1 //===-- X86DisassemblerDecoder.cpp - Disassembler decoder -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains the implementation of the instruction decoder.
12 // Documentation for the disassembler can be found in X86Disassembler.h.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include <cstdarg> /* for va_*() */
17 #include <cstdio> /* for vsnprintf() */
18 #include <cstdlib> /* for exit() */
19 #include <cstring> /* for memset() */
20
21 #include "X86DisassemblerDecoder.h"
22
23 using namespace llvm::X86Disassembler;
24
25 /// Specifies whether a ModR/M byte is needed and (if so) which
26 /// instruction each possible value of the ModR/M byte corresponds to. Once
27 /// this information is known, we have narrowed down to a single instruction.
28 struct ModRMDecision {
29 uint8_t modrm_type;
30 uint16_t instructionIDs;
31 };
32
33 /// Specifies which set of ModR/M->instruction tables to look at
34 /// given a particular opcode.
35 struct OpcodeDecision {
36 ModRMDecision modRMDecisions[256];
37 };
38
39 /// Specifies which opcode->instruction tables to look at given
40 /// a particular context (set of attributes). Since there are many possible
41 /// contexts, the decoder first uses CONTEXTS_SYM to determine which context
42 /// applies given a specific set of attributes. Hence there are only IC_max
43 /// entries in this table, rather than 2^(ATTR_max).
44 struct ContextDecision {
45 OpcodeDecision opcodeDecisions[IC_max];
46 };
47
48 #include "X86GenDisassemblerTables.inc"
49
50 #ifndef NDEBUG
51 #define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0)
52 #else
53 #define debug(s) do { } while (0)
54 #endif
55
56
57 /*
58 * contextForAttrs - Client for the instruction context table. Takes a set of
59 * attributes and returns the appropriate decode context.
60 *
61 * @param attrMask - Attributes, from the enumeration attributeBits.
62 * @return - The InstructionContext to use when looking up an
63 * an instruction with these attributes.
64 */
contextForAttrs(uint16_t attrMask)65 static InstructionContext contextForAttrs(uint16_t attrMask) {
66 return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]);
67 }
68
69 /*
70 * modRMRequired - Reads the appropriate instruction table to determine whether
71 * the ModR/M byte is required to decode a particular instruction.
72 *
73 * @param type - The opcode type (i.e., how many bytes it has).
74 * @param insnContext - The context for the instruction, as returned by
75 * contextForAttrs.
76 * @param opcode - The last byte of the instruction's opcode, not counting
77 * ModR/M extensions and escapes.
78 * @return - true if the ModR/M byte is required, false otherwise.
79 */
modRMRequired(OpcodeType type,InstructionContext insnContext,uint16_t opcode)80 static int modRMRequired(OpcodeType type,
81 InstructionContext insnContext,
82 uint16_t opcode) {
83 const struct ContextDecision* decision = nullptr;
84
85 switch (type) {
86 case ONEBYTE:
87 decision = &ONEBYTE_SYM;
88 break;
89 case TWOBYTE:
90 decision = &TWOBYTE_SYM;
91 break;
92 case THREEBYTE_38:
93 decision = &THREEBYTE38_SYM;
94 break;
95 case THREEBYTE_3A:
96 decision = &THREEBYTE3A_SYM;
97 break;
98 case XOP8_MAP:
99 decision = &XOP8_MAP_SYM;
100 break;
101 case XOP9_MAP:
102 decision = &XOP9_MAP_SYM;
103 break;
104 case XOPA_MAP:
105 decision = &XOPA_MAP_SYM;
106 break;
107 }
108
109 return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
110 modrm_type != MODRM_ONEENTRY;
111 }
112
113 /*
114 * decode - Reads the appropriate instruction table to obtain the unique ID of
115 * an instruction.
116 *
117 * @param type - See modRMRequired().
118 * @param insnContext - See modRMRequired().
119 * @param opcode - See modRMRequired().
120 * @param modRM - The ModR/M byte if required, or any value if not.
121 * @return - The UID of the instruction, or 0 on failure.
122 */
decode(OpcodeType type,InstructionContext insnContext,uint8_t opcode,uint8_t modRM)123 static InstrUID decode(OpcodeType type,
124 InstructionContext insnContext,
125 uint8_t opcode,
126 uint8_t modRM) {
127 const struct ModRMDecision* dec = nullptr;
128
129 switch (type) {
130 case ONEBYTE:
131 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
132 break;
133 case TWOBYTE:
134 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
135 break;
136 case THREEBYTE_38:
137 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
138 break;
139 case THREEBYTE_3A:
140 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
141 break;
142 case XOP8_MAP:
143 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
144 break;
145 case XOP9_MAP:
146 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
147 break;
148 case XOPA_MAP:
149 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
150 break;
151 }
152
153 switch (dec->modrm_type) {
154 default:
155 debug("Corrupt table! Unknown modrm_type");
156 return 0;
157 case MODRM_ONEENTRY:
158 return modRMTable[dec->instructionIDs];
159 case MODRM_SPLITRM:
160 if (modFromModRM(modRM) == 0x3)
161 return modRMTable[dec->instructionIDs+1];
162 return modRMTable[dec->instructionIDs];
163 case MODRM_SPLITREG:
164 if (modFromModRM(modRM) == 0x3)
165 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
166 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
167 case MODRM_SPLITMISC:
168 if (modFromModRM(modRM) == 0x3)
169 return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
170 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
171 case MODRM_FULL:
172 return modRMTable[dec->instructionIDs+modRM];
173 }
174 }
175
176 /*
177 * specifierForUID - Given a UID, returns the name and operand specification for
178 * that instruction.
179 *
180 * @param uid - The unique ID for the instruction. This should be returned by
181 * decode(); specifierForUID will not check bounds.
182 * @return - A pointer to the specification for that instruction.
183 */
specifierForUID(InstrUID uid)184 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
185 return &INSTRUCTIONS_SYM[uid];
186 }
187
188 /*
189 * consumeByte - Uses the reader function provided by the user to consume one
190 * byte from the instruction's memory and advance the cursor.
191 *
192 * @param insn - The instruction with the reader function to use. The cursor
193 * for this instruction is advanced.
194 * @param byte - A pointer to a pre-allocated memory buffer to be populated
195 * with the data read.
196 * @return - 0 if the read was successful; nonzero otherwise.
197 */
consumeByte(struct InternalInstruction * insn,uint8_t * byte)198 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
199 int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
200
201 if (!ret)
202 ++(insn->readerCursor);
203
204 return ret;
205 }
206
207 /*
208 * lookAtByte - Like consumeByte, but does not advance the cursor.
209 *
210 * @param insn - See consumeByte().
211 * @param byte - See consumeByte().
212 * @return - See consumeByte().
213 */
lookAtByte(struct InternalInstruction * insn,uint8_t * byte)214 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
215 return insn->reader(insn->readerArg, byte, insn->readerCursor);
216 }
217
unconsumeByte(struct InternalInstruction * insn)218 static void unconsumeByte(struct InternalInstruction* insn) {
219 insn->readerCursor--;
220 }
221
222 #define CONSUME_FUNC(name, type) \
223 static int name(struct InternalInstruction* insn, type* ptr) { \
224 type combined = 0; \
225 unsigned offset; \
226 for (offset = 0; offset < sizeof(type); ++offset) { \
227 uint8_t byte; \
228 int ret = insn->reader(insn->readerArg, \
229 &byte, \
230 insn->readerCursor + offset); \
231 if (ret) \
232 return ret; \
233 combined = combined | ((uint64_t)byte << (offset * 8)); \
234 } \
235 *ptr = combined; \
236 insn->readerCursor += sizeof(type); \
237 return 0; \
238 }
239
240 /*
241 * consume* - Use the reader function provided by the user to consume data
242 * values of various sizes from the instruction's memory and advance the
243 * cursor appropriately. These readers perform endian conversion.
