• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17 
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/InstVisitor.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 namespace llvm {
35 class CallSite;
36 class DataLayout;
37 class DominatorTree;
38 class TargetLibraryInfo;
39 class DbgDeclareInst;
40 class MemIntrinsic;
41 class MemSetInst;
42 
43 /// \brief Assign a complexity or rank value to LLVM Values.
44 ///
45 /// This routine maps IR values to various complexity ranks:
46 ///   0 -> undef
47 ///   1 -> Constants
48 ///   2 -> Other non-instructions
49 ///   3 -> Arguments
50 ///   3 -> Unary operations
51 ///   4 -> Other instructions
getComplexity(Value * V)52 static inline unsigned getComplexity(Value *V) {
53   if (isa<Instruction>(V)) {
54     if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) ||
55         BinaryOperator::isNot(V))
56       return 3;
57     return 4;
58   }
59   if (isa<Argument>(V))
60     return 3;
61   return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
62 }
63 
64 /// \brief Add one to a Constant
AddOne(Constant * C)65 static inline Constant *AddOne(Constant *C) {
66   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
67 }
68 /// \brief Subtract one from a Constant
SubOne(Constant * C)69 static inline Constant *SubOne(Constant *C) {
70   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
71 }
72 
73 /// \brief Return true if the specified value is free to invert (apply ~ to).
74 /// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses
75 /// is true, work under the assumption that the caller intends to remove all
76 /// uses of V and only keep uses of ~V.
77 ///
IsFreeToInvert(Value * V,bool WillInvertAllUses)78 static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
79   // ~(~(X)) -> X.
80   if (BinaryOperator::isNot(V))
81     return true;
82 
83   // Constants can be considered to be not'ed values.
84   if (isa<ConstantInt>(V))
85     return true;
86 
87   // Compares can be inverted if all of their uses are being modified to use the
88   // ~V.
89   if (isa<CmpInst>(V))
90     return WillInvertAllUses;
91 
92   // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
93   // - Constant) - A` if we are willing to invert all of the uses.
94   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
95     if (BO->getOpcode() == Instruction::Add ||
96         BO->getOpcode() == Instruction::Sub)
97       if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
98         return WillInvertAllUses;
99 
100   return false;
101 }
102 
103 
104 /// \brief Specific patterns of overflow check idioms that we match.
105 enum OverflowCheckFlavor {
106   OCF_UNSIGNED_ADD,
107   OCF_SIGNED_ADD,
108   OCF_UNSIGNED_SUB,
109   OCF_SIGNED_SUB,
110   OCF_UNSIGNED_MUL,
111   OCF_SIGNED_MUL,
112 
113   OCF_INVALID
114 };
115 
116 /// \brief Returns the OverflowCheckFlavor corresponding to a overflow_with_op
117 /// intrinsic.
118 static inline OverflowCheckFlavor
IntrinsicIDToOverflowCheckFlavor(unsigned ID)119 IntrinsicIDToOverflowCheckFlavor(unsigned ID) {
120   switch (ID) {
121   default:
122     return OCF_INVALID;
123   case Intrinsic::uadd_with_overflow:
124     return OCF_UNSIGNED_ADD;
125   case Intrinsic::sadd_with_overflow:
126     return OCF_SIGNED_ADD;
127   case Intrinsic::usub_with_overflow:
128     return OCF_UNSIGNED_SUB;
129   case Intrinsic::ssub_with_overflow:
130     return OCF_SIGNED_SUB;
131   case Intrinsic::umul_with_overflow:
132     return OCF_UNSIGNED_MUL;
133   case Intrinsic::smul_with_overflow:
134     return OCF_SIGNED_MUL;
135   }
136 }
137 
138 /// \brief An IRBuilder inserter that adds new instructions to the instcombine
139 /// worklist.
140 class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
141     : public IRBuilderDefaultInserter<true> {
142   InstCombineWorklist &Worklist;
143   AssumptionCache *AC;
144 
145 public:
InstCombineIRInserter(InstCombineWorklist & WL,AssumptionCache * AC)146   InstCombineIRInserter(InstCombineWorklist &WL, AssumptionCache *AC)
147       : Worklist(WL), AC(AC) {}
148 
InsertHelper(Instruction * I,const Twine & Name,BasicBlock * BB,BasicBlock::iterator InsertPt)149   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
150                     BasicBlock::iterator InsertPt) const {
151     IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
152     Worklist.Add(I);
153 
154     using namespace llvm::PatternMatch;
155     if (match(I, m_Intrinsic<Intrinsic::assume>()))
156       AC->registerAssumption(cast<CallInst>(I));
157   }
158 };
159 
160 /// \brief The core instruction combiner logic.
