1 //===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file defines ObjC ARC optimizations. ARC stands for Automatic
11 /// Reference Counting and is a system for managing reference counts for objects
12 /// in Objective C.
13 ///
14 /// The optimizations performed include elimination of redundant, partially
15 /// redundant, and inconsequential reference count operations, elimination of
16 /// redundant weak pointer operations, and numerous minor simplifications.
17 ///
18 /// WARNING: This file knows about certain library functions. It recognizes them
19 /// by name, and hardwires knowledge of their semantics.
20 ///
21 /// WARNING: This file knows about how certain Objective-C library functions are
22 /// used. Naive LLVM IR transformations which would otherwise be
23 /// behavior-preserving may break these assumptions.
24 ///
25 //===----------------------------------------------------------------------===//
26
27 #include "ObjCARC.h"
28 #include "ARCRuntimeEntryPoints.h"
29 #include "BlotMapVector.h"
30 #include "DependencyAnalysis.h"
31 #include "ProvenanceAnalysis.h"
32 #include "PtrState.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44
45 using namespace llvm;
46 using namespace llvm::objcarc;
47
48 #define DEBUG_TYPE "objc-arc-opts"
49
50 /// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
51 /// @{
52
53 /// \brief This is similar to GetRCIdentityRoot but it stops as soon
54 /// as it finds a value with multiple uses.
FindSingleUseIdentifiedObject(const Value * Arg)55 static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
56 if (Arg->hasOneUse()) {
57 if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
58 return FindSingleUseIdentifiedObject(BC->getOperand(0));
59 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
60 if (GEP->hasAllZeroIndices())
61 return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
62 if (IsForwarding(GetBasicARCInstKind(Arg)))
63 return FindSingleUseIdentifiedObject(
64 cast<CallInst>(Arg)->getArgOperand(0));
65 if (!IsObjCIdentifiedObject(Arg))
66 return nullptr;
67 return Arg;
68 }
69
70 // If we found an identifiable object but it has multiple uses, but they are
71 // trivial uses, we can still consider this to be a single-use value.
72 if (IsObjCIdentifiedObject(Arg)) {
73 for (const User *U : Arg->users())
74 if (!U->use_empty() || GetRCIdentityRoot(U) != Arg)
75 return nullptr;
76
77 return Arg;
78 }
79
80 return nullptr;
81 }
82
83 /// This is a wrapper around getUnderlyingObjCPtr along the lines of
84 /// GetUnderlyingObjects except that it returns early when it sees the first
85 /// alloca.
AreAnyUnderlyingObjectsAnAlloca(const Value * V,const DataLayout & DL)86 static inline bool AreAnyUnderlyingObjectsAnAlloca(const Value *V,
87 const DataLayout &DL) {
88 SmallPtrSet<const Value *, 4> Visited;
89 SmallVector<const Value *, 4> Worklist;
90 Worklist.push_back(V);
91 do {
92 const Value *P = Worklist.pop_back_val();
93 P = GetUnderlyingObjCPtr(P, DL);
94
95 if (isa<AllocaInst>(P))
96 return true;
97
98 if (!Visited.insert(P).second)
99 continue;
100
101 if (const SelectInst *SI = dyn_cast<const SelectInst>(P)) {
102 Worklist.push_back(SI->getTrueValue());
103 Worklist.push_back(SI->getFalseValue());
104 continue;
105 }
106
107 if (const PHINode *PN = dyn_cast<const PHINode>(P)) {
108 for (Value *IncValue : PN->incoming_values())
109 Worklist.push_back(IncValue);
110 continue;
111 }
112 } while (!Worklist.empty());
113
114 return false;
115 }
116
117
118 /// @}
119 ///
120 /// \defgroup ARCOpt ARC Optimization.
121 /// @{
122
123 // TODO: On code like this:
124 //
125 // objc_retain(%x)
126 // stuff_that_cannot_release()
127 // objc_autorelease(%x)
128 // stuff_that_cannot_release()
129 // objc_retain(%x)
130 // stuff_that_cannot_release()
131 // objc_autorelease(%x)
132 //
133 // The second retain and autorelease can be deleted.
134
135 // TODO: It should be possible to delete
136 // objc_autoreleasePoolPush and objc_autoreleasePoolPop
137 // pairs if nothing is actually autoreleased between them. Also, autorelease
138 // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
139 // after inlining) can be turned into plain release calls.