244 *
245 * @param insn - See consumeByte().
246 * @param ptr - A pointer to a pre-allocated memory of appropriate size to
247 * be populated with the data read.
248 * @return - See consumeByte().
249 */
CONSUME_FUNC(consumeInt8,int8_t)250 CONSUME_FUNC(consumeInt8, int8_t)
251 CONSUME_FUNC(consumeInt16, int16_t)
252 CONSUME_FUNC(consumeInt32, int32_t)
253 CONSUME_FUNC(consumeUInt16, uint16_t)
254 CONSUME_FUNC(consumeUInt32, uint32_t)
255 CONSUME_FUNC(consumeUInt64, uint64_t)
256
257 /*
258 * dbgprintf - Uses the logging function provided by the user to log a single
259 * message, typically without a carriage-return.
260 *
261 * @param insn - The instruction containing the logging function.
262 * @param format - See printf().
263 * @param ... - See printf().
264 */
265 static void dbgprintf(struct InternalInstruction* insn,
266 const char* format,
267 ...) {
268 char buffer[256];
269 va_list ap;
270
271 if (!insn->dlog)
272 return;
273
274 va_start(ap, format);
275 (void)vsnprintf(buffer, sizeof(buffer), format, ap);
276 va_end(ap);
277
278 insn->dlog(insn->dlogArg, buffer);
279
280 return;
281 }
282
283 /*
284 * setPrefixPresent - Marks that a particular prefix is present at a particular
285 * location.
286 *
287 * @param insn - The instruction to be marked as having the prefix.
288 * @param prefix - The prefix that is present.
289 * @param location - The location where the prefix is located (in the address
290 * space of the instruction's reader).
291 */
setPrefixPresent(struct InternalInstruction * insn,uint8_t prefix,uint64_t location)292 static void setPrefixPresent(struct InternalInstruction* insn,
293 uint8_t prefix,
294 uint64_t location)
295 {
296 insn->prefixPresent[prefix] = 1;
297 insn->prefixLocations[prefix] = location;
298 }
299
300 /*
301 * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
302 * present at a given location.
303 *
304 * @param insn - The instruction to be queried.
305 * @param prefix - The prefix.
306 * @param location - The location to query.
307 * @return - Whether the prefix is at that location.
308 */
isPrefixAtLocation(struct InternalInstruction * insn,uint8_t prefix,uint64_t location)309 static bool isPrefixAtLocation(struct InternalInstruction* insn,
310 uint8_t prefix,
311 uint64_t location)
312 {
313 return insn->prefixPresent[prefix] == 1 &&
314 insn->prefixLocations[prefix] == location;
315 }
316
317 /*
318 * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
319 * instruction as having them. Also sets the instruction's default operand,
320 * address, and other relevant data sizes to report operands correctly.
321 *
322 * @param insn - The instruction whose prefixes are to be read.
323 * @return - 0 if the instruction could be read until the end of the prefix
324 * bytes, and no prefixes conflicted; nonzero otherwise.
325 */
readPrefixes(struct InternalInstruction * insn)326 static int readPrefixes(struct InternalInstruction* insn) {
327 bool isPrefix = true;
328 bool prefixGroups[4] = { false };
329 uint64_t prefixLocation;
330 uint8_t byte = 0;
331 uint8_t nextByte;
332
333 bool hasAdSize = false;
334 bool hasOpSize = false;
335
336 dbgprintf(insn, "readPrefixes()");
337
338 while (isPrefix) {
339 prefixLocation = insn->readerCursor;
340
341 /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
342 if (consumeByte(insn, &byte))
343 break;
344
345 /*
346 * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
347 * break and let it be disassembled as a normal "instruction".
348 */
349 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
350 break;
351
352 if (insn->readerCursor - 1 == insn->startLocation
353 && (byte == 0xf2 || byte == 0xf3)
354 && !lookAtByte(insn, &nextByte))
355 {
356 /*
357 * If the byte is 0xf2 or 0xf3, and any of the following conditions are
358 * met:
359 * - it is followed by a LOCK (0xf0) prefix
360 * - it is followed by an xchg instruction
361 * then it should be disassembled as a xacquire/xrelease not repne/rep.
362 */
363 if ((byte == 0xf2 || byte == 0xf3) &&
364 ((nextByte == 0xf0) ||
365 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
366 insn->xAcquireRelease = true;
367 /*
368 * Also if the byte is 0xf3, and the following condition is met:
369 * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
370 * "mov mem, imm" (opcode 0xc6/0xc7) instructions.
371 * then it should be disassembled as an xrelease not rep.
372 */
373 if (byte == 0xf3 &&
374 (nextByte == 0x88 || nextByte == 0x89 ||
375 nextByte == 0xc6 || nextByte == 0xc7))
376 insn->xAcquireRelease = true;
377 if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
378 if (consumeByte(insn, &nextByte))
379 return -1;
380 if (lookAtByte(insn, &nextByte))
381 return -1;
382 unconsumeByte(insn);
383 }
384 if (nextByte != 0x0f && nextByte != 0x90)
385 break;
386 }
387
388 switch (byte) {
389 case 0xf0: /* LOCK */
390 case 0xf2: /* REPNE/REPNZ */
391 case 0xf3: /* REP or REPE/REPZ */
392 if (prefixGroups[0])
393 dbgprintf(insn, "Redundant Group 1 prefix");
394 prefixGroups[0] = true;
395 setPrefixPresent(insn, byte, prefixLocation);
396 break;
397 case 0x2e: /* CS segment override -OR- Branch not taken */
398 case 0x36: /* SS segment override -OR- Branch taken */
399 case 0x3e: /* DS segment override */
400 case 0x26: /* ES segment override */
401 case 0x64: /* FS segment override */
402 case 0x65: /* GS segment override */
403 switch (byte) {
404 case 0x2e:
405 insn->segmentOverride = SEG_OVERRIDE_CS;
406 break;
407 case 0x36:
408 insn->segmentOverride = SEG_OVERRIDE_SS;
409 break;
410 case 0x3e:
411 insn->segmentOverride = SEG_OVERRIDE_DS;
412 break;
413 case 0x26:
414 insn->segmentOverride = SEG_OVERRIDE_ES;
415 break;
416 case 0x64:
417 insn->segmentOverride = SEG_OVERRIDE_FS;
418 break;
419 case 0x65:
420 insn->segmentOverride = SEG_OVERRIDE_GS;
421 break;
422 default:
423 debug("Unhandled override");
424 return -1;
425 }
426 if (prefixGroups[1])
427 dbgprintf(insn, "Redundant Group 2 prefix");
428 prefixGroups[1] = true;
429 setPrefixPresent(insn, byte, prefixLocation);
430 break;
431 case 0x66: /* Operand-size override */
432 if (prefixGroups[2])
433 dbgprintf(insn, "Redundant Group 3 prefix");
434 prefixGroups[2] = true;
435 hasOpSize = true;
436 setPrefixPresent(insn, byte, prefixLocation);
437 break;
438 case 0x67: /* Address-size override */
439 if (prefixGroups[3])
440 dbgprintf(insn, "Redundant Group 4 prefix");
441 prefixGroups[3] = true;
442 hasAdSize = true;
443 setPrefixPresent(insn, byte, prefixLocation);
444 break;
445 default: /* Not a prefix byte */
446 isPrefix = false;
447 break;
448 }
449
450 if (isPrefix)
451 dbgprintf(insn, "Found prefix 0x%hhx", byte);
452 }
453
454 insn->vectorExtensionType = TYPE_NO_VEX_XOP;
455
456 if (byte == 0x62) {
457 uint8_t byte1, byte2;
458
459 if (consumeByte(insn, &byte1)) {
460 dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
461 return -1;
462 }
463
464 if (lookAtByte(insn, &byte2)) {
465 dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
466 return -1;
467 }
468
469 if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
470 ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
471 insn->vectorExtensionType = TYPE_EVEX;
472 } else {
473 unconsumeByte(insn); /* unconsume byte1 */
474 unconsumeByte(insn); /* unconsume byte */
475 insn->necessaryPrefixLocation = insn->readerCursor - 2;
476 }
477
478 if (insn->vectorExtensionType == TYPE_EVEX) {
479 insn->vectorExtensionPrefix[0] = byte;
480 insn->vectorExtensionPrefix[1] = byte1;
481 if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
482 dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
483 return -1;
484 }
485 if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
486 dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
487 return -1;
488 }
489
490 /* We simulate the REX prefix for simplicity's sake */
491 if (insn->mode == MODE_64BIT) {
492 insn->rexPrefix = 0x40
493 | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
494 | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
495 | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
496 | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
497 }
498
499 dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
500 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
501 insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
502 }