161 ///
162 /// This class provides both the logic to recursively visit instructions and
163 /// combine them, as well as the pass infrastructure for running this as part
164 /// of the LLVM pass pipeline.
165 class LLVM_LIBRARY_VISIBILITY InstCombiner
166     : public InstVisitor<InstCombiner, Instruction *> {
167   // FIXME: These members shouldn't be public.
168 public:
169   /// \brief A worklist of the instructions that need to be simplified.
170   InstCombineWorklist &Worklist;
171 
172   /// \brief An IRBuilder that automatically inserts new instructions into the
173   /// worklist.
174   typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
175   BuilderTy *Builder;
176 
177 private:
178   // Mode in which we are running the combiner.
179   const bool MinimizeSize;
180 
181   AliasAnalysis *AA;
182 
183   // Required analyses.
184   // FIXME: These can never be null and should be references.
185   AssumptionCache *AC;
186   TargetLibraryInfo *TLI;
187   DominatorTree *DT;
188   const DataLayout &DL;
189 
190   // Optional analyses. When non-null, these can both be used to do better
191   // combining and will be updated to reflect any changes.
192   LoopInfo *LI;
193 
194   bool MadeIRChange;
195 
196 public:
InstCombiner(InstCombineWorklist & Worklist,BuilderTy * Builder,bool MinimizeSize,AliasAnalysis * AA,AssumptionCache * AC,TargetLibraryInfo * TLI,DominatorTree * DT,const DataLayout & DL,LoopInfo * LI)197   InstCombiner(InstCombineWorklist &Worklist, BuilderTy *Builder,
198                bool MinimizeSize, AliasAnalysis *AA,
199                AssumptionCache *AC, TargetLibraryInfo *TLI,
200                DominatorTree *DT, const DataLayout &DL, LoopInfo *LI)
201       : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
202         AA(AA), AC(AC), TLI(TLI), DT(DT), DL(DL), LI(LI), MadeIRChange(false) {}
203 
204   /// \brief Run the combiner over the entire worklist until it is empty.
205   ///
206   /// \returns true if the IR is changed.
207   bool run();
208 
getAssumptionCache()209   AssumptionCache *getAssumptionCache() const { return AC; }
210 
getDataLayout()211   const DataLayout &getDataLayout() const { return DL; }
212 
getDominatorTree()213   DominatorTree *getDominatorTree() const { return DT; }
214 
getLoopInfo()215   LoopInfo *getLoopInfo() const { return LI; }
216 
getTargetLibraryInfo()217   TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
218 
219   // Visitation implementation - Implement instruction combining for different
220   // instruction types.  The semantics are as follows:
221   // Return Value:
222   //    null        - No change was made
223   //     I          - Change was made, I is still valid, I may be dead though
224   //   otherwise    - Change was made, replace I with returned instruction
225   //
226   Instruction *visitAdd(BinaryOperator &I);
227   Instruction *visitFAdd(BinaryOperator &I);
228   Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
229   Instruction *visitSub(BinaryOperator &I);
230   Instruction *visitFSub(BinaryOperator &I);
231   Instruction *visitMul(BinaryOperator &I);
232   Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C,
233                        Instruction *InsertBefore);
234   Instruction *visitFMul(BinaryOperator &I);
235   Instruction *visitURem(BinaryOperator &I);
236   Instruction *visitSRem(BinaryOperator &I);
237   Instruction *visitFRem(BinaryOperator &I);
238   bool SimplifyDivRemOfSelect(BinaryOperator &I);
239   Instruction *commonRemTransforms(BinaryOperator &I);
240   Instruction *commonIRemTransforms(BinaryOperator &I);
241   Instruction *commonDivTransforms(BinaryOperator &I);
242   Instruction *commonIDivTransforms(BinaryOperator &I);
243   Instruction *visitUDiv(BinaryOperator &I);
244   Instruction *visitSDiv(BinaryOperator &I);
245   Instruction *visitFDiv(BinaryOperator &I);
246   Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
247   Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
248   Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
249   Instruction *visitAnd(BinaryOperator &I);
250   Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction *CxtI);
251   Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
252   Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A,
253                                    Value *B, Value *C);
254   Instruction *FoldXorWithConstants(BinaryOperator &I, Value *Op, Value *A,
255                                     Value *B, Value *C);
256   Instruction *visitOr(BinaryOperator &I);
