1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/MC/MCContext.h"
13 #include "llvm/MC/MCExpr.h"
14 #include "llvm/MC/MCInst.h"
15 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
16 #include "llvm/MC/MCStreamer.h"
17 #include "llvm/MC/MCSubtargetInfo.h"
18 #include "llvm/MC/MCTargetAsmParser.h"
19 #include "llvm/Support/TargetRegistry.h"
20
21 using namespace llvm;
22
23 // Return true if Expr is in the range [MinValue, MaxValue].
inRange(const MCExpr * Expr,int64_t MinValue,int64_t MaxValue)24 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
25 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
26 int64_t Value = CE->getValue();
27 return Value >= MinValue && Value <= MaxValue;
28 }
29 return false;
30 }
31
32 namespace {
33 enum RegisterKind {
34 GR32Reg,
35 GRH32Reg,
36 GR64Reg,
37 GR128Reg,
38 ADDR32Reg,
39 ADDR64Reg,
40 FP32Reg,
41 FP64Reg,
42 FP128Reg,
43 VR32Reg,
44 VR64Reg,
45 VR128Reg
46 };
47
48 enum MemoryKind {
49 BDMem,
50 BDXMem,
51 BDLMem,
52 BDVMem
53 };
54
55 class SystemZOperand : public MCParsedAsmOperand {
56 public:
57 private:
58 enum OperandKind {
59 KindInvalid,
60 KindToken,
61 KindReg,
62 KindAccessReg,
63 KindImm,
64 KindImmTLS,
65 KindMem
66 };
67
68 OperandKind Kind;
69 SMLoc StartLoc, EndLoc;
70
71 // A string of length Length, starting at Data.
72 struct TokenOp {
73 const char *Data;
74 unsigned Length;
75 };
76
77 // LLVM register Num, which has kind Kind. In some ways it might be
78 // easier for this class to have a register bank (general, floating-point
79 // or access) and a raw register number (0-15). This would postpone the
80 // interpretation of the operand to the add*() methods and avoid the need
81 // for context-dependent parsing. However, we do things the current way
82 // because of the virtual getReg() method, which needs to distinguish
83 // between (say) %r0 used as a single register and %r0 used as a pair.
84 // Context-dependent parsing can also give us slightly better error
85 // messages when invalid pairs like %r1 are used.
86 struct RegOp {
87 RegisterKind Kind;
88 unsigned Num;
89 };
90
91 // Base + Disp + Index, where Base and Index are LLVM registers or 0.
92 // MemKind says what type of memory this is and RegKind says what type
93 // the base register has (ADDR32Reg or ADDR64Reg). Length is the operand
94 // length for D(L,B)-style operands, otherwise it is null.
95 struct MemOp {
96 unsigned Base : 12;
97 unsigned Index : 12;
98 unsigned MemKind : 4;
99 unsigned RegKind : 4;
100 const MCExpr *Disp;
101 const MCExpr *Length;
102 };
103
104 // Imm is an immediate operand, and Sym is an optional TLS symbol
105 // for use with a __tls_get_offset marker relocation.
106 struct ImmTLSOp {
107 const MCExpr *Imm;
108 const MCExpr *Sym;
109 };
110
111 union {
112 TokenOp Token;
113 RegOp Reg;
114 unsigned AccessReg;
115 const MCExpr *Imm;
116 ImmTLSOp ImmTLS;
117 MemOp Mem;
118 };
119
addExpr(MCInst & Inst,const MCExpr * Expr) const120 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
121 // Add as immediates when possible. Null MCExpr = 0.
122 if (!Expr)
123 Inst.addOperand(MCOperand::createImm(0));
124 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
125 Inst.addOperand(MCOperand::createImm(CE->getValue()));
126 else
127 Inst.addOperand(MCOperand::createExpr(Expr));
128 }
129
130 public:
SystemZOperand(OperandKind kind,SMLoc startLoc,SMLoc endLoc)131 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
132 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
133
134 // Create particular kinds of operand.