503 } else if (byte == 0xc4) {
504 uint8_t byte1;
505
506 if (lookAtByte(insn, &byte1)) {
507 dbgprintf(insn, "Couldn't read second byte of VEX");
508 return -1;
509 }
510
511 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
512 insn->vectorExtensionType = TYPE_VEX_3B;
513 insn->necessaryPrefixLocation = insn->readerCursor - 1;
514 } else {
515 unconsumeByte(insn);
516 insn->necessaryPrefixLocation = insn->readerCursor - 1;
517 }
518
519 if (insn->vectorExtensionType == TYPE_VEX_3B) {
520 insn->vectorExtensionPrefix[0] = byte;
521 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
522 consumeByte(insn, &insn->vectorExtensionPrefix[2]);
523
524 /* We simulate the REX prefix for simplicity's sake */
525
526 if (insn->mode == MODE_64BIT) {
527 insn->rexPrefix = 0x40
528 | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
529 | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
530 | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
531 | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
532 }
533
534 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
535 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
536 insn->vectorExtensionPrefix[2]);
537 }
538 } else if (byte == 0xc5) {
539 uint8_t byte1;
540
541 if (lookAtByte(insn, &byte1)) {
542 dbgprintf(insn, "Couldn't read second byte of VEX");
543 return -1;
544 }
545
546 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
547 insn->vectorExtensionType = TYPE_VEX_2B;
548 } else {
549 unconsumeByte(insn);
550 }
551
552 if (insn->vectorExtensionType == TYPE_VEX_2B) {
553 insn->vectorExtensionPrefix[0] = byte;
554 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
555
556 if (insn->mode == MODE_64BIT) {
557 insn->rexPrefix = 0x40
558 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
559 }
560
561 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
562 default:
563 break;
564 case VEX_PREFIX_66:
565 hasOpSize = true;
566 break;
567 }
568
569 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
570 insn->vectorExtensionPrefix[0],
571 insn->vectorExtensionPrefix[1]);
572 }
573 } else if (byte == 0x8f) {
574 uint8_t byte1;
575
576 if (lookAtByte(insn, &byte1)) {
577 dbgprintf(insn, "Couldn't read second byte of XOP");
578 return -1;
579 }
580
581 if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
582 insn->vectorExtensionType = TYPE_XOP;
583 insn->necessaryPrefixLocation = insn->readerCursor - 1;
584 } else {
585 unconsumeByte(insn);
586 insn->necessaryPrefixLocation = insn->readerCursor - 1;
587 }
588
589 if (insn->vectorExtensionType == TYPE_XOP) {
590 insn->vectorExtensionPrefix[0] = byte;
591 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
592 consumeByte(insn, &insn->vectorExtensionPrefix[2]);
593
594 /* We simulate the REX prefix for simplicity's sake */
595
596 if (insn->mode == MODE_64BIT) {
597 insn->rexPrefix = 0x40
598 | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
599 | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
600 | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
601 | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
602 }
603
604 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
605 default:
606 break;
607 case VEX_PREFIX_66:
608 hasOpSize = true;
609 break;
610 }
611
612 dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
613 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
614 insn->vectorExtensionPrefix[2]);
615 }
616 } else {
617 if (insn->mode == MODE_64BIT) {
618 if ((byte & 0xf0) == 0x40) {
619 uint8_t opcodeByte;
620
621 if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
622 dbgprintf(insn, "Redundant REX prefix");
623 return -1;
624 }
625
626 insn->rexPrefix = byte;
627 insn->necessaryPrefixLocation = insn->readerCursor - 2;
628
629 dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
630 } else {
631 unconsumeByte(insn);
632 insn->necessaryPrefixLocation = insn->readerCursor - 1;
633 }
634 } else {
635 unconsumeByte(insn);
636 insn->necessaryPrefixLocation = insn->readerCursor - 1;
637 }
638 }
639
640 if (insn->mode == MODE_16BIT) {
641 insn->registerSize = (hasOpSize ? 4 : 2);
642 insn->addressSize = (hasAdSize ? 4 : 2);
643 insn->displacementSize = (hasAdSize ? 4 : 2);
644 insn->immediateSize = (hasOpSize ? 4 : 2);
645 } else if (insn->mode == MODE_32BIT) {
646 insn->registerSize = (hasOpSize ? 2 : 4);
647 insn->addressSize = (hasAdSize ? 2 : 4);
648 insn->displacementSize = (hasAdSize ? 2 : 4);
649 insn->immediateSize = (hasOpSize ? 2 : 4);
650 } else if (insn->mode == MODE_64BIT) {
651 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
652 insn->registerSize = 8;
653 insn->addressSize = (hasAdSize ? 4 : 8);
654 insn->displacementSize = 4;
655 insn->immediateSize = 4;
656 } else if (insn->rexPrefix) {
657 insn->registerSize = (hasOpSize ? 2 : 4);
658 insn->addressSize = (hasAdSize ? 4 : 8);
659 insn->displacementSize = (hasOpSize ? 2 : 4);
660 insn->immediateSize = (hasOpSize ? 2 : 4);
661 } else {
662 insn->registerSize = (hasOpSize ? 2 : 4);
663 insn->addressSize = (hasAdSize ? 4 : 8);
664 insn->displacementSize = (hasOpSize ? 2 : 4);
665 insn->immediateSize = (hasOpSize ? 2 : 4);
666 }
667 }
668
669 return 0;
670 }
671
672 /*
673 * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
674 * extended or escape opcodes).
675 *
676 * @param insn - The instruction whose opcode is to be read.
677 * @return - 0 if the opcode could be read successfully; nonzero otherwise.
678 */
readOpcode(struct InternalInstruction * insn)679 static int readOpcode(struct InternalInstruction* insn) {
680 /* Determine the length of the primary opcode */
681
682 uint8_t current;
683
684 dbgprintf(insn, "readOpcode()");
685
686 insn->opcodeType = ONEBYTE;
687
688 if (insn->vectorExtensionType == TYPE_EVEX) {
689 switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
690 default:
691 dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
692 mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
693 return -1;
694 case VEX_LOB_0F:
695 insn->opcodeType = TWOBYTE;
696 return consumeByte(insn, &insn->opcode);
697 case VEX_LOB_0F38:
698 insn->opcodeType = THREEBYTE_38;
699 return consumeByte(insn, &insn->opcode);
700 case VEX_LOB_0F3A:
701 insn->opcodeType = THREEBYTE_3A;
702 return consumeByte(insn, &insn->opcode);
703 }
704 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
705 switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
706 default:
707 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
708 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
709 return -1;
710 case VEX_LOB_0F:
711 insn->opcodeType = TWOBYTE;
712 return consumeByte(insn, &insn->opcode);
713 case VEX_LOB_0F38:
714 insn->opcodeType = THREEBYTE_38;
715 return consumeByte(insn, &insn->opcode);
716 case VEX_LOB_0F3A:
717 insn->opcodeType = THREEBYTE_3A;
718 return consumeByte(insn, &insn->opcode);
719 }
720 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
721 insn->opcodeType = TWOBYTE;
722 return consumeByte(insn, &insn->opcode);
723 } else if (insn->vectorExtensionType == TYPE_XOP) {
724 switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
725 default:
726 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
727 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
728 return -1;
729 case XOP_MAP_SELECT_8:
730 insn->opcodeType = XOP8_MAP;
731 return consumeByte(insn, &insn->opcode);
732 case XOP_MAP_SELECT_9:
733 insn->opcodeType = XOP9_MAP;
734 return consumeByte(insn, &insn->opcode);
735 case XOP_MAP_SELECT_A:
736 insn->opcodeType = XOPA_MAP;
737 return consumeByte(insn, &insn->opcode);
738 }
739 }
740
741 if (consumeByte(insn, ¤t))
742 return -1;
743
744 if (current == 0x0f) {
745 dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
746
747 if (consumeByte(insn, ¤t))
748 return -1;
749
750 if (current == 0x38) {
751 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
752
753 if (consumeByte(insn, ¤t))
754 return -1;
755
756 insn->opcodeType = THREEBYTE_38;
757 } else if (current == 0x3a) {
758 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
759
760 if (consumeByte(insn, ¤t))
761 return -1;
762
763 insn->opcodeType = THREEBYTE_3A;
764 } else {
765 dbgprintf(insn, "Didn't find a three-byte escape prefix");
766
767 insn->opcodeType = TWOBYTE;
768 }
769 }
770
771 /*
772 * At this point we have consumed the full opcode.