257   Instruction *visitXor(BinaryOperator &I);
258   Instruction *visitShl(BinaryOperator &I);
259   Instruction *visitAShr(BinaryOperator &I);
260   Instruction *visitLShr(BinaryOperator &I);
261   Instruction *commonShiftTransforms(BinaryOperator &I);
262   Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
263                                     Constant *RHSC);
264   Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
265                                             GlobalVariable *GV, CmpInst &ICI,
266                                             ConstantInt *AndCst = nullptr);
267   Instruction *visitFCmpInst(FCmpInst &I);
268   Instruction *visitICmpInst(ICmpInst &I);
269   Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
270   Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS,
271                                               ConstantInt *RHS);
272   Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
273                               ConstantInt *DivRHS);
274   Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
275                               ConstantInt *DivRHS);
276   Instruction *FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
277                                  ConstantInt *CI1, ConstantInt *CI2);
278   Instruction *FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
279                                  ConstantInt *CI1, ConstantInt *CI2);
280   Instruction *FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI,
281                                 ICmpInst::Predicate Pred);
282   Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
283                            ICmpInst::Predicate Cond, Instruction &I);
284   Instruction *FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca, Value *Other);
285   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
286                                    BinaryOperator &I);
287   Instruction *commonCastTransforms(CastInst &CI);
288   Instruction *commonPointerCastTransforms(CastInst &CI);
289   Instruction *visitTrunc(TruncInst &CI);
290   Instruction *visitZExt(ZExtInst &CI);
291   Instruction *visitSExt(SExtInst &CI);
292   Instruction *visitFPTrunc(FPTruncInst &CI);
293   Instruction *visitFPExt(CastInst &CI);
294   Instruction *visitFPToUI(FPToUIInst &FI);
295   Instruction *visitFPToSI(FPToSIInst &FI);
296   Instruction *visitUIToFP(CastInst &CI);
297   Instruction *visitSIToFP(CastInst &CI);
298   Instruction *visitPtrToInt(PtrToIntInst &CI);
299   Instruction *visitIntToPtr(IntToPtrInst &CI);
300   Instruction *visitBitCast(BitCastInst &CI);
301   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
302   Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
303   Instruction *FoldSelectIntoOp(SelectInst &SI, Value *, Value *);
304   Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
305                             Value *A, Value *B, Instruction &Outer,
306                             SelectPatternFlavor SPF2, Value *C);
307   Instruction *FoldItoFPtoI(Instruction &FI);
308   Instruction *visitSelectInst(SelectInst &SI);
309   Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
310   Instruction *visitCallInst(CallInst &CI);
311   Instruction *visitInvokeInst(InvokeInst &II);
312 
313   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
314   Instruction *visitPHINode(PHINode &PN);
315   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
316   Instruction *visitAllocaInst(AllocaInst &AI);
317   Instruction *visitAllocSite(Instruction &FI);
318   Instruction *visitFree(CallInst &FI);
319   Instruction *visitLoadInst(LoadInst &LI);
320   Instruction *visitStoreInst(StoreInst &SI);
321   Instruction *visitBranchInst(BranchInst &BI);
322   Instruction *visitSwitchInst(SwitchInst &SI);
323   Instruction *visitReturnInst(ReturnInst &RI);
324   Instruction *visitInsertValueInst(InsertValueInst &IV);
325   Instruction *visitInsertElementInst(InsertElementInst &IE);
326   Instruction *visitExtractElementInst(ExtractElementInst &EI);
327   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
328   Instruction *visitExtractValueInst(ExtractValueInst &EV);
329   Instruction *visitLandingPadInst(LandingPadInst &LI);
330 
331   // visitInstruction - Specify what to return for unhandled instructions...
visitInstruction(Instruction & I)332   Instruction *visitInstruction(Instruction &I) { return nullptr; }
333 
334   // True when DB dominates all uses of DI execpt UI.
335   // UI must be in the same block as DI.
336   // The routine checks that the DI parent and DB are different.