createInvalid(SMLoc StartLoc,SMLoc EndLoc)135 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
136 SMLoc EndLoc) {
137 return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
138 }
createToken(StringRef Str,SMLoc Loc)139 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
140 auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc);
141 Op->Token.Data = Str.data();
142 Op->Token.Length = Str.size();
143 return Op;
144 }
145 static std::unique_ptr<SystemZOperand>
createReg(RegisterKind Kind,unsigned Num,SMLoc StartLoc,SMLoc EndLoc)146 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
147 auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
148 Op->Reg.Kind = Kind;
149 Op->Reg.Num = Num;
150 return Op;
151 }
152 static std::unique_ptr<SystemZOperand>
createAccessReg(unsigned Num,SMLoc StartLoc,SMLoc EndLoc)153 createAccessReg(unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
154 auto Op = make_unique<SystemZOperand>(KindAccessReg, StartLoc, EndLoc);
155 Op->AccessReg = Num;
156 return Op;
157 }
158 static std::unique_ptr<SystemZOperand>
createImm(const MCExpr * Expr,SMLoc StartLoc,SMLoc EndLoc)159 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
160 auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
161 Op->Imm = Expr;
162 return Op;
163 }
164 static std::unique_ptr<SystemZOperand>
createMem(MemoryKind MemKind,RegisterKind RegKind,unsigned Base,const MCExpr * Disp,unsigned Index,const MCExpr * Length,SMLoc StartLoc,SMLoc EndLoc)165 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
166 const MCExpr *Disp, unsigned Index, const MCExpr *Length,
167 SMLoc StartLoc, SMLoc EndLoc) {
168 auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
169 Op->Mem.MemKind = MemKind;
170 Op->Mem.RegKind = RegKind;
171 Op->Mem.Base = Base;
172 Op->Mem.Index = Index;
173 Op->Mem.Disp = Disp;
174 Op->Mem.Length = Length;
175 return Op;
176 }
177 static std::unique_ptr<SystemZOperand>
createImmTLS(const MCExpr * Imm,const MCExpr * Sym,SMLoc StartLoc,SMLoc EndLoc)178 createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
179 SMLoc StartLoc, SMLoc EndLoc) {
180 auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
181 Op->ImmTLS.Imm = Imm;
182 Op->ImmTLS.Sym = Sym;
183 return Op;
184 }
185
186 // Token operands
isToken() const187 bool isToken() const override {
188 return Kind == KindToken;
189 }
getToken() const190 StringRef getToken() const {
191 assert(Kind == KindToken && "Not a token");
192 return StringRef(Token.Data, Token.Length);
193 }
194
195 // Register operands.
isReg() const196 bool isReg() const override {
197 return Kind == KindReg;
198 }
isReg(RegisterKind RegKind) const199 bool isReg(RegisterKind RegKind) const {
200 return Kind == KindReg && Reg.Kind == RegKind;
201 }
getReg() const202 unsigned getReg() const override {
203 assert(Kind == KindReg && "Not a register");
204 return Reg.Num;
205 }
206
207 // Access register operands. Access registers aren't exposed to LLVM
208 // as registers.
isAccessReg() const209 bool isAccessReg() const {
210 return Kind == KindAccessReg;
211 }
212
213 // Immediate operands.
isImm() const214 bool isImm() const override {
215 return Kind == KindImm;
216 }
isImm(int64_t MinValue,int64_t MaxValue) const217 bool isImm(int64_t MinValue, int64_t MaxValue) const {
218 return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
219 }
getImm() const220 const MCExpr *getImm() const {
221 assert(Kind == KindImm && "Not an immediate");
222 return Imm;
223 }
224
225 // Immediate operands with optional TLS symbol.
isImmTLS() const226 bool isImmTLS() const {
227 return Kind == KindImmTLS;
228 }
229
230 // Memory operands.
isMem() const231 bool isMem() const override {
232 return Kind == KindMem;
233 }
isMem(MemoryKind MemKind) const234 bool isMem(MemoryKind MemKind) const {
235 return (Kind == KindMem &&
236 (Mem.MemKind == MemKind ||
237 // A BDMem can be treated as a BDXMem in which the index
238 // register field is 0.
239 (Mem.MemKind == BDMem && MemKind == BDXMem)));
240 }
isMem(MemoryKind MemKind,RegisterKind RegKind) const241 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
242 return isMem(MemKind) && Mem.RegKind == RegKind;
243 }
isMemDisp12(MemoryKind MemKind,RegisterKind RegKind) const244 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
245 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff);
246 }
isMemDisp20(MemoryKind MemKind,RegisterKind RegKind) const247 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
248 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287);
249 }
isMemDisp12Len8(RegisterKind RegKind) const250 bool isMemDisp12Len8(RegisterKind RegKind) const {
251 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length, 1, 0x100);
252 }
addBDVAddrOperands(MCInst & Inst,unsigned N) const253 void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
254 assert(N == 3 && "Invalid number of operands");
255 assert(isMem(BDVMem) && "Invalid operand type");
256 Inst.addOperand(MCOperand::createReg(Mem.Base));
257 addExpr(Inst, Mem.Disp);
258 Inst.addOperand(MCOperand::createReg(Mem.Index));
259 }
260
261 // Override MCParsedAsmOperand.