773 * Anything we consume from here on must be unconsumed.
774 */
775
776 insn->opcode = current;
777
778 return 0;
779 }
780
781 static int readModRM(struct InternalInstruction* insn);
782
783 /*
784 * getIDWithAttrMask - Determines the ID of an instruction, consuming
785 * the ModR/M byte as appropriate for extended and escape opcodes,
786 * and using a supplied attribute mask.
787 *
788 * @param instructionID - A pointer whose target is filled in with the ID of the
789 * instruction.
790 * @param insn - The instruction whose ID is to be determined.
791 * @param attrMask - The attribute mask to search.
792 * @return - 0 if the ModR/M could be read when needed or was not
793 * needed; nonzero otherwise.
794 */
getIDWithAttrMask(uint16_t * instructionID,struct InternalInstruction * insn,uint16_t attrMask)795 static int getIDWithAttrMask(uint16_t* instructionID,
796 struct InternalInstruction* insn,
797 uint16_t attrMask) {
798 bool hasModRMExtension;
799
800 InstructionContext instructionClass = contextForAttrs(attrMask);
801
802 hasModRMExtension = modRMRequired(insn->opcodeType,
803 instructionClass,
804 insn->opcode);
805
806 if (hasModRMExtension) {
807 if (readModRM(insn))
808 return -1;
809
810 *instructionID = decode(insn->opcodeType,
811 instructionClass,
812 insn->opcode,
813 insn->modRM);
814 } else {
815 *instructionID = decode(insn->opcodeType,
816 instructionClass,
817 insn->opcode,
818 0);
819 }
820
821 return 0;
822 }
823
824 /*
825 * is16BitEquivalent - Determines whether two instruction names refer to
826 * equivalent instructions but one is 16-bit whereas the other is not.
827 *
828 * @param orig - The instruction that is not 16-bit
829 * @param equiv - The instruction that is 16-bit
830 */
is16BitEquivalent(const char * orig,const char * equiv)831 static bool is16BitEquivalent(const char* orig, const char* equiv) {
832 off_t i;
833
834 for (i = 0;; i++) {
835 if (orig[i] == '\0' && equiv[i] == '\0')
836 return true;
837 if (orig[i] == '\0' || equiv[i] == '\0')
838 return false;
839 if (orig[i] != equiv[i]) {
840 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
841 continue;
842 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
843 continue;
844 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
845 continue;
846 return false;
847 }
848 }
849 }
850
851 /*
852 * is64Bit - Determines whether this instruction is a 64-bit instruction.
853 *
854 * @param name - The instruction that is not 16-bit
855 */
is64Bit(const char * name)856 static bool is64Bit(const char* name) {
857 off_t i;
858
859 for (i = 0;; ++i) {
860 if (name[i] == '\0')
861 return false;
862 if (name[i] == '6' && name[i+1] == '4')
863 return true;
864 }
865 }
866
867 /*
868 * getID - Determines the ID of an instruction, consuming the ModR/M byte as
869 * appropriate for extended and escape opcodes. Determines the attributes and
870 * context for the instruction before doing so.
871 *
872 * @param insn - The instruction whose ID is to be determined.
873 * @return - 0 if the ModR/M could be read when needed or was not needed;
874 * nonzero otherwise.
875 */
getID(struct InternalInstruction * insn,const void * miiArg)876 static int getID(struct InternalInstruction* insn, const void *miiArg) {
877 uint16_t attrMask;
878 uint16_t instructionID;
879
880 dbgprintf(insn, "getID()");
881
882 attrMask = ATTR_NONE;
883
884 if (insn->mode == MODE_64BIT)
885 attrMask |= ATTR_64BIT;
886
887 if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
888 attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
889
890 if (insn->vectorExtensionType == TYPE_EVEX) {
891 switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
892 case VEX_PREFIX_66:
893 attrMask |= ATTR_OPSIZE;
894 break;
895 case VEX_PREFIX_F3:
896 attrMask |= ATTR_XS;
897 break;
898 case VEX_PREFIX_F2:
899 attrMask |= ATTR_XD;
900 break;
901 }
902
903 if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
904 attrMask |= ATTR_EVEXKZ;
905 if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
906 attrMask |= ATTR_EVEXB;
907 if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
908 attrMask |= ATTR_EVEXK;
909 if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
910 attrMask |= ATTR_EVEXL;
911 if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
912 attrMask |= ATTR_EVEXL2;
913 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
914 switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
915 case VEX_PREFIX_66:
916 attrMask |= ATTR_OPSIZE;
917 break;
918 case VEX_PREFIX_F3:
919 attrMask |= ATTR_XS;
920 break;
921 case VEX_PREFIX_F2:
922 attrMask |= ATTR_XD;
923 break;
924 }
925
926 if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
927 attrMask |= ATTR_VEXL;
928 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
929 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
930 case VEX_PREFIX_66:
931 attrMask |= ATTR_OPSIZE;
932 break;
933 case VEX_PREFIX_F3:
934 attrMask |= ATTR_XS;
935 break;
936 case VEX_PREFIX_F2:
937 attrMask |= ATTR_XD;
938 break;
939 }
940
941 if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
942 attrMask |= ATTR_VEXL;
943 } else if (insn->vectorExtensionType == TYPE_XOP) {
944 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
945 case VEX_PREFIX_66:
946 attrMask |= ATTR_OPSIZE;
947 break;
948 case VEX_PREFIX_F3:
949 attrMask |= ATTR_XS;
950 break;
951 case VEX_PREFIX_F2:
952 attrMask |= ATTR_XD;
953 break;
954 }
955
956 if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
957 attrMask |= ATTR_VEXL;
958 } else {
959 return -1;
960 }
961 } else {
962 if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
963 attrMask |= ATTR_OPSIZE;
964 else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
965 attrMask |= ATTR_ADSIZE;
966 else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
967 attrMask |= ATTR_XS;
968 else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
969 attrMask |= ATTR_XD;
970 }
971
972 if (insn->rexPrefix & 0x08)
973 attrMask |= ATTR_REXW;
974
975 /*
976 * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
977 * of the AdSize prefix is inverted w.r.t. 32-bit mode.
978 */
979 if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE &&
980 insn->opcode == 0xE3)
981 attrMask ^= ATTR_ADSIZE;
982
983 /*
984 * In 64-bit mode all f64 superscripted opcodes ignore opcode size prefix
985 * CALL/JMP/JCC instructions need to ignore 0x66 and consume 4 bytes
986 */
987
988 if (insn->mode == MODE_64BIT &&
989 isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation)) {
990 switch (insn->opcode) {
991 case 0xE8:
992 case 0xE9:
993 // Take care of psubsb and other mmx instructions.