140
141 // TODO: Critical-edge splitting. If the optimial insertion point is
142 // a critical edge, the current algorithm has to fail, because it doesn't
143 // know how to split edges. It should be possible to make the optimizer
144 // think in terms of edges, rather than blocks, and then split critical
145 // edges on demand.
146
147 // TODO: OptimizeSequences could generalized to be Interprocedural.
148
149 // TODO: Recognize that a bunch of other objc runtime calls have
150 // non-escaping arguments and non-releasing arguments, and may be
151 // non-autoreleasing.
152
153 // TODO: Sink autorelease calls as far as possible. Unfortunately we
154 // usually can't sink them past other calls, which would be the main
155 // case where it would be useful.
156
157 // TODO: The pointer returned from objc_loadWeakRetained is retained.
158
159 // TODO: Delete release+retain pairs (rare).
160
161 STATISTIC(NumNoops, "Number of no-op objc calls eliminated");
162 STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
163 STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
164 STATISTIC(NumRets, "Number of return value forwarding "
165 "retain+autoreleases eliminated");
166 STATISTIC(NumRRs, "Number of retain+release paths eliminated");
167 STATISTIC(NumPeeps, "Number of calls peephole-optimized");
168 #ifndef NDEBUG
169 STATISTIC(NumRetainsBeforeOpt,
170 "Number of retains before optimization");
171 STATISTIC(NumReleasesBeforeOpt,
172 "Number of releases before optimization");
173 STATISTIC(NumRetainsAfterOpt,
174 "Number of retains after optimization");
175 STATISTIC(NumReleasesAfterOpt,
176 "Number of releases after optimization");
177 #endif
178
179 namespace {
180 /// \brief Per-BasicBlock state.
181 class BBState {
182 /// The number of unique control paths from the entry which can reach this
183 /// block.
184 unsigned TopDownPathCount;
185
186 /// The number of unique control paths to exits from this block.
187 unsigned BottomUpPathCount;
188
189 /// The top-down traversal uses this to record information known about a
190 /// pointer at the bottom of each block.
191 BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown;
192
193 /// The bottom-up traversal uses this to record information known about a
194 /// pointer at the top of each block.
195 BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp;
196
197 /// Effective predecessors of the current block ignoring ignorable edges and
198 /// ignored backedges.
199 SmallVector<BasicBlock *, 2> Preds;
200
201 /// Effective successors of the current block ignoring ignorable edges and
202 /// ignored backedges.
203 SmallVector<BasicBlock *, 2> Succs;
204
205 public:
206 static const unsigned OverflowOccurredValue;
207
BBState()208 BBState() : TopDownPathCount(0), BottomUpPathCount(0) { }
209
210 typedef decltype(PerPtrTopDown)::iterator top_down_ptr_iterator;
211 typedef decltype(PerPtrTopDown)::const_iterator const_top_down_ptr_iterator;
212
top_down_ptr_begin()213 top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
top_down_ptr_end()214 top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
top_down_ptr_begin() const215 const_top_down_ptr_iterator top_down_ptr_begin() const {
216 return PerPtrTopDown.begin();
217 }
top_down_ptr_end() const218 const_top_down_ptr_iterator top_down_ptr_end() const {
219 return PerPtrTopDown.end();
220 }
hasTopDownPtrs() const221 bool hasTopDownPtrs() const {
222 return !PerPtrTopDown.empty();
223 }
224
225 typedef decltype(PerPtrBottomUp)::iterator bottom_up_ptr_iterator;
226 typedef decltype(
227 PerPtrBottomUp)::const_iterator const_bottom_up_ptr_iterator;
228
bottom_up_ptr_begin()229 bottom_up_ptr_iterator bottom_up_ptr_begin() {
230 return PerPtrBottomUp.begin();
231 }
bottom_up_ptr_end()232 bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
bottom_up_ptr_begin() const233 const_bottom_up_ptr_iterator bottom_up_ptr_begin() const {
234 return PerPtrBottomUp.begin();
235 }
bottom_up_ptr_end() const236 const_bottom_up_ptr_iterator bottom_up_ptr_end() const {
237 return PerPtrBottomUp.end();
238 }
hasBottomUpPtrs() const239 bool hasBottomUpPtrs() const {
240 return !PerPtrBottomUp.empty();
241 }
242
243 /// Mark this block as being an entry block, which has one path from the
244 /// entry by definition.