getStartLoc() const262 SMLoc getStartLoc() const override { return StartLoc; }
getEndLoc() const263 SMLoc getEndLoc() const override { return EndLoc; }
264 void print(raw_ostream &OS) const override;
265
266 // Used by the TableGen code to add particular types of operand
267 // to an instruction.
addRegOperands(MCInst & Inst,unsigned N) const268 void addRegOperands(MCInst &Inst, unsigned N) const {
269 assert(N == 1 && "Invalid number of operands");
270 Inst.addOperand(MCOperand::createReg(getReg()));
271 }
addAccessRegOperands(MCInst & Inst,unsigned N) const272 void addAccessRegOperands(MCInst &Inst, unsigned N) const {
273 assert(N == 1 && "Invalid number of operands");
274 assert(Kind == KindAccessReg && "Invalid operand type");
275 Inst.addOperand(MCOperand::createImm(AccessReg));
276 }
addImmOperands(MCInst & Inst,unsigned N) const277 void addImmOperands(MCInst &Inst, unsigned N) const {
278 assert(N == 1 && "Invalid number of operands");
279 addExpr(Inst, getImm());
280 }
addBDAddrOperands(MCInst & Inst,unsigned N) const281 void addBDAddrOperands(MCInst &Inst, unsigned N) const {
282 assert(N == 2 && "Invalid number of operands");
283 assert(isMem(BDMem) && "Invalid operand type");
284 Inst.addOperand(MCOperand::createReg(Mem.Base));
285 addExpr(Inst, Mem.Disp);
286 }
addBDXAddrOperands(MCInst & Inst,unsigned N) const287 void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
288 assert(N == 3 && "Invalid number of operands");
289 assert(isMem(BDXMem) && "Invalid operand type");
290 Inst.addOperand(MCOperand::createReg(Mem.Base));
291 addExpr(Inst, Mem.Disp);
292 Inst.addOperand(MCOperand::createReg(Mem.Index));
293 }
addBDLAddrOperands(MCInst & Inst,unsigned N) const294 void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
295 assert(N == 3 && "Invalid number of operands");
296 assert(isMem(BDLMem) && "Invalid operand type");
297 Inst.addOperand(MCOperand::createReg(Mem.Base));
298 addExpr(Inst, Mem.Disp);
299 addExpr(Inst, Mem.Length);
300 }
addImmTLSOperands(MCInst & Inst,unsigned N) const301 void addImmTLSOperands(MCInst &Inst, unsigned N) const {
302 assert(N == 2 && "Invalid number of operands");
303 assert(Kind == KindImmTLS && "Invalid operand type");
304 addExpr(Inst, ImmTLS.Imm);
305 if (ImmTLS.Sym)
306 addExpr(Inst, ImmTLS.Sym);
307 }
308
309 // Used by the TableGen code to check for particular operand types.
isGR32() const310 bool isGR32() const { return isReg(GR32Reg); }
isGRH32() const311 bool isGRH32() const { return isReg(GRH32Reg); }
isGRX32() const312 bool isGRX32() const { return false; }
isGR64() const313 bool isGR64() const { return isReg(GR64Reg); }
isGR128() const314 bool isGR128() const { return isReg(GR128Reg); }
isADDR32() const315 bool isADDR32() const { return isReg(ADDR32Reg); }
isADDR64() const316 bool isADDR64() const { return isReg(ADDR64Reg); }
isADDR128() const317 bool isADDR128() const { return false; }
isFP32() const318 bool isFP32() const { return isReg(FP32Reg); }
isFP64() const319 bool isFP64() const { return isReg(FP64Reg); }
isFP128() const320 bool isFP128() const { return isReg(FP128Reg); }
isVR32() const321 bool isVR32() const { return isReg(VR32Reg); }
isVR64() const322 bool isVR64() const { return isReg(VR64Reg); }
isVF128() const323 bool isVF128() const { return false; }
isVR128() const324 bool isVR128() const { return isReg(VR128Reg); }
isBDAddr32Disp12() const325 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); }
isBDAddr32Disp20() const326 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); }
isBDAddr64Disp12() const327 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); }
isBDAddr64Disp20() const328 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); }
isBDXAddr64Disp12() const329 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); }
isBDXAddr64Disp20() const330 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); }
isBDLAddr64Disp12Len8() const331 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); }
isBDVAddr64Disp12() const332 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); }
isU1Imm() const333 bool isU1Imm() const { return isImm(0, 1); }
isU2Imm() const334 bool isU2Imm() const { return isImm(0, 3); }
isU3Imm() const335 bool isU3Imm() const { return isImm(0, 7); }
isU4Imm() const336 bool isU4Imm() const { return isImm(0, 15); }
isU6Imm() const337 bool isU6Imm() const { return isImm(0, 63); }
isU8Imm() const338 bool isU8Imm() const { return isImm(0, 255); }
isS8Imm() const339 bool isS8Imm() const { return isImm(-128, 127); }
isU12Imm() const340 bool isU12Imm() const { return isImm(0, 4095); }
isU16Imm() const341 bool isU16Imm() const { return isImm(0, 65535); }