994 if (insn->opcodeType == ONEBYTE) {
995 attrMask ^= ATTR_OPSIZE;
996 insn->immediateSize = 4;
997 insn->displacementSize = 4;
998 }
999 break;
1000 case 0x82:
1001 case 0x83:
1002 case 0x84:
1003 case 0x85:
1004 case 0x86:
1005 case 0x87:
1006 case 0x88:
1007 case 0x89:
1008 case 0x8A:
1009 case 0x8B:
1010 case 0x8C:
1011 case 0x8D:
1012 case 0x8E:
1013 case 0x8F:
1014 // Take care of lea and three byte ops.
1015 if (insn->opcodeType == TWOBYTE) {
1016 attrMask ^= ATTR_OPSIZE;
1017 insn->immediateSize = 4;
1018 insn->displacementSize = 4;
1019 }
1020 break;
1021 }
1022 }
1023
1024 if (getIDWithAttrMask(&instructionID, insn, attrMask))
1025 return -1;
1026
1027 /* The following clauses compensate for limitations of the tables. */
1028
1029 if (insn->mode != MODE_64BIT &&
1030 insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1031 /*
1032 * The tables can't distinquish between cases where the W-bit is used to
1033 * select register size and cases where its a required part of the opcode.
1034 */
1035 if ((insn->vectorExtensionType == TYPE_EVEX &&
1036 wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1037 (insn->vectorExtensionType == TYPE_VEX_3B &&
1038 wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1039 (insn->vectorExtensionType == TYPE_XOP &&
1040 wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1041
1042 uint16_t instructionIDWithREXW;
1043 if (getIDWithAttrMask(&instructionIDWithREXW,
1044 insn, attrMask | ATTR_REXW)) {
1045 insn->instructionID = instructionID;
1046 insn->spec = specifierForUID(instructionID);
1047 return 0;
1048 }
1049
1050 const char *SpecName = GetInstrName(instructionIDWithREXW, miiArg);
1051 // If not a 64-bit instruction. Switch the opcode.
1052 if (!is64Bit(SpecName)) {
1053 insn->instructionID = instructionIDWithREXW;
1054 insn->spec = specifierForUID(instructionIDWithREXW);
1055 return 0;
1056 }
1057 }
1058 }
1059
1060 /*
1061 * Absolute moves need special handling.
1062 * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1063 * inverted w.r.t.
1064 * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1065 * any position.
1066 */
1067 if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) {
1068 /* Make sure we observed the prefixes in any position. */
1069 if (insn->prefixPresent[0x67])
1070 attrMask |= ATTR_ADSIZE;
1071 if (insn->prefixPresent[0x66])
1072 attrMask |= ATTR_OPSIZE;
1073
1074 /* In 16-bit, invert the attributes. */
1075 if (insn->mode == MODE_16BIT)
1076 attrMask ^= ATTR_ADSIZE | ATTR_OPSIZE;
1077
1078 if (getIDWithAttrMask(&instructionID, insn, attrMask))
1079 return -1;
1080
1081 insn->instructionID = instructionID;
1082 insn->spec = specifierForUID(instructionID);
1083 return 0;
1084 }
1085
1086 if ((insn->mode == MODE_16BIT || insn->prefixPresent[0x66]) &&
1087 !(attrMask & ATTR_OPSIZE)) {
1088 /*
1089 * The instruction tables make no distinction between instructions that
1090 * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1091 * particular spot (i.e., many MMX operations). In general we're
1092 * conservative, but in the specific case where OpSize is present but not
1093 * in the right place we check if there's a 16-bit operation.
1094 */
1095
1096 const struct InstructionSpecifier *spec;
1097 uint16_t instructionIDWithOpsize;
1098 const char *specName, *specWithOpSizeName;
1099
1100 spec = specifierForUID(instructionID);
1101
1102 if (getIDWithAttrMask(&instructionIDWithOpsize,
1103 insn,
1104 attrMask | ATTR_OPSIZE)) {
1105 /*
1106 * ModRM required with OpSize but not present; give up and return version
1107 * without OpSize set
1108 */
1109
1110 insn->instructionID = instructionID;
1111 insn->spec = spec;
1112 return 0;
1113 }
1114
1115 specName = GetInstrName(instructionID, miiArg);
1116 specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg);
1117
1118 if (is16BitEquivalent(specName, specWithOpSizeName) &&
1119 (insn->mode == MODE_16BIT) ^ insn->prefixPresent[0x66]) {
1120 insn->instructionID = instructionIDWithOpsize;
1121 insn->spec = specifierForUID(instructionIDWithOpsize);
1122 } else {
1123 insn->instructionID = instructionID;
1124 insn->spec = spec;
1125 }
1126 return 0;
1127 }
1128
1129 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1130 insn->rexPrefix & 0x01) {
1131 /*
1132 * NOOP shouldn't decode as NOOP if REX.b is set. Instead
1133 * it should decode as XCHG %r8, %eax.
1134 */
1135
1136 const struct InstructionSpecifier *spec;
1137 uint16_t instructionIDWithNewOpcode;
1138 const struct InstructionSpecifier *specWithNewOpcode;
1139
1140 spec = specifierForUID(instructionID);
1141
1142 /* Borrow opcode from one of the other XCHGar opcodes */
1143 insn->opcode = 0x91;
1144
1145 if (getIDWithAttrMask(&instructionIDWithNewOpcode,
1146 insn,
1147 attrMask)) {
1148 insn->opcode = 0x90;
1149
1150 insn->instructionID = instructionID;
1151 insn->spec = spec;
1152 return 0;
1153 }
1154
1155 specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
1156
1157 /* Change back */
1158 insn->opcode = 0x90;
1159
1160 insn->instructionID = instructionIDWithNewOpcode;
1161 insn->spec = specWithNewOpcode;
1162
1163 return 0;
1164 }
1165
1166 insn->instructionID = instructionID;
1167 insn->spec = specifierForUID(insn->instructionID);
1168
1169 return 0;
1170 }
1171
1172 /*
1173 * readSIB - Consumes the SIB byte to determine addressing information for an
1174 * instruction.
1175 *
1176 * @param insn - The instruction whose SIB byte is to be read.
1177 * @return - 0 if the SIB byte was successfully read; nonzero otherwise.
1178 */
readSIB(struct InternalInstruction * insn)1179 static int readSIB(struct InternalInstruction* insn) {
1180 SIBIndex sibIndexBase = SIB_INDEX_NONE;
1181 SIBBase sibBaseBase = SIB_BASE_NONE;
1182 uint8_t index, base;
1183
1184 dbgprintf(insn, "readSIB()");
1185
1186 if (insn->consumedSIB)
1187 return 0;
1188
1189 insn->consumedSIB = true;
1190
1191 switch (insn->addressSize) {
1192 case 2:
1193 dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
1194 return -1;
1195 case 4:
1196 sibIndexBase = SIB_INDEX_EAX;
1197 sibBaseBase = SIB_BASE_EAX;
1198 break;
1199 case 8:
1200 sibIndexBase = SIB_INDEX_RAX;
1201 sibBaseBase = SIB_BASE_RAX;
1202 break;
1203 }
1204
1205 if (consumeByte(insn, &insn->sib))
1206 return -1;
1207
1208 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
1209
1210 // FIXME: The fifth bit (bit index 4) is only to be used for instructions
1211 // that understand VSIB indexing. ORing the bit in here is mildy dangerous
1212 // because performing math on an 'enum SIBIndex' can produce garbage.