337   bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
338                         const BasicBlock *DB) const;
339 
340   // Replace select with select operand SIOpd in SI-ICmp sequence when possible
341   bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
342                                  const unsigned SIOpd);
343 
344 private:
345   bool ShouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
346   bool ShouldChangeType(Type *From, Type *To) const;
347   Value *dyn_castNegVal(Value *V) const;
348   Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const;
349   Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
350                             SmallVectorImpl<Value *> &NewIndices);
351   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
352 
353   /// \brief Classify whether a cast is worth optimizing.
354   ///
355   /// Returns true if the cast from "V to Ty" actually results in any code
356   /// being generated and is interesting to optimize out. If the cast can be
357   /// eliminated by some other simple transformation, we prefer to do the
358   /// simplification first.
359   bool ShouldOptimizeCast(Instruction::CastOps opcode, const Value *V,
360                           Type *Ty);
361 
362   /// \brief Try to optimize a sequence of instructions checking if an operation
363   /// on LHS and RHS overflows.
364   ///
365   /// If this overflow check is done via one of the overflow check intrinsics,
366   /// then CtxI has to be the call instruction calling that intrinsic.  If this
367   /// overflow check is done by arithmetic followed by a compare, then CtxI has
368   /// to be the arithmetic instruction.
369   ///
370   /// If a simplification is possible, stores the simplified result of the
371   /// operation in OperationResult and result of the overflow check in
372   /// OverflowResult, and return true.  If no simplification is possible,
373   /// returns false.
374   bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS,
375                              Instruction &CtxI, Value *&OperationResult,
376                              Constant *&OverflowResult);
377 
378   Instruction *visitCallSite(CallSite CS);
379   Instruction *tryOptimizeCall(CallInst *CI);
380   bool transformConstExprCastCall(CallSite CS);
381   Instruction *transformCallThroughTrampoline(CallSite CS,
382                                               IntrinsicInst *Tramp);
383   Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
384                                  bool DoXform = true);
385   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
386   bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction &CxtI);
387   bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
388   bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
389   bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction &CxtI);
390   Value *EmitGEPOffset(User *GEP);
391   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
392   Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
393 
394 public:
395   /// \brief Inserts an instruction \p New before instruction \p Old
396   ///
397   /// Also adds the new instruction to the worklist and returns \p New so that
398   /// it is suitable for use as the return from the visitation patterns.
InsertNewInstBefore(Instruction * New,Instruction & Old)399   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
400     assert(New && !New->getParent() &&
401            "New instruction already inserted into a basic block!");
402     BasicBlock *BB = Old.getParent();
403     BB->getInstList().insert(Old.getIterator(), New); // Insert inst
404     Worklist.Add(New);
405     return New;
406   }
407 
408   /// \brief Same as InsertNewInstBefore, but also sets the debug loc.
InsertNewInstWith(Instruction * New,Instruction & Old)409   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
410     New->setDebugLoc(Old.getDebugLoc());
411     return InsertNewInstBefore(New, Old);
412   }
413 
414   /// \brief A combiner-aware RAUW-like routine.
415   ///
416   /// This method is to be used when an instruction is found to be dead,
417   /// replacable with another preexisting expression. Here we add all uses of
418   /// I to the worklist, replace all uses of I with the new value, then return
419   /// I, so that the inst combiner will know that I was modified.
ReplaceInstUsesWith(Instruction & I,Value * V)420   Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
421     // If there are no uses to replace, then we return nullptr to indicate that
422     // no changes were made to the program.
423     if (I.use_empty()) return nullptr;
424 
425     Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
426 
427     // If we are replacing the instruction with itself, this must be in a
428     // segment of unreachable code, so just clobber the instruction.
429     if (&I == V)
430       V = UndefValue::get(I.getType());
431 
432     DEBUG(dbgs() << "IC: Replacing " << I << "\n"
433                  << "    with " << *V << '\n');
434 
435     I.replaceAllUsesWith(V);
436     return &I;
437   }
438 
439   /// Creates a result tuple for an overflow intrinsic \p II with a given
440   /// \p Result and a constant \p Overflow value.
CreateOverflowTuple(IntrinsicInst * II,Value * Result,Constant * Overflow)441   Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
442                                    Constant *Overflow) {
443     Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
444     StructType *ST = cast<StructType>(II->getType());
445     Constant *Struct = ConstantStruct::get(ST, V);
446     return InsertValueInst::Create(Struct, Result, 0);
447   }
448 
449   /// \brief Combiner aware instruction erasure.
