic computation.
1091   InstrToInstrs UsesToReachingDefs;
1092   reachedUsesToDefs(UsesToReachingDefs, ColorOpToReachedUses, RegToId, false);
1093 
1094   // Compute other than AdrpAdrp LOH.
1095   computeOthers(UsesToReachingDefs, ColorOpToReachedUses, *AArch64FI, RegToId,
1096                 MDT);
1097   delete[] ColorOpToReachedUses;
1098 
1099   if (BasicBlockScopeOnly)
1100     MF.DeleteMachineInstr(DummyOp);
1101 
1102   return Modified;
1103 }
1104 
1105 /// createAArch64CollectLOHPass - returns an instance of the Statistic for
1106 /// linker optimization pass.
createAArch64CollectLOHPass()1107 FunctionPass *llvm::createAArch64CollectLOHPass() {
1108   return new AArch64CollectLOH();
1109 }
1110