1213 // Excluding the "none" value, it should cover 6 spaces of register names:
1214 // - 16 possibilities for 16-bit GPR starting at SIB_INDEX_BX_SI
1215 // - 16 possibilities for 32-bit GPR starting at SIB_INDEX_EAX
1216 // - 16 possibilities for 64-bit GPR starting at SIB_INDEX_RAX
1217 // - 32 possibilities for each of XMM, YMM, ZMM registers
1218 // When sibIndexBase gets assigned SIB_INDEX_RAX as it does in 64-bit mode,
1219 // summing in a fully decoded index between 0 and 31 can end up with a value
1220 // that looks like something in the low half of the XMM range.
1221 // translateRMMemory() tries to reverse the damage, with only partial success,
1222 // as evidenced by known bugs in "test/MC/Disassembler/X86/x86-64.txt"
1223 if (insn->vectorExtensionType == TYPE_EVEX)
1224 index |= v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4;
1225
1226 if (index == 0x4) {
1227 insn->sibIndex = SIB_INDEX_NONE;
1228 } else {
1229 insn->sibIndex = (SIBIndex)(sibIndexBase + index);
1230 }
1231
1232 insn->sibScale = 1 << scaleFromSIB(insn->sib);
1233
1234 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1235
1236 switch (base) {
1237 case 0x5:
1238 case 0xd:
1239 switch (modFromModRM(insn->modRM)) {
1240 case 0x0:
1241 insn->eaDisplacement = EA_DISP_32;
1242 insn->sibBase = SIB_BASE_NONE;
1243 break;
1244 case 0x1:
1245 insn->eaDisplacement = EA_DISP_8;
1246 insn->sibBase = (SIBBase)(sibBaseBase + base);
1247 break;
1248 case 0x2:
1249 insn->eaDisplacement = EA_DISP_32;
1250 insn->sibBase = (SIBBase)(sibBaseBase + base);
1251 break;
1252 case 0x3:
1253 debug("Cannot have Mod = 0b11 and a SIB byte");
1254 return -1;
1255 }
1256 break;
1257 default:
1258 insn->sibBase = (SIBBase)(sibBaseBase + base);
1259 break;
1260 }
1261
1262 return 0;
1263 }
1264
1265 /*
1266 * readDisplacement - Consumes the displacement of an instruction.
1267 *
1268 * @param insn - The instruction whose displacement is to be read.
1269 * @return - 0 if the displacement byte was successfully read; nonzero
1270 * otherwise.
1271 */
readDisplacement(struct InternalInstruction * insn)1272 static int readDisplacement(struct InternalInstruction* insn) {
1273 int8_t d8;
1274 int16_t d16;
1275 int32_t d32;
1276
1277 dbgprintf(insn, "readDisplacement()");
1278
1279 if (insn->consumedDisplacement)
1280 return 0;
1281
1282 insn->consumedDisplacement = true;
1283 insn->displacementOffset = insn->readerCursor - insn->startLocation;
1284
1285 switch (insn->eaDisplacement) {
1286 case EA_DISP_NONE:
1287 insn->consumedDisplacement = false;
1288 break;
1289 case EA_DISP_8:
1290 if (consumeInt8(insn, &d8))
1291 return -1;
1292 insn->displacement = d8;
1293 break;
1294 case EA_DISP_16:
1295 if (consumeInt16(insn, &d16))
1296 return -1;
1297 insn->displacement = d16;
1298 break;
1299 case EA_DISP_32:
1300 if (consumeInt32(insn, &d32))
1301 return -1;
1302 insn->displacement = d32;
1303 break;
1304 }
1305
1306 insn->consumedDisplacement = true;
1307 return 0;
1308 }
1309
1310 /*
1311 * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1312 * displacement) for an instruction and interprets it.
1313 *
1314 * @param insn - The instruction whose addressing information is to be read.
1315 * @return - 0 if the information was successfully read; nonzero otherwise.
1316 */
readModRM(struct InternalInstruction * insn)1317 static int readModRM(struct InternalInstruction* insn) {
1318 uint8_t mod, rm, reg;
1319
1320 dbgprintf(insn, "readModRM()");
1321
1322 if (insn->consumedModRM)
1323 return 0;
1324
1325 if (consumeByte(insn, &insn->modRM))
1326 return -1;
1327 insn->consumedModRM = true;
1328
1329 mod = modFromModRM(insn->modRM);
1330 rm = rmFromModRM(insn->modRM);
1331 reg = regFromModRM(insn->modRM);
1332
1333 /*
1334 * This goes by insn->registerSize to pick the correct register, which messes
1335 * up if we're using (say) XMM or 8-bit register operands. That gets fixed in
1336 * fixupReg().
1337 */
1338 switch (insn->registerSize) {
1339 case 2:
1340 insn->regBase = MODRM_REG_AX;
1341 insn->eaRegBase = EA_REG_AX;
1342 break;
1343 case 4:
1344 insn->regBase = MODRM_REG_EAX;
1345 insn->eaRegBase = EA_REG_EAX;
1346 break;
1347 case 8:
1348 insn->regBase = MODRM_REG_RAX;
1349 insn->eaRegBase = EA_REG_RAX;
1350 break;
1351 }
1352
1353 reg |= rFromREX(insn->rexPrefix) << 3;
1354 rm |= bFromREX(insn->rexPrefix) << 3;
1355 if (insn->vectorExtensionType == TYPE_EVEX) {
1356 reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1357 rm |= xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1358 }
1359
1360 insn->reg = (Reg)(insn->regBase + reg);
1361
1362 switch (insn->addressSize) {
1363 case 2:
1364 insn->eaBaseBase = EA_BASE_BX_SI;
1365
1366 switch (mod) {
1367 case 0x0:
1368 if (rm == 0x6) {
1369 insn->eaBase = EA_BASE_NONE;
1370 insn->eaDisplacement = EA_DISP_16;
1371 if (readDisplacement(insn))
1372 return -1;
1373 } else {
1374 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1375 insn->eaDisplacement = EA_DISP_NONE;
1376 }
1377 break;
1378 case 0x1:
1379 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1380 insn->eaDisplacement = EA_DISP_8;
1381 insn->displacementSize = 1;
1382 if (readDisplacement(insn))
1383 return -1;
1384 break;
1385 case 0x2:
1386 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1387 insn->eaDisplacement = EA_DISP_16;
1388 if (readDisplacement(insn))
1389 return -1;
1390 break;
1391 case 0x3:
1392 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1393 if (readDisplacement(insn))
1394 return -1;
1395 break;
1396 }
1397 break;
1398 case 4:
1399 case 8:
1400 insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1401
1402 switch (mod) {
1403 case 0x0:
1404 insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1405 // In determining whether RIP-relative mode is used (rm=5),
1406 // or whether a SIB byte is present (rm=4),
1407 // the extension bits (REX.b and EVEX.x) are ignored.
1408 switch (rm & 7) {
1409 case 0x4: // SIB byte is present
1410 insn->eaBase = (insn->addressSize == 4 ?