SetAsEntry()245 void SetAsEntry() { TopDownPathCount = 1; }
246
247 /// Mark this block as being an exit block, which has one path to an exit by
248 /// definition.
SetAsExit()249 void SetAsExit() { BottomUpPathCount = 1; }
250
251 /// Attempt to find the PtrState object describing the top down state for
252 /// pointer Arg. Return a new initialized PtrState describing the top down
253 /// state for Arg if we do not find one.
getPtrTopDownState(const Value * Arg)254 TopDownPtrState &getPtrTopDownState(const Value *Arg) {
255 return PerPtrTopDown[Arg];
256 }
257
258 /// Attempt to find the PtrState object describing the bottom up state for
259 /// pointer Arg. Return a new initialized PtrState describing the bottom up
260 /// state for Arg if we do not find one.
getPtrBottomUpState(const Value * Arg)261 BottomUpPtrState &getPtrBottomUpState(const Value *Arg) {
262 return PerPtrBottomUp[Arg];
263 }
264
265 /// Attempt to find the PtrState object describing the bottom up state for
266 /// pointer Arg.
findPtrBottomUpState(const Value * Arg)267 bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) {
268 return PerPtrBottomUp.find(Arg);
269 }
270
clearBottomUpPointers()271 void clearBottomUpPointers() {
272 PerPtrBottomUp.clear();
273 }
274
clearTopDownPointers()275 void clearTopDownPointers() {
276 PerPtrTopDown.clear();
277 }
278
279 void InitFromPred(const BBState &Other);
280 void InitFromSucc(const BBState &Other);
281 void MergePred(const BBState &Other);
282 void MergeSucc(const BBState &Other);
283
284 /// Compute the number of possible unique paths from an entry to an exit
285 /// which pass through this block. This is only valid after both the
286 /// top-down and bottom-up traversals are complete.
287 ///
288 /// Returns true if overflow occurred. Returns false if overflow did not
289 /// occur.
GetAllPathCountWithOverflow(unsigned & PathCount) const290 bool GetAllPathCountWithOverflow(unsigned &PathCount) const {
291 if (TopDownPathCount == OverflowOccurredValue ||
292 BottomUpPathCount == OverflowOccurredValue)
293 return true;
294 unsigned long long Product =
295 (unsigned long long)TopDownPathCount*BottomUpPathCount;
296 // Overflow occurred if any of the upper bits of Product are set or if all
297 // the lower bits of Product are all set.
298 return (Product >> 32) ||
299 ((PathCount = Product) == OverflowOccurredValue);
300 }
301
302 // Specialized CFG utilities.
303 typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator;
pred_begin() const304 edge_iterator pred_begin() const { return Preds.begin(); }
pred_end() const305 edge_iterator pred_end() const { return Preds.end(); }
succ_begin() const306 edge_iterator succ_begin() const { return Succs.begin(); }
succ_end() const307 edge_iterator succ_end() const { return Succs.end(); }
308
addSucc(BasicBlock * Succ)309 void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
addPred(BasicBlock * Pred)310 void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
311
isExit() const312 bool isExit() const { return Succs.empty(); }
313 };
314
315 const unsigned BBState::OverflowOccurredValue = 0xffffffff;
316 }
317
318 namespace llvm {
319 raw_ostream &operator<<(raw_ostream &OS,
320 BBState &BBState) LLVM_ATTRIBUTE_UNUSED;
321 }
322
InitFromPred(const BBState & Other)323 void BBState::InitFromPred(const BBState &Other) {
324 PerPtrTopDown = Other.PerPtrTopDown;
325 TopDownPathCount = Other.TopDownPathCount;
326 }
327
InitFromSucc(const BBState & Other)328 void BBState::InitFromSucc(const BBState &Other) {
329 PerPtrBottomUp = Other.PerPtrBottomUp;
330 BottomUpPathCount = Other.BottomUpPathCount;
331 }
332
333 /// The top-down traversal uses this to merge information about predecessors to
334 /// form the initial state for a new block.
MergePred(const BBState & Other)335 void BBState::MergePred(const BBState &Other) {
336 if (TopDownPathCount == OverflowOccurredValue)
337 return;
338
339 // Other.TopDownPathCount can be 0, in which case it is either dead or a
340 // loop backedge. Loop backedges are special.