450   ///
451   /// When dealing with an instruction that has side effects or produces a void
452   /// value, we can't rely on DCE to delete the instruction. Instead, visit
453   /// methods should return the value returned by this function.
EraseInstFromFunction(Instruction & I)454   Instruction *EraseInstFromFunction(Instruction &I) {
455     DEBUG(dbgs() << "IC: ERASE " << I << '\n');
456 
457     assert(I.use_empty() && "Cannot erase instruction that is used!");
458     // Make sure that we reprocess all operands now that we reduced their
459     // use counts.
460     if (I.getNumOperands() < 8) {
461       for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
462         if (Instruction *Op = dyn_cast<Instruction>(*i))
463           Worklist.Add(Op);
464     }
465     Worklist.Remove(&I);
466     I.eraseFromParent();
467     MadeIRChange = true;
468     return nullptr; // Don't do anything with FI
469   }
470 
computeKnownBits(Value * V,APInt & KnownZero,APInt & KnownOne,unsigned Depth,Instruction * CxtI)471   void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
472                         unsigned Depth, Instruction *CxtI) const {
473     return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
474                                   DT);
475   }
476 
477   bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth = 0,
478                          Instruction *CxtI = nullptr) const {
479     return llvm::MaskedValueIsZero(V, Mask, DL, Depth, AC, CxtI, DT);
480   }
481   unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0,
482                               Instruction *CxtI = nullptr) const {
483     return llvm::ComputeNumSignBits(Op, DL, Depth, AC, CxtI, DT);
484   }
485   void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
486                       unsigned Depth = 0, Instruction *CxtI = nullptr) const {
487     return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
488                                 DT);
489   }
computeOverflowForUnsignedMul(Value * LHS,Value * RHS,const Instruction * CxtI)490   OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
491                                                const Instruction *CxtI) {
492     return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, AC, CxtI, DT);
493   }
computeOverflowForUnsignedAdd(Value * LHS,Value * RHS,const Instruction * CxtI)494   OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
495                                                const Instruction *CxtI) {
496     return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, AC, CxtI, DT);
497   }
498 
499 private:
500   /// \brief Performs a few simplifications for operators which are associative
501   /// or commutative.
502   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
503 
504   /// \brief Tries to simplify binary operations which some other binary
505   /// operation distributes over.
506   ///
507   /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
508   /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
509   /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
510   /// value, or null if it didn't simplify.
511   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
512 
513   /// \brief Attempts to replace V with a simpler value based on the demanded
514   /// bits.
515   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero,
516                                  APInt &KnownOne, unsigned Depth,
517                                  Instruction *CxtI);
518   bool SimplifyDemandedBits(Use &U, APInt DemandedMask, APInt &KnownZero,
519                             APInt &KnownOne, unsigned Depth = 0);
520   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
521   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
522   Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl,
523                                     APInt DemandedMask, APInt &KnownZero,
524                                     APInt &KnownOne);
525 
526   /// \brief Tries to simplify operands to an integer instruction based on its
527   /// demanded bits.
528   bool SimplifyDemandedInstructionBits(Instruction &Inst);
529 
530   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
531                                     APInt &UndefElts, unsigned Depth = 0);
532 
533   Value *SimplifyVectorOp(BinaryOperator &Inst);
534   Value *SimplifyBSwap(BinaryOperator &Inst);
535 
536   // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
537   // which has a PHI node as operand #0, see if we can fold the instruction
538   // into the PHI (which is only possible if all operands to the PHI are
539   // constants).
540   //
541   Instruction *FoldOpIntoPhi(Instruction &I);
542 
543   /// \brief Try to rotate an operation below a PHI node, using PHI nodes for
544   /// its operands.
545   Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
546   Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
547   Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
548   Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
549   Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
550 
551   Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
552                         ConstantInt *AndRHS, BinaryOperator &TheAnd);
553 
554   Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
555                             bool isSub, Instruction &I);
556   Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned,
557                          bool Inside);
558   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
559   Instruction *MatchBSwapOrBitReverse(BinaryOperator &I);
560   bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
561   Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
562   Instruction *SimplifyMemSet(MemSetInst *MI);
563 
564   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
565 
566   /// \brief Returns a value X such that Val = X * Scale, or null if none.
567   ///
568   /// If the multiplication is known not to overflow then NoSignedWrap is set.
569   Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
570 };
571 
572 } // end namespace llvm.
573 
574 #undef DEBUG_TYPE
575 
576 #endif
577