1411 EA_BASE_sib : EA_BASE_sib64);
1412 if (readSIB(insn) || readDisplacement(insn))
1413 return -1;
1414 break;
1415 case 0x5: // RIP-relative
1416 insn->eaBase = EA_BASE_NONE;
1417 insn->eaDisplacement = EA_DISP_32;
1418 if (readDisplacement(insn))
1419 return -1;
1420 break;
1421 default:
1422 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1423 break;
1424 }
1425 break;
1426 case 0x1:
1427 insn->displacementSize = 1;
1428 /* FALLTHROUGH */
1429 case 0x2:
1430 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1431 switch (rm & 7) {
1432 case 0x4: // SIB byte is present
1433 insn->eaBase = EA_BASE_sib;
1434 if (readSIB(insn) || readDisplacement(insn))
1435 return -1;
1436 break;
1437 default:
1438 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1439 if (readDisplacement(insn))
1440 return -1;
1441 break;
1442 }
1443 break;
1444 case 0x3:
1445 insn->eaDisplacement = EA_DISP_NONE;
1446 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1447 break;
1448 }
1449 break;
1450 } /* switch (insn->addressSize) */
1451
1452 return 0;
1453 }
1454
1455 #define GENERIC_FIXUP_FUNC(name, base, prefix) \
1456 static uint8_t name(struct InternalInstruction *insn, \
1457 OperandType type, \
1458 uint8_t index, \
1459 uint8_t *valid) { \
1460 *valid = 1; \
1461 switch (type) { \
1462 default: \
1463 debug("Unhandled register type"); \
1464 *valid = 0; \
1465 return 0; \
1466 case TYPE_Rv: \
1467 return base + index; \
1468 case TYPE_R8: \
1469 if (insn->rexPrefix && \
1470 index >= 4 && index <= 7) { \
1471 return prefix##_SPL + (index - 4); \
1472 } else { \
1473 return prefix##_AL + index; \
1474 } \
1475 case TYPE_R16: \
1476 return prefix##_AX + index; \
1477 case TYPE_R32: \
1478 return prefix##_EAX + index; \
1479 case TYPE_R64: \
1480 return prefix##_RAX + index; \
1481 case TYPE_XMM512: \
1482 return prefix##_ZMM0 + index; \
1483 case TYPE_XMM256: \
1484 return prefix##_YMM0 + index; \
1485 case TYPE_XMM128: \
1486 case TYPE_XMM64: \
1487 case TYPE_XMM32: \
1488 case TYPE_XMM: \
1489 return prefix##_XMM0 + index; \
1490 case TYPE_VK1: \
1491 case TYPE_VK2: \
1492 case TYPE_VK4: \
1493 case TYPE_VK8: \
1494 case TYPE_VK16: \
1495 case TYPE_VK32: \
1496 case TYPE_VK64: \
1497 if (index > 7) \
1498 *valid = 0; \
1499 return prefix##_K0 + index; \
1500 case TYPE_MM64: \
1501 return prefix##_MM0 + (index & 0x7); \
1502 case TYPE_SEGMENTREG: \
1503 if (index > 5) \
1504 *valid = 0; \
1505 return prefix##_ES + index; \
1506 case TYPE_DEBUGREG: \
1507 return prefix##_DR0 + index; \
1508 case TYPE_CONTROLREG: \
1509 return prefix##_CR0 + index; \
1510 } \
1511 }
1512
1513 /*
1514 * fixup*Value - Consults an operand type to determine the meaning of the
1515 * reg or R/M field. If the operand is an XMM operand, for example, an
1516 * operand would be XMM0 instead of AX, which readModRM() would otherwise
1517 * misinterpret it as.
1518 *
1519 * @param insn - The instruction containing the operand.
1520 * @param type - The operand type.
1521 * @param index - The existing value of the field as reported by readModRM().
1522 * @param valid - The address of a uint8_t. The target is set to 1 if the
1523 * field is valid for the register class; 0 if not.
1524 * @return - The proper value.
1525 */
1526 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
1527 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
1528
1529 /*
1530 * fixupReg - Consults an operand specifier to determine which of the
1531 * fixup*Value functions to use in correcting readModRM()'ss interpretation.
1532 *
1533 * @param insn - See fixup*Value().
1534 * @param op - The operand specifier.
1535 * @return - 0 if fixup was successful; -1 if the register returned was
1536 * invalid for its class.
1537 */
fixupReg(struct InternalInstruction * insn,const struct OperandSpecifier * op)1538 static int fixupReg(struct InternalInstruction *insn,
1539 const struct OperandSpecifier *op) {
1540 uint8_t valid;
1541
1542 dbgprintf(insn, "fixupReg()");
1543
1544 switch ((OperandEncoding)op->encoding) {
1545 default:
1546 debug("Expected a REG or R/M encoding in fixupReg");
1547 return -1;
1548 case ENCODING_VVVV:
1549 insn->vvvv = (Reg)fixupRegValue(insn,
1550 (OperandType)op->type,
1551 insn->vvvv,
1552 &valid);
1553 if (!valid)
1554 return -1;
1555 break;
1556 case ENCODING_REG:
1557 insn->reg = (Reg)fixupRegValue(insn,
1558 (OperandType)op->type,
1559 insn->reg - insn->regBase,
1560 &valid);
1561 if (!valid)
1562 return -1;
1563 break;
1564 CASE_ENCODING_RM:
1565 if (insn->eaBase >= insn->eaRegBase) {
1566 insn->eaBase = (EABase)fixupRMValue(insn,
1567 (OperandType)op->type,
1568 insn->eaBase - insn->eaRegBase,
1569 &valid);
1570 if (!valid)
1571 return -1;
1572 }
1573 break;
1574 }
1575
1576 return 0;
1577 }
1578
1579 /*
1580 * readOpcodeRegister - Reads an operand from the opcode field of an
1581 * instruction and interprets it appropriately given the operand width.
1582 * Handles AddRegFrm instructions.
1583 *
1584 * @param insn - the instruction whose opcode field is to be read.
1585 * @param size - The width (in bytes) of the register being specified.
1586 * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1587 * RAX.
1588 * @return - 0 on success; nonzero otherwise.
1589 */
readOpcodeRegister(struct InternalInstruction * insn,uint8_t size)1590 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1591 dbgprintf(insn, "readOpcodeRegister()");
1592
1593 if (size == 0)
1594 size = insn->registerSize;
1595
1596 switch (size) {
1597 case 1:
1598 insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1599 | (insn->opcode & 7)));
1600 if (insn->rexPrefix &&
1601 insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1602 insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1603 insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1604 + (insn->opcodeRegister - MODRM_REG_AL - 4));
1605 }
1606
1607 break;
1608 case 2:
1609 insn->opcodeRegister = (Reg)(MODRM_REG_AX
1610 + ((bFromREX(insn->rexPrefix) << 3)
1611 | (insn->opcode & 7)));
1612 break;
1613 case 4:
1614 insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1615 + ((bFromREX(insn->rexPrefix) << 3)
1616 | (insn->opcode & 7)));
1617 break;
1618 case 8:
1619 insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1620 + ((bFromREX(insn->rexPrefix) << 3)
1621 | (insn->opcode & 7)));
1622 break;
1623 }
1624
1625 return 0;
1626 }
1627
1628 /*
1629 * readImmediate - Consumes an immediate operand from an instruction, given the
1630 * desired operand size.
1631 *
1632 * @param insn - The instruction whose operand is to be read.
1633 * @param size - The width (in bytes) of the operand.
1634 * @return - 0 if the immediate was successfully consumed; nonzero
1635 * otherwise.
1636 */
readImmediate(struct InternalInstruction * insn,uint8_t size)1637 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1638 uint8_t imm8;
1639 uint16_t imm16;
1640 uint32_t imm32;
1641 uint64_t imm64;
1642
1643 dbgprintf(insn, "readImmediate()");
1644
1645 if (insn->numImmediatesConsumed == 2) {
1646 debug("Already consumed two immediates");
1647 return -1;
1648 }
1649
1650 if (size == 0)
1651 size = insn->immediateSize;
1652 else
1653 insn->immediateSize = size;
1654 insn->immediateOffset = insn->readerCursor - insn->startLocation;
1655
1656 switch (size) {
1657 case 1:
1658 if (consumeByte(insn, &imm8))
1659 return -1;
1660 insn->immediates[insn->numImmediatesConsumed] = imm8;
1661 break;
1662 case 2:
1663 if (consumeUInt16(insn, &imm16))
1664 return -1;
1665 insn->immediates[insn->numImmediatesConsumed] = imm16;
1666 break;
1667 case 4:
1668 if (consumeUInt32(insn, &imm32))
1669 return -1;
1670 insn->immediates[insn->numImmediatesConsumed] = imm32;
1671 break;
1672 case 8:
1673 if (consumeUInt64(insn, &imm64))
1674 return -1;
1675 insn->immediates[insn->numImmediatesConsumed] = imm64;
1676 break;
1677 }
1678
1679 insn->numImmediatesConsumed++;
1680
1681 return 0;
1682 }
1683
1684 /*
1685 * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1686 *
1687 * @param insn - The instruction whose operand is to be read.
1688 * @return - 0 if the vvvv was successfully consumed; nonzero
1689 * otherwise.
1690 */
readVVVV(struct InternalInstruction * insn)1691 static int readVVVV(struct InternalInstruction* insn) {
1692 dbgprintf(insn, "readVVVV()");
1693
1694 int vvvv;
1695 if (insn->vectorExtensionType == TYPE_EVEX)
1696 vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1697 vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1698 else if (insn->vectorExtensionType == TYPE_VEX_3B)
1699 vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1700 else if (insn->vectorExtensionType == TYPE_VEX_2B)
1701 vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1702 else if (insn->vectorExtensionType == TYPE_XOP)
1703 vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1704 else
1705 return -1;
1706
1707 if (insn->mode != MODE_64BIT)
1708 vvvv &= 0x7;
1709
1710 insn->vvvv = static_cast<Reg>(vvvv);
1711 return 0;
1712 }
1713
1714 /*
1715 * readMaskRegister - Reads an mask register from the opcode field of an
1716 * instruction.
1717 *
1718 * @param insn - The instruction whose opcode field is to be read.
1719 * @return - 0 on success; nonzero otherwise.
1720 */
readMaskRegister(struct InternalInstruction * insn)1721 static int readMaskRegister(struct InternalInstruction* insn) {
1722 dbgprintf(insn, "readMaskRegister()");
1723
1724 if (insn->vectorExtensionType != TYPE_EVEX)
1725 return -1;
1726
1727 insn->writemask =
1728 static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1729 return 0;
1730 }
1731
1732 /*
1733 * readOperands - Consults the specifier for an instruction and consumes all
1734 * operands for that instruction, interpreting them as it goes.
1735 *
1736 * @param insn - The instruction whose operands are to be read and interpreted.
1737 * @return - 0 if all operands could be read; nonzero otherwise.
1738 */
readOperands(struct InternalInstruction * insn)1739 static int readOperands(struct InternalInstruction* insn) {
1740 int hasVVVV, needVVVV;
1741 int sawRegImm = 0;
1742
1743 dbgprintf(insn, "readOperands()");
1744
1745 /* If non-zero vvvv specified, need to make sure one of the operands
1746 uses it. */
1747 hasVVVV = !readVVVV(insn);
1748 needVVVV = hasVVVV && (insn->vvvv != 0);
1749
1750 for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1751 switch (Op.encoding) {
1752 case ENCODING_NONE:
1753 case ENCODING_SI:
1754 case ENCODING_DI:
1755 break;
1756 case ENCODING_REG:
1757 CASE_ENCODING_RM:
1758 if (readModRM(insn))
1759 return -1;
1760 if (fixupReg(insn, &Op))
1761 return -1;
1762 // Apply the AVX512 compressed displacement scaling factor.
1763 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1764 insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1765 break;
1766 case ENCODING_CB:
1767 case ENCODING_CW:
1768 case ENCODING_CD:
1769 case ENCODING_CP:
1770 case ENCODING_CO:
1771 case ENCODING_CT:
1772 dbgprintf(insn, "We currently don't hande code-offset encodings");
1773 return -1;
1774 case ENCODING_IB:
1775 if (sawRegImm) {
1776 /* Saw a register immediate so don't read again and instead split the
1777 previous immediate. FIXME: This is a hack. */
1778 insn->immediates[insn->numImmediatesConsumed] =
1779 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1780 ++insn->numImmediatesConsumed;
1781 break;
1782 }
1783 if (readImmediate(insn, 1))
1784 return -1;
1785 if (Op.type == TYPE_XMM128 ||
1786 Op.type == TYPE_XMM256)
1787 sawRegImm = 1;
1788 break;
1789 case ENCODING_IW:
1790 if (readImmediate(insn, 2))
1791 return -1;
1792 break;
1793 case ENCODING_ID:
1794 if (readImmediate(insn, 4))
1795 return -1;
1796 break;
1797 case ENCODING_IO:
1798 if (readImmediate(insn, 8))
1799 return -1;
1800 break;
1801 case ENCODING_Iv:
1802 if (readImmediate(insn, insn->immediateSize))
1803 return -1;
1804 break;
1805 case ENCODING_Ia:
1806 if (readImmediate(insn, insn->addressSize))
1807 return -1;
1808 break;
1809 case ENCODING_RB:
1810 if (readOpcodeRegister(insn, 1))
1811 return -1;
1812 break;
1813 case ENCODING_RW:
1814 if (readOpcodeRegister(insn, 2))
1815 return -1;
1816 break;
1817 case ENCODING_RD:
1818 if (readOpcodeRegister(insn, 4))
1819 return -1;
1820 break;
1821 case ENCODING_RO:
1822 if (readOpcodeRegister(insn, 8))
1823 return -1;
1824 break;
1825 case ENCODING_Rv:
1826 if (readOpcodeRegister(insn, 0))
1827 return -1;
1828 break;
1829 case ENCODING_FP:
1830 break;
1831 case ENCODING_VVVV:
1832 needVVVV = 0; /* Mark that we have found a VVVV operand. */
1833 if (!hasVVVV)
1834 return -1;
1835 if (fixupReg(insn, &Op))
1836 return -1;
1837 break;
1838 case ENCODING_WRITEMASK:
1839 if (readMaskRegister(insn))
1840 return -1;
1841 break;
1842 case ENCODING_DUP:
1843 break;
1844 default:
1845 dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1846 return -1;
1847 }
1848 }
1849
1850 /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1851 if (needVVVV) return -1;
1852
1853 return 0;
1854 }
1855
1856 /*
1857 * decodeInstruction - Reads and interprets a full instruction provided by the
1858 * user.
1859 *
1860 * @param insn - A pointer to the instruction to be populated. Must be
1861 * pre-allocated.
1862 * @param reader - The function to be used to read the instruction's bytes.
1863 * @param readerArg - A generic argument to be passed to the reader to store
1864 * any internal state.
1865 * @param logger - If non-NULL, the function to be used to write log messages
1866 * and warnings.
1867 * @param loggerArg - A generic argument to be passed to the logger to store
1868 * any internal state.
1869 * @param startLoc - The address (in the reader's address space) of the first
1870 * byte in the instruction.
1871 * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1872 * decode the instruction in.
1873 * @return - 0 if the instruction's memory could be read; nonzero if
1874 * not.
1875 */
decodeInstruction(struct InternalInstruction * insn,byteReader_t reader,const void * readerArg,dlog_t logger,void * loggerArg,const void * miiArg,uint64_t startLoc,DisassemblerMode mode)1876 int llvm::X86Disassembler::decodeInstruction(
1877 struct InternalInstruction *insn, byteReader_t reader,
1878 const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg,
1879 uint64_t startLoc, DisassemblerMode mode) {
1880 memset(insn, 0, sizeof(struct InternalInstruction));
1881
1882 insn->reader = reader;
1883 insn->readerArg = readerArg;
1884 insn->dlog = logger;
1885 insn->dlogArg = loggerArg;
1886 insn->startLocation = startLoc;
1887 insn->readerCursor = startLoc;
1888 insn->mode = mode;
1889 insn->numImmediatesConsumed = 0;
1890
1891 if (readPrefixes(insn) ||
1892 readOpcode(insn) ||
1893 getID(insn, miiArg) ||
1894 insn->instructionID == 0 ||
1895 readOperands(insn))
1896 return -1;
1897
1898 insn->operands = x86OperandSets[insn->spec->operands];
1899
1900 insn->length = insn->readerCursor - insn->startLocation;
1901
1902 dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1903 startLoc, insn->readerCursor, insn->length);
1904
1905 if (insn->length > 15)
1906 dbgprintf(insn, "Instruction exceeds 15-byte limit");
1907
1908 return 0;
1909 }
1910