isS16Imm() const342 bool isS16Imm() const { return isImm(-32768, 32767); }
isU32Imm() const343 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
isS32Imm() const344 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
345 };
346
347 class SystemZAsmParser : public MCTargetAsmParser {
348 #define GET_ASSEMBLER_HEADER
349 #include "SystemZGenAsmMatcher.inc"
350
351 private:
352 MCAsmParser &Parser;
353 enum RegisterGroup {
354 RegGR,
355 RegFP,
356 RegV,
357 RegAccess
358 };
359 struct Register {
360 RegisterGroup Group;
361 unsigned Num;
362 SMLoc StartLoc, EndLoc;
363 };
364
365 bool parseRegister(Register &Reg);
366
367 bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs,
368 bool IsAddress = false);
369
370 OperandMatchResultTy parseRegister(OperandVector &Operands,
371 RegisterGroup Group, const unsigned *Regs,
372 RegisterKind Kind);
373
374 bool parseAddress(unsigned &Base, const MCExpr *&Disp,
375 unsigned &Index, bool &IsVector, const MCExpr *&Length,
376 const unsigned *Regs, RegisterKind RegKind);
377
378 OperandMatchResultTy parseAddress(OperandVector &Operands,
379 MemoryKind MemKind, const unsigned *Regs,
380 RegisterKind RegKind);
381
382 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
383 int64_t MaxVal, bool AllowTLS);
384
385 bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
386
387 public:
SystemZAsmParser(const MCSubtargetInfo & sti,MCAsmParser & parser,const MCInstrInfo & MII,const MCTargetOptions & Options)388 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
389 const MCInstrInfo &MII,
390 const MCTargetOptions &Options)
391 : MCTargetAsmParser(Options, sti), Parser(parser) {
392 MCAsmParserExtension::Initialize(Parser);
393
394 // Initialize the set of available features.
395 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
396 }
397
398 // Override MCTargetAsmParser.
399 bool ParseDirective(AsmToken DirectiveID) override;
400 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
401 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
402 SMLoc NameLoc, OperandVector &Operands) override;
403 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
404 OperandVector &Operands, MCStreamer &Out,
405 uint64_t &ErrorInfo,
406 bool MatchingInlineAsm) override;
407
408 // Used by the TableGen code to parse particular operand types.
parseGR32(OperandVector & Operands)409 OperandMatchResultTy parseGR32(OperandVector &Operands) {
410 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg);
411 }
parseGRH32(OperandVector & Operands)412 OperandMatchResultTy parseGRH32(OperandVector &Operands) {
413 return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg);
414 }
parseGRX32(OperandVector & Operands)415 OperandMatchResultTy parseGRX32(OperandVector &Operands) {
416 llvm_unreachable("GRX32 should only be used for pseudo instructions");
417 }
parseGR64(OperandVector & Operands)418 OperandMatchResultTy parseGR64(OperandVector &Operands) {
419 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg);
420 }
parseGR128(OperandVector & Operands)421 OperandMatchResultTy parseGR128(OperandVector &Operands) {
422 return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg);
423 }
parseADDR32(OperandVector & Operands)424 OperandMatchResultTy parseADDR32(OperandVector &Operands) {
425 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg);
426 }
parseADDR64(OperandVector & Operands)427 OperandMatchResultTy parseADDR64(OperandVector &Operands) {
428 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg);
429 }
parseADDR128(OperandVector & Operands)430 OperandMatchResultTy parseADDR128(OperandVector &Operands) {
431 llvm_unreachable("Shouldn't be used as an operand");
432 }
parseFP32(OperandVector & Operands)433 OperandMatchResultTy parseFP32(OperandVector &Operands) {
434 return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg);
435 }
parseFP64(OperandVector & Operands)436 OperandMatchResultTy parseFP64(OperandVector &Operands) {
437 return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg);
438 }
parseFP128(OperandVector & Operands)439 OperandMatchResultTy parseFP128(OperandVector &Operands) {
440 return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg);
441 }
parseVR32(OperandVector & Operands)442 OperandMatchResultTy parseVR32(OperandVector &Operands) {
443 return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg);
444 }
parseVR64(OperandVector & Operands)445 OperandMatchResultTy parseVR64(OperandVector &Operands) {
446 return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg);
447 }
parseVF128(OperandVector & Operands)448 OperandMatchResultTy parseVF128(OperandVector &Operands) {
449 llvm_unreachable("Shouldn't be used as an operand");
450 }
parseVR128(OperandVector & Operands)451 OperandMatchResultTy parseVR128(OperandVector &Operands) {
452 return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg);
453 }
parseBDAddr32(OperandVector & Operands)454 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
455 return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg);
456 }
parseBDAddr64(OperandVector & Operands)457 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
458 return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg);
459 }
parseBDXAddr64(OperandVector & Operands)460 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
461 return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg);
462 }
parseBDLAddr64(OperandVector & Operands)463 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
464 return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg);
465 }
parseBDVAddr64(OperandVector & Operands)466 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
467 return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg);
468 }
469 OperandMatchResultTy parseAccessReg(OperandVector &Operands);
parsePCRel16(OperandVector & Operands)470 OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
471 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
472 }
parsePCRel32(OperandVector & Operands)473 OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
474 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
475 }
parsePCRelTLS16(OperandVector & Operands)476 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
477 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
478 }
parsePCRelTLS32(OperandVector & Operands)479 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
480 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
481 }
482 };
483 } // end anonymous namespace
484
485 #define GET_REGISTER_MATCHER
486 #define GET_SUBTARGET_FEATURE_NAME
487 #define GET_MATCHER_IMPLEMENTATION
488 #include "SystemZGenAsmMatcher.inc"
489
print(raw_ostream & OS) const490 void SystemZOperand::print(raw_ostream &OS) const {
491 llvm_unreachable("Not implemented");
492 }
493
494 // Parse one register of the form %<prefix><number>.
parseRegister(Register & Reg)495 bool SystemZAsmParser::parseRegister(Register &Reg) {
496 Reg.StartLoc = Parser.getTok().getLoc();
497
498 // Eat the % prefix.
499 if (Parser.getTok().isNot(AsmToken::Percent))
500 return Error(Parser.getTok().getLoc(), "register expected");
501 Parser.Lex();
502
503 // Expect a register name.
504 if (Parser.getTok().isNot(AsmToken::Identifier))
505 return Error(Reg.StartLoc, "invalid register");
506
507 // Check that there's a prefix.
508 StringRef Name = Parser.getTok().getString();
509 if (Name.size() < 2)
510 return Error(Reg.StartLoc, "invalid register");
511 char Prefix = Name[0];
512
513 // Treat the rest of the register name as a register number.
514 if (Name.substr(1).getAsInteger(10, Reg.Num))
515 return Error(Reg.StartLoc, "invalid register");
516
517 // Look for valid combinations of prefix and number.
518 if (Prefix == 'r' && Reg.Num < 16)
519 Reg.Group = RegGR;
520 else if (Prefix == 'f' && Reg.Num < 16)
521 Reg.Group = RegFP;
522 else if (Prefix == 'v' && Reg.Num < 32)
523 Reg.Group = RegV;
524 else if (Prefix == 'a' && Reg.Num < 16)
525 Reg.Group = RegAccess;
526 else
527 return Error(Reg.StartLoc, "invalid register");
528
529 Reg.EndLoc = Parser.getTok().getLoc();
530 Parser.Lex();
531 return false;
532 }
533
534 // Parse a register of group Group. If Regs is nonnull, use it to map
535 // the raw register number to LLVM numbering, with zero entries
536 // indicating an invalid register. IsAddress says whether the
537 // register appears in an address context. Allow FP Group if expecting
538 // RegV Group, since the f-prefix yields the FP group even while used
539 // with vector instructions.
parseRegister(Register & Reg,RegisterGroup Group,const unsigned * Regs,bool IsAddress)540 bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group,
541 const unsigned *Regs, bool IsAddress) {
542 if (parseRegister(Reg))
543 return true;
544 if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV))
545 return Error(Reg.StartLoc, "invalid operand for instruction");
546 if (Regs && Regs[Reg.Num] == 0)
547 return Error(Reg.StartLoc, "invalid register pair");
548 if (Reg.Num == 0 && IsAddress)
549 return Error(Reg.StartLoc, "%r0 used in an address");
550 if (Regs)
551 Reg.Num = Regs[Reg.Num];
552 return false;
553 }
554
555 // Parse a register and add it to Operands. The other arguments are as above.