341 TopDownPathCount += Other.TopDownPathCount;
342
343 // In order to be consistent, we clear the top down pointers when by adding
344 // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow
345 // has not occurred.
346 if (TopDownPathCount == OverflowOccurredValue) {
347 clearTopDownPointers();
348 return;
349 }
350
351 // Check for overflow. If we have overflow, fall back to conservative
352 // behavior.
353 if (TopDownPathCount < Other.TopDownPathCount) {
354 TopDownPathCount = OverflowOccurredValue;
355 clearTopDownPointers();
356 return;
357 }
358
359 // For each entry in the other set, if our set has an entry with the same key,
360 // merge the entries. Otherwise, copy the entry and merge it with an empty
361 // entry.
362 for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end();
363 MI != ME; ++MI) {
364 auto Pair = PerPtrTopDown.insert(*MI);
365 Pair.first->second.Merge(Pair.second ? TopDownPtrState() : MI->second,
366 /*TopDown=*/true);
367 }
368
369 // For each entry in our set, if the other set doesn't have an entry with the
370 // same key, force it to merge with an empty entry.
371 for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI)
372 if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
373 MI->second.Merge(TopDownPtrState(), /*TopDown=*/true);
374 }
375
376 /// The bottom-up traversal uses this to merge information about successors to
377 /// form the initial state for a new block.
MergeSucc(const BBState & Other)378 void BBState::MergeSucc(const BBState &Other) {
379 if (BottomUpPathCount == OverflowOccurredValue)
380 return;
381
382 // Other.BottomUpPathCount can be 0, in which case it is either dead or a
383 // loop backedge. Loop backedges are special.
384 BottomUpPathCount += Other.BottomUpPathCount;
385
386 // In order to be consistent, we clear the top down pointers when by adding
387 // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow
388 // has not occurred.
389 if (BottomUpPathCount == OverflowOccurredValue) {
390 clearBottomUpPointers();
391 return;
392 }
393
394 // Check for overflow. If we have overflow, fall back to conservative
395 // behavior.
396 if (BottomUpPathCount < Other.BottomUpPathCount) {
397 BottomUpPathCount = OverflowOccurredValue;
398 clearBottomUpPointers();
399 return;
400 }
401
402 // For each entry in the other set, if our set has an entry with the
403 // same key, merge the entries. Otherwise, copy the entry and merge
404 // it with an empty entry.
405 for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end();
406 MI != ME; ++MI) {
407 auto Pair = PerPtrBottomUp.insert(*MI);
408 Pair.first->second.Merge(Pair.second ? BottomUpPtrState() : MI->second,
409 /*TopDown=*/false);
410 }
411
412 // For each entry in our set, if the other set doesn't have an entry
413 // with the same key, force it to merge with an empty entry.
414 for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME;
415 ++MI)
416 if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
417 MI->second.Merge(BottomUpPtrState(), /*TopDown=*/false);
418 }
419
operator <<(raw_ostream & OS,BBState & BBInfo)420 raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) {
421 // Dump the pointers we are tracking.
422 OS << " TopDown State:\n";
423 if (!BBInfo.hasTopDownPtrs()) {
424 DEBUG(llvm::dbgs() << " NONE!\n");
425 } else {
426 for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end();
427 I != E; ++I) {
428 const PtrState &P = I->second;
429 OS << " Ptr: " << *I->first
430 << "\n KnownSafe: " << (P.IsKnownSafe()?"true":"false")
431 << "\n ImpreciseRelease: "
432 << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
433 << " HasCFGHazards: "
434 << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
435 << " KnownPositive: "
436 << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
437 << " Seq: "
438 << P.GetSeq() << "\n";
439 }
440 }
441
442 OS << " BottomUp State:\n";
443 if (!BBInfo.hasBottomUpPtrs()) {
444 DEBUG(llvm::dbgs() << " NONE!\n");
445 } else {
446 for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end();
447 I != E; ++I) {
448 const PtrState &P = I->second;
449 OS << " Ptr: " << *I->first
450 << "\n KnownSafe: " << (P.IsKnownSafe()?"true":"false")
451 << "\n ImpreciseRelease: "
452 << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
453 << " HasCFGHazards: "
454 << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
455 << " KnownPositive: "
456 << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
457 << " Seq: "
458 << P.GetSeq() << "\n";
459 }
460 }
461
462 return OS;
463 }
464
465 namespace {
466
467 /// \brief The main ARC optimization pass.
468 class ObjCARCOpt : public FunctionPass {
469 bool Changed;
470 ProvenanceAnalysis PA;
471
472 /// A cache of references to runtime entry point constants.
473 ARCRuntimeEntryPoints EP;
474
475 /// A cache of MDKinds that can be passed into other functions to propagate
476 /// MDKind identifiers.
477 ARCMDKindCache MDKindCache;
478
479 // This is used to track if a pointer is stored into an alloca.
480 DenseSet<const Value *> MultiOwnersSet;
481
482 /// A flag indicating whether this optimization pass should run.
483 bool Run;
484
485 /// Flags which determine whether each of the interesting runtime functions
486 /// is in fact used in the current function.
487 unsigned UsedInThisFunction;
488
489 bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
490 void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
491 ARCInstKind &Class);
492 void OptimizeIndividualCalls(Function &F);
493
494 void CheckForCFGHazards(const BasicBlock *BB,
495 DenseMap<const BasicBlock *, BBState> &BBStates,
496 BBState &MyStates) const;
497 bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB,
498 BlotMapVector<Value *, RRInfo> &Retains,
499 BBState &MyStates);
500 bool VisitBottomUp(BasicBlock *BB,
501 DenseMap<const BasicBlock *, BBState> &BBStates,
502 BlotMapVector<Value *, RRInfo> &Retains);
503 bool VisitInstructionTopDown(Instruction *Inst,
504 DenseMap<Value *, RRInfo> &Releases,
505 BBState &MyStates);
506 bool VisitTopDown(BasicBlock *BB,
507 DenseMap<const BasicBlock *, BBState> &BBStates,
508 DenseMap<Value *, RRInfo> &Releases);
509 bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates,
510 BlotMapVector<Value *, RRInfo> &Retains,
511 DenseMap<Value *, RRInfo> &Releases);
512
513 void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
514 BlotMapVector<Value *, RRInfo> &Retains,
515 DenseMap<Value *, RRInfo> &Releases,
516 SmallVectorImpl<Instruction *> &DeadInsts, Module *M);
517
518 bool
519 PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates,
520 BlotMapVector<Value *, RRInfo> &Retains,
521 DenseMap<Value *, RRInfo> &Releases, Module *M,
522 SmallVectorImpl<Instruction *> &NewRetains,
523 SmallVectorImpl<Instruction *> &NewReleases,
524 SmallVectorImpl<Instruction *> &DeadInsts,
525 RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
526 Value *Arg, bool KnownSafe,
527 bool &AnyPairsCompletelyEliminated);
528
529 bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
530 BlotMapVector<Value *, RRInfo> &Retains,
531 DenseMap<Value *, RRInfo> &Releases, Module *M);
532
533 void OptimizeWeakCalls(Function &F);
534
535 bool OptimizeSequences(Function &F);
536
537 void OptimizeReturns(Function &F);
538
539 #ifndef NDEBUG
540 void GatherStatistics(Function &F, bool AfterOptimization = false);
541 #endif
542
543 void getAnalysisUsage(AnalysisUsage &AU) const override;
544 bool doInitialization(Module &M) override;
545 bool runOnFunction(Function &F) override;
546 void releaseMemory() override;
547
548 public:
549 static char ID;
ObjCARCOpt()550 ObjCARCOpt() : FunctionPass(ID) {
551 initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
552 }
553 };
554 }
555
556 char ObjCARCOpt::ID = 0;
557 INITIALIZE_PASS_BEGIN(ObjCARCOpt,
558 "objc-arc", "ObjC ARC optimization", false, false)
INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)559 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
560 INITIALIZE_PASS_END(ObjCARCOpt,
561 "objc-arc", "ObjC ARC optimization", false, false)
562
563 Pass *llvm::createObjCARCOptPass() {
564 return new ObjCARCOpt();
565 }
566
getAnalysisUsage(AnalysisUsage & AU) const567 void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
568 AU.addRequired<ObjCARCAAWrapperPass>();
569 AU.addRequired<AAResultsWrapperPass>();
570 // ARC optimization doesn't currently split critical edges.
571 AU.setPreservesCFG();
572 }
573
574 /// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
575 /// not a return value. Or, if it can be paired with an
576 /// objc_autoreleaseReturnValue, delete the pair and return true.
577 bool
OptimizeRetainRVCall(Function & F,Instruction * RetainRV)578 ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
579 // Check for the argument being from an immediately preceding call or invoke.
580 const Value *Arg = GetArgRCIdentityRoot(RetainRV);
581 ImmutableCallSite CS(Arg);
582 if (const Instruction *Call = CS.getInstruction()) {
583 if (Call->getParent() == RetainRV->getParent()) {
584 BasicBlock::const_iterator I(Call);
585 ++I;
586 while (IsNoopInstruction(&*I))
587 ++I;
588 if (&*I == RetainRV)
589 return false;
590 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
591 BasicBlock *RetainRVParent = RetainRV->getParent();
592 if (II->getNormalDest() == RetainRVParent) {
593 BasicBlock::const_iterator I = RetainRVParent->begin();
594 while (IsNoopInstruction(&*I))
595 ++I;
596 if (&*I == RetainRV)
597 return false;
598 }
599 }
600 }
601
602 // Check for being preceded by an objc_autoreleaseReturnValue on the same
603 // pointer. In this case, we can delete the pair.
604 BasicBlock::iterator I = RetainRV->getIterator(),
605 Begin = RetainRV->getParent()->begin();
606 if (I != Begin) {
607 do
608 --I;
609 while (I != Begin && IsNoopInstruction(&*I));
610 if (GetBasicARCInstKind(&*I) == ARCInstKind::AutoreleaseRV &&
611 GetArgRCIdentityRoot(&*I) == Arg) {
612 Changed = true;
613 ++NumPeeps;
614
615 DEBUG(dbgs() << "Erasing autoreleaseRV,retainRV pair: " << *I << "\n"
616 << "Erasing " << *RetainRV << "\n");
617
618 EraseInstruction(&*I);
619 EraseInstruction(RetainRV);
620 return true;
621 }
622 }
623
624 // Turn it to a plain objc_retain.
625 Changed = true;
626 ++NumPeeps;
627
628 DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => "
629 "objc_retain since the operand is not a return value.\n"
630 "Old = " << *RetainRV << "\n");
631
632 Constant *NewDecl = EP.get(ARCRuntimeEntryPointKind::Retain);
633 cast<CallInst>(RetainRV)->setCalledFunction(NewDecl);
634
635 DEBUG(dbgs() << "New = " << *RetainRV << "\n");
636
637 return false;
638 }
639
640 /// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
641 /// used as a return value.
OptimizeAutoreleaseRVCall(Function & F,Instruction * AutoreleaseRV,ARCInstKind & Class)642 void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F,
643 Instruction *AutoreleaseRV,
644 ARCInstKind &Class) {
645 // Check for a return of the pointer value.
646 const Value *Ptr = GetArgRCIdentityRoot(AutoreleaseRV);
647 SmallVector<const Value *, 2> Users;
648 Users.push_back(Ptr);
649 do {
650 Ptr = Users.pop_back_val();
651 for (const User *U : Ptr->users()) {
652 if (isa<ReturnInst>(U) || GetBasicARCInstKind(U) == ARCInstKind::RetainRV)
653 return;
654 if (isa<BitCastInst>(U))
655 Users.push_back(U);
656 }
657 } while (!Users.empty());
658
659 Changed = true;
660 ++NumPeeps;
661
662 DEBUG(dbgs() << "Transforming objc_autoreleaseReturnValue => "
663 "objc_autorelease since its operand is not used as a return "
664 "value.\n"
665 "Old = " << *AutoreleaseRV << "\n");
666
667 CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
668 Constant *NewDecl = EP.get(ARCRuntimeEntryPointKind::Autorelease);
669 AutoreleaseRVCI->setCalledFunction(NewDecl);
670 AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
671 Class = ARCInstKind::Autorelease;
672
673 DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n");
674
675 }
676
677 /// Visit each call, one at a time, and make simplifications without doing any
678 /// additional analysis.
OptimizeIndividualCalls(Function & F)679 void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
680 DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n");
681 // Reset all the flags in preparation for recomputing them.
682 UsedInThisFunction = 0;
683
684 // Visit all objc_* calls in F.
685 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
686 Instruction *Inst = &*I++;
687
688 ARCInstKind Class = GetBasicARCInstKind(Inst);
689
690 DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n");
691
692 switch (Class) {
693 default: break;
694
695 // Delete no-op casts. These function calls have special semantics, but
696 // the semantics are entirely implemented via lowering in the front-end,
697 // so by the time they reach the optimizer, they are just no-op calls
698 // which return their argument.
699 //
700 // There are gray areas here, as the ability to cast reference-counted
701 // pointers to raw void* and back allows code to break ARC assumptions,
702 // however these are currently considered to be unimportant.
703 case ARCInstKind::NoopCast:
704 Changed = true;
705 ++NumNoops;
706 DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n");
707 EraseInstruction(Inst);
708 continue;
709
710 // If the pointer-to-weak-pointer is null, it's undefined behavior.
711 case ARCInstKind::StoreWeak:
712 case ARCInstKind::LoadWeak:
713 case ARCInstKind::LoadWeakRetained:
714 case ARCInstKind::InitWeak:
715 case ARCInstKind::DestroyWeak: {
716 CallInst *CI = cast<CallInst>(Inst);
717 if (IsNullOrUndef(CI->getArgOperand(0))) {
718 Changed = true;
719 Type *Ty = CI->getArgOperand(0)->getType();
720 new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
721 Constant::getNullValue(Ty),
722 CI);
723 llvm::Value *NewValue = UndefValue::get(CI->getType());
724 DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
725 "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
726 CI->replaceAllUsesWith(NewValue);
727 CI->eraseFromParent();
728 continue;
729 }
730 break;
731 }
732 case ARCInstKind::CopyWeak:
733 case ARCInstKind::MoveWeak: {
734 CallInst *CI = cast<CallInst>(Inst);
735 if (IsNullOrUndef(CI->getArgOperand(0)) ||
736 IsNullOrUndef(CI->getArgOperand(1))) {
737 Changed = true;
738 Type *Ty = CI->getArgOperand(0)->getType();
739 new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
740 Constant::getNullValue(Ty),
741 CI);
742
743 llvm::Value *NewValue = UndefValue::get(CI->getType());
744 DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
745 "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
746
747 CI->replaceAllUsesWith(NewValue);
748 CI->eraseFromParent();
749 continue;
750 }
751 break;
752 }
753 case ARCInstKind::RetainRV:
754 if (OptimizeRetainRVCall(F, Inst))
755 continue;
756 break;
757 case ARCInstKind::AutoreleaseRV:
758 OptimizeAutoreleaseRVCall(F, Inst, Class);
759 break;
760 }
761
762 // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
763 if (IsAutorelease(Class) && Inst->use_empty()) {
764 CallInst *Call = cast<CallInst>(Inst);
765 const Value *Arg = Call->getArgOperand(0);
766 Arg = FindSingleUseIdentifiedObject(Arg);
767 if (Arg) {
768 Changed = true;
769 ++NumAutoreleases;
770
771 // Create the declaration lazily.
772 LLVMContext &C = Inst->getContext();
773
774 Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
775 CallInst *NewCall = CallInst::Create(Decl, Call->getArgOperand(0), "",
776 Call);
777 NewCall->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease),
778 MDNode::get(C, None));
779
780 DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) "
781 "since x is otherwise unused.\nOld: " << *Call << "\nNew: "
782 << *NewCall << "\n");
783
784 EraseInstruction(Call);
785 Inst = NewCall;
786 Class = ARCInstKind::Release;
787 }
788 }
789
790 // For functions which can never be passed stack arguments, add
791 // a tail keyword.
792 if (IsAlwaysTail(Class)) {
793 Changed = true;
794 DEBUG(dbgs() << "Adding tail keyword to function since it can never be "
795 "passed stack args: " << *Inst << "\n");
796 cast<CallInst>(Inst)->setTailCall();
797 }
798
799 // Ensure that functions that can never have a "tail" keyword due to the
800 // semantics of ARC truly do not do so.
801 if (IsNeverTail(Class)) {
802 Changed = true;
803 DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst <<
804 "\n");
805 cast<CallInst>(Inst)->setTailCall(false);
806 }
807
808 // Set nounwind as needed.
809 if (IsNoThrow(Class)) {
810 Changed = true;
811 DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst
812 << "\n");
813 cast<CallInst>(Inst)->setDoesNotThrow();
814 }
815
816 if (!IsNoopOnNull(Class)) {
817 UsedInThisFunction |= 1 << unsigned(Class);
818 continue;
819 }
820
821 const Value *Arg = GetArgRCIdentityRoot(Inst);
822
823 // ARC calls with null are no-ops. Delete them.
824 if (IsNullOrUndef(Arg)) {
825 Changed = true;
826 ++NumNoops;
827 DEBUG(dbgs() << "ARC calls with null are no-ops. Erasing: " << *Inst
828 << "\n");
829 EraseInstruction(Inst);
830 continue;
831 }
832
833 // Keep track of which of retain, release, autorelease, and retain_block
834 // are actually present in this function.
835 UsedInThisFunction |= 1 << unsigned(Class);
836
837 // If Arg is a PHI, and one or more incoming values to the
838 // PHI are null, and the call is control-equivalent to the PHI, and there
839 // are no relevant side effects between the PHI and the call, the call
840 // could be pushed up to just those paths with non-null incoming values.
841 // For now, don't bother splitting critical edges for this.
842 SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
843 Worklist.push_back(std::make_pair(Inst, Arg));
844 do {
845 std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
846 Inst = Pair.first;
847 Arg = Pair.second;
848
849 const PHINode *PN = dyn_cast<PHINode>(Arg);
850 if (!PN) continue;
851
852 // Determine if the PHI has any null operands, or any incoming
853 // critical edges.
854 bool HasNull = false;
855 bool HasCriticalEdges = false;
856 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
857 Value *Incoming =
858 GetRCIdentityRoot(PN->getIncomingValue(i));
859 if (IsNullOrUndef(Incoming))
860 HasNull = true;
861 else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
862 .getNumSuccessors() != 1) {
863 HasCriticalEdges = true;
864 break;
865 }
866 }
867 // If we have null operands and no critical edges, optimize.
868 if (!HasCriticalEdges && HasNull) {
869 SmallPtrSet<Instruction *, 4> DependingInstructions;
870 SmallPtrSet<const BasicBlock *, 4> Visited;
871
872 // Check that there is nothing that cares about the reference
873 // count between the call and the phi.
874 switch (Class) {
875 case ARCInstKind::Retain:
876 case ARCInstKind::RetainBlock:
877 // These can always be moved up.
878 break;
879 case ARCInstKind::Release:
880 // These can't be moved across things that care about the retain
881 // count.
882 FindDependencies(NeedsPositiveRetainCount, Arg,
883 Inst->getParent(), Inst,
884 DependingInstructions, Visited, PA);
885 break;
886 case ARCInstKind::Autorelease:
887 // These can't be moved across autorelease pool scope boundaries.
888 FindDependencies(AutoreleasePoolBoundary, Arg,
889 Inst->getParent(), Inst,
890 DependingInstructions, Visited, PA);
891 break;
892 case ARCInstKind::RetainRV:
893 case ARCInstKind::AutoreleaseRV:
894 // Don't move these; the RV optimization depends on the autoreleaseRV
895 // being tail called, and the retainRV being immediately after a call
896 // (which might still happen if we get lucky with codegen layout, but
897 // it's not worth taking the chance).
898 continue;
899 default:
900 llvm_unreachable("Invalid dependence flavor");
901 }
902
903 if (DependingInstructions.size() == 1 &&
904 *DependingInstructions.begin() == PN) {
905 Changed = true;
906 ++NumPartialNoops;
907 // Clone the call into each predecessor that has a non-null value.
908 CallInst *CInst = cast<CallInst>(Inst);
909 Type *ParamTy = CInst->getArgOperand(0)->getType();
910 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
911 Value *Incoming =
912 GetRCIdentityRoot(PN->getIncomingValue(i));
913 if (!IsNullOrUndef(Incoming)) {
914 CallInst *Clone = cast<CallInst>(CInst->clone());
915 Value *Op = PN->getIncomingValue(i);
916 Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
917 if (Op->getType() != ParamTy)
918 Op = new BitCastInst(Op, ParamTy, "", InsertPos);
919 Clone->setArgOperand(0, Op);
920 Clone->insertBefore(InsertPos);
921
922 DEBUG(dbgