1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "SystemZTargetMachine.h"
11 #include "SystemZTargetTransformInfo.h"
12 #include "llvm/CodeGen/Passes.h"
13 #include "llvm/Support/TargetRegistry.h"
14 #include "llvm/Transforms/Scalar.h"
15 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
16
17 using namespace llvm;
18
19 extern cl::opt<bool> MISchedPostRA;
LLVMInitializeSystemZTarget()20 extern "C" void LLVMInitializeSystemZTarget() {
21 // Register the target.
22 RegisterTargetMachine<SystemZTargetMachine> X(TheSystemZTarget);
23 }
24
25 // Determine whether we use the vector ABI.
UsesVectorABI(StringRef CPU,StringRef FS)26 static bool UsesVectorABI(StringRef CPU, StringRef FS) {
27 // We use the vector ABI whenever the vector facility is avaiable.
28 // This is the case by default if CPU is z13 or later, and can be
29 // overridden via "[+-]vector" feature string elements.
30 bool VectorABI = true;
31 if (CPU.empty() || CPU == "generic" ||
32 CPU == "z10" || CPU == "z196" || CPU == "zEC12")
33 VectorABI = false;
34
35 SmallVector<StringRef, 3> Features;
36 FS.split(Features, ',', -1, false /* KeepEmpty */);
37 for (auto &Feature : Features) {
38 if (Feature == "vector" || Feature == "+vector")
39 VectorABI = true;
40 if (Feature == "-vector")
41 VectorABI = false;
42 }
43
44 return VectorABI;
45 }
46
computeDataLayout(const Triple & TT,StringRef CPU,StringRef FS)47 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
48 StringRef FS) {
49 bool VectorABI = UsesVectorABI(CPU, FS);
50 std::string Ret = "";
51
52 // Big endian.
53 Ret += "E";
54
55 // Data mangling.
56 Ret += DataLayout::getManglingComponent(TT);
57
58 // Make sure that global data has at least 16 bits of alignment by
59 // default, so that we can refer to it using LARL. We don't have any
60 // special requirements for stack variables though.
61 Ret += "-i1:8:16-i8:8:16";
62
63 // 64-bit integers are naturally aligned.
64 Ret += "-i64:64";
65
66 // 128-bit floats are aligned only to 64 bits.
67 Ret += "-f128:64";
68
69 // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
70 if (VectorABI)
71 Ret += "-v128:64";
72
73 // We prefer 16 bits of aligned for all globals; see above.
74 Ret += "-a:8:16";
75
76 // Integer registers are 32 or 64 bits.
77 Ret += "-n32:64";
78
79 return Ret;
80 }
81
SystemZTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Reloc::Model RM,CodeModel::Model CM,CodeGenOpt::Level OL)82 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
83 StringRef CPU, StringRef FS,
84 const TargetOptions &Options,
85 Reloc::Model RM, CodeModel::Model CM,
86 CodeGenOpt::Level OL)
87 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
88 RM, CM, OL),
89 TLOF(make_unique<TargetLoweringObjectFileELF>()),
90 Subtarget(TT, CPU, FS, *this) {
91 initAsmInfo();
92 }
93
~SystemZTargetMachine()94 SystemZTargetMachine::~SystemZTargetMachine() {}
95
96 namespace {
97 /// SystemZ Code Generator Pass Configuration Options.
98 class SystemZPassConfig : public TargetPassConfig {
99 public:
SystemZPassConfig(SystemZTargetMachine * TM,PassManagerBase & PM)100 SystemZPassConfig(SystemZTargetMachine *TM, PassManagerBase &PM)
101 : TargetPassConfig(TM, PM) {}
102
getSystemZTargetMachine() const103 SystemZTargetMachine &getSystemZTargetMachine() const {
104 return getTM<SystemZTargetMachine>();
105 }
106
107 void addIRPasses() override;
108 bool addInstSelector() override;
109 void addPreSched2() override;
110 void addPreEmitPass() override;
111 };
112 } // end anonymous namespace
113
addIRPasses()114 void SystemZPassConfig::addIRPasses() {
115 TargetPassConfig::addIRPasses();
116 }
117
addInstSelector()118 bool SystemZPassConfig::addInstSelector() {
119 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
120
121 if (getOptLevel() != CodeGenOpt::None)
122 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
123
124 return false;
125 }
126
addPreSched2()127 void SystemZPassConfig::addPreSched2() {
128 if (getOptLevel() != CodeGenOpt::None &&
129 getSystemZTargetMachine().getSubtargetImpl()->hasLoadStoreOnCond())
130 addPass(&IfConverterID);
131 }
132
addPreEmitPass()133 void SystemZPassConfig::addPreEmitPass() {
134
135 // Do instruction shortening before compare elimination because some
136 // vector instructions will be shortened into opcodes that compare
137 // elimination recognizes.
138 if (getOptLevel() != CodeGenOpt::None)
139 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
140
141 // We eliminate comparisons here rather than earlier because some
142 // transformations can change the set of available CC values and we
143 // generally want those transformations to have priority. This is
144 // especially true in the commonest case where the result of the comparison
145 // is used by a single in-range branch instruction, since we will then
146 // be able to fuse the compare and the branch instead.
147 //
148 // For example, two-address NILF can sometimes be converted into
149 // three-address RISBLG. NILF produces a CC value that indicates whether
150 // the low word is zero, but RISBLG does not modify CC at all. On the
151 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
152 // The CC value produced by NILL isn't useful for our purposes, but the
153 // value produced by RISBG can be used for any comparison with zero
154 // (not just equality). So there are some transformations that lose
155 // CC values (while still being worthwhile) and others that happen to make
156 // the CC result more useful than it was originally.
157 //
158 // Another reason is that we only want to use BRANCH ON COUNT in cases
159 // where we know that the count register is not going to be spilled.
160 //
161 // Doing it so late makes it more likely that a register will be reused
162 // between the comparison and the branch, but it isn't clear whether
163 // preventing that would be a win or not.
164 if (getOptLevel() != CodeGenOpt::None)
165 addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
166 addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
167
168 // Do final scheduling after all other optimizations, to get an
169 // optimal input for the decoder (branch relaxation must happen
170 // after block placement).
171 if (getOptLevel() != CodeGenOpt::None) {
172 if (MISchedPostRA)
173 addPass(&PostMachineSchedulerID);
174 else
175 addPass(&PostRASchedulerID);
176 }
177 }
178
createPassConfig(PassManagerBase & PM)179 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
180 return new SystemZPassConfig(this, PM);
181 }
182
getTargetIRAnalysis()183 TargetIRAnalysis SystemZTargetMachine::getTargetIRAnalysis() {
184 return TargetIRAnalysis([this](const Function &F) {
185 return TargetTransformInfo(SystemZTTIImpl(this, F));
186 });
187 }
188