556 SystemZAsmParser::OperandMatchResultTy
parseRegister(OperandVector & Operands,RegisterGroup Group,const unsigned * Regs,RegisterKind Kind)557 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group,
558 const unsigned *Regs, RegisterKind Kind) {
559 if (Parser.getTok().isNot(AsmToken::Percent))
560 return MatchOperand_NoMatch;
561
562 Register Reg;
563 bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg);
564 if (parseRegister(Reg, Group, Regs, IsAddress))
565 return MatchOperand_ParseFail;
566
567 Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num,
568 Reg.StartLoc, Reg.EndLoc));
569 return MatchOperand_Success;
570 }
571
572 // Parse a memory operand into Base, Disp, Index and Length.
573 // Regs maps asm register numbers to LLVM register numbers and RegKind
574 // says what kind of address register we're using (ADDR32Reg or ADDR64Reg).
parseAddress(unsigned & Base,const MCExpr * & Disp,unsigned & Index,bool & IsVector,const MCExpr * & Length,const unsigned * Regs,RegisterKind RegKind)575 bool SystemZAsmParser::parseAddress(unsigned &Base, const MCExpr *&Disp,
576 unsigned &Index, bool &IsVector,
577 const MCExpr *&Length, const unsigned *Regs,
578 RegisterKind RegKind) {
579 // Parse the displacement, which must always be present.
580 if (getParser().parseExpression(Disp))
581 return true;
582
583 // Parse the optional base and index.
584 Index = 0;
585 Base = 0;
586 IsVector = false;
587 Length = nullptr;
588 if (getLexer().is(AsmToken::LParen)) {
589 Parser.Lex();
590
591 if (getLexer().is(AsmToken::Percent)) {
592 // Parse the first register and decide whether it's a base or an index.
593 Register Reg;
594 if (parseRegister(Reg))
595 return true;
596 if (Reg.Group == RegV) {
597 // A vector index register. The base register is optional.
598 IsVector = true;
599 Index = SystemZMC::VR128Regs[Reg.Num];
600 } else if (Reg.Group == RegGR) {
601 if (Reg.Num == 0)
602 return Error(Reg.StartLoc, "%r0 used in an address");
603 // If the are two registers, the first one is the index and the
604 // second is the base.
605 if (getLexer().is(AsmToken::Comma))
606 Index = Regs[Reg.Num];
607 else
608 Base = Regs[Reg.Num];
609 } else
610 return Error(Reg.StartLoc, "invalid address register");
611 } else {
612 // Parse the length.
613 if (getParser().parseExpression(Length))
614 return true;
615 }
616
617 // Check whether there's a second register. It's the base if so.
618 if (getLexer().is(AsmToken::Comma)) {
619 Parser.Lex();
620 Register Reg;
621 if (parseRegister(Reg, RegGR, Regs, RegKind))
622 return true;
623 Base = Reg.Num;
624 }
625
626 // Consume the closing bracket.
627 if (getLexer().isNot(AsmToken::RParen))
628 return Error(Parser.getTok().getLoc(), "unexpected token in address");
629 Parser.Lex();
630 }
631 return false;
632 }
633
634 // Parse a memory operand and add it to Operands. The other arguments
635 // are as above.
636 SystemZAsmParser::OperandMatchResultTy
parseAddress(OperandVector & Operands,MemoryKind MemKind,const unsigned * Regs,RegisterKind RegKind)637 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
638 const unsigned *Regs, RegisterKind RegKind) {
639 SMLoc StartLoc = Parser.getTok().getLoc();
640 unsigned Base, Index;
641 bool IsVector;
642 const MCExpr *Disp;
643 const MCExpr *Length;
644 if (parseAddress(Base, Disp, Index, IsVector, Length, Regs, RegKind))
645 return MatchOperand_ParseFail;
646
647 if (IsVector && MemKind != BDVMem) {
648 Error(StartLoc, "invalid use of vector addressing");
649 return MatchOperand_ParseFail;
650 }
651
652 if (!IsVector && MemKind == BDVMem) {
653 Error(StartLoc, "vector index required in address");
654 return MatchOperand_ParseFail;
655 }
656
657 if (Index && MemKind != BDXMem && MemKind != BDVMem) {
658 Error(StartLoc, "invalid use of indexed addressing");
659 return MatchOperand_ParseFail;
660 }
661
662 if (Length && MemKind != BDLMem) {
663 Error(StartLoc, "invalid use of length addressing");
664 return MatchOperand_ParseFail;
665 }
666
667 if (!Length && MemKind == BDLMem) {
668 Error(StartLoc, "missing length in address");
669 return MatchOperand_ParseFail;
670 }
671
672 SMLoc EndLoc =
673 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
674 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
675 Index, Length, StartLoc,
676 EndLoc));
677 return MatchOperand_Success;
678 }
679
ParseDirective(AsmToken DirectiveID)680 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
681 return true;
682 }
683
ParseRegister(unsigned & RegNo,SMLoc & StartLoc,SMLoc & EndLoc)684 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
685 SMLoc &EndLoc) {
686 Register Reg;
687 if (parseRegister(Reg))
688 return true;
689 if (Reg.Group == RegGR)
690 RegNo = SystemZMC::GR64Regs[Reg.Num];
691 else if (Reg.Group == RegFP)
692 RegNo = SystemZMC::FP64Regs[Reg.Num];
693 else if (Reg.Group == RegV)
694 RegNo = SystemZMC::VR128Regs[Reg.Num];
695 else
696 // FIXME: Access registers aren't modelled as LLVM registers yet.
697 return Error(Reg.StartLoc, "invalid operand for instruction");
698 StartLoc = Reg.StartLoc;
699 EndLoc = Reg.EndLoc;
700 return false;
701 }
702
ParseInstruction(ParseInstructionInfo & Info,StringRef Name,SMLoc NameLoc,OperandVector & Operands)703 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
704 StringRef Name, SMLoc NameLoc,
705 OperandVector &Operands) {
706 Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
707
708 // Read the remaining operands.
709 if (getLexer().isNot(AsmToken::EndOfStatement)) {
710 // Read the first operand.
711 if (parseOperand(Operands, Name)) {
712 Parser.eatToEndOfStatement();
713 return true;
714 }
715
716 // Read any subsequent operands.
717 while (getLexer().is(AsmToken::Comma)) {
718 Parser.Lex();
719 if (parseOperand(Operands, Name)) {
720 Parser.eatToEndOfStatement();
721 return true;
722 }
723 }
724 if (getLexer().isNot(AsmToken::EndOfStatement)) {
725 SMLoc Loc = getLexer().getLoc();
726 Parser.eatToEndOfStatement();
727 return Error(Loc, "unexpected token in argument list");
728 }
729 }
730
731 // Consume the EndOfStatement.
732 Parser.Lex();
733 return false;
734 }
735
parseOperand(OperandVector & Operands,StringRef Mnemonic)736 bool SystemZAsmParser::parseOperand(OperandVector &Operands,
737 StringRef Mnemonic) {
738 // Check if the current operand has a custom associated parser, if so, try to
739 // custom parse the operand, or fallback to the general approach.
740 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
741 if (ResTy == MatchOperand_Success)
742 return false;
743
744 // If there wasn't a custom match, try the generic matcher below. Otherwise,
745 // there was a match, but an error occurred, in which case, just return that
746 // the operand parsing failed.
747 if (ResTy == MatchOperand_ParseFail)
748 return true;
749
750 // Check for a register. All real register operands should have used
751 // a context-dependent parse routine, which gives the required register
752 // class. The code is here to mop up other cases, like those where
753 // the instruction isn't recognized.
754 if (Parser.getTok().is(AsmToken::Percent)) {
755 Register Reg;
756 if (parseRegister(Reg))
757 return true;
758 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
759 return false;
760 }
761
762 // The only other type of operand is an immediate or address. As above,
763 // real address operands should have used a context-dependent parse routine,
764 // so we treat any plain expression as an immediate.
765 SMLoc StartLoc = Parser.getTok().getLoc();
766 unsigned Base, Index;
767 bool IsVector;
768 const MCExpr *Expr, *Length;
769 if (parseAddress(Base, Expr, Index, IsVector, Length, SystemZMC::GR64Regs,
770 ADDR64Reg))
771 return true;
772
773 SMLoc EndLoc =
774 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
775 if (Base || Index || Length)
776 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
777 else
778 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
779 return false;
780 }
781
MatchAndEmitInstruction(SMLoc IDLoc,unsigned & Opcode,OperandVector & Operands,MCStreamer & Out,uint64_t & ErrorInfo,bool MatchingInlineAsm)782 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
783 OperandVector &Operands,
784 MCStreamer &Out,
785 uint64_t &ErrorInfo,
786 bool MatchingInlineAsm) {
787 MCInst Inst;
788 unsigned MatchResult;
789
790 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
791 MatchingInlineAsm);
792 switch (MatchResult) {
793 case Match_Success:
794 Inst.setLoc(IDLoc);
795 Out.EmitInstruction(Inst, getSTI());
796 return false;
797
798 case Match_MissingFeature: {
799 assert(ErrorInfo && "Unknown missing feature!");
800 // Special case the error message for the very common case where only
801 // a single subtarget feature is missing
802 std::string Msg = "instruction requires:";
803 uint64_t Mask = 1;
804 for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) {
805 if (ErrorInfo & Mask) {
806 Msg += " ";
807 Msg += getSubtargetFeatureName(ErrorInfo & Mask);
808 }
809 Mask <<= 1;
810 }
811 return Error(IDLoc, Msg);
812 }
813
814 case Match_InvalidOperand: {
815 SMLoc ErrorLoc = IDLoc;
816 if (ErrorInfo != ~0ULL) {
817 if (ErrorInfo >= Operands.size())
818 return Error(IDLoc, "too few operands for instruction");
819
820 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
821 if (ErrorLoc == SMLoc())
822 ErrorLoc = IDLoc;
823 }
824 return Error(ErrorLoc, "invalid operand for instruction");
825 }
826
827 case Match_MnemonicFail:
828 return Error(IDLoc, "invalid instruction");
829 }
830
831 llvm_unreachable("Unexpected match type");
832 }
833
834 SystemZAsmParser::OperandMatchResultTy
parseAccessReg(OperandVector & Operands)835 SystemZAsmParser::parseAccessReg(OperandVector &Operands) {
836 if (Parser.getTok().isNot(AsmToken::Percent))
837 return MatchOperand_NoMatch;
838
839 Register Reg;
840 if (parseRegister(Reg, RegAccess, nullptr))
841 return MatchOperand_ParseFail;
842
843 Operands.push_back(SystemZOperand::createAccessReg(Reg.Num,
844 Reg.StartLoc,
845 Reg.EndLoc));
846 return MatchOperand_Success;
847 }
848
849 SystemZAsmParser::OperandMatchResultTy
parsePCRel(OperandVector & Operands,int64_t MinVal,int64_t MaxVal,bool AllowTLS)850 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
851 int64_t MaxVal, bool AllowTLS) {
852 MCContext &Ctx = getContext();
853 MCStreamer &Out = getStreamer();
854 const MCExpr *Expr;
855 SMLoc StartLoc = Parser.getTok().getLoc();
856 if (getParser().parseExpression(Expr))
857 return MatchOperand_NoMatch;
858
859 // For consistency with the GNU assembler, treat immediates as offsets
860 // from ".".
861 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
862 int64_t Value = CE->getValue();
863 if ((Value & 1) || Value < MinVal || Value > MaxVal) {
864 Error(StartLoc, "offset out of range");
865 return MatchOperand_ParseFail;
866 }
867 MCSymbol *Sym = Ctx.createTempSymbol();
868 Out.EmitLabel(Sym);
869 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
870 Ctx);
871 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
872 }
873
874 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
875 const MCExpr *Sym = nullptr;
876 if (AllowTLS && getLexer().is(AsmToken::Colon)) {
877 Parser.Lex();
878
879 if (Parser.getTok().isNot(AsmToken::Identifier)) {
880 Error(Parser.getTok().getLoc(), "unexpected token");
881 return MatchOperand_ParseFail;
882 }
883
884 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
885 StringRef Name = Parser.getTok().getString();
886 if (Name == "tls_gdcall")
887 Kind = MCSymbolRefExpr::VK_TLSGD;
888 else if (Name == "tls_ldcall")
889 Kind = MCSymbolRefExpr::VK_TLSLDM;
890 else {
891 Error(Parser.getTok().getLoc(), "unknown TLS tag");
892 return MatchOperand_ParseFail;
893 }
894 Parser.Lex();
895
896 if (Parser.getTok().isNot(AsmToken::Colon)) {
897 Error(Parser.getTok().getLoc(), "unexpected token");
898 return MatchOperand_ParseFail;
899 }
900 Parser.Lex();
901
902 if (Parser.getTok().isNot(AsmToken::Identifier)) {
903 Error(Parser.getTok().getLoc(), "unexpected token");
904 return MatchOperand_ParseFail;
905 }
906
907 StringRef Identifier = Parser.getTok().getString();
908 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
909 Kind, Ctx);
910 Parser.Lex();
911 }
912
913 SMLoc EndLoc =
914 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
915
916 if (AllowTLS)
917 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
918 StartLoc, EndLoc));
919 else
920 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
921
922 return MatchOperand_Success;
923 }
924
925 // Force static initialization.
LLVMInitializeSystemZAsmParser()926 extern "C" void LLVMInitializeSystemZAsmParser() {
927 RegisterMCAsmParser<SystemZAsmParser> X(TheSystemZTarget);
928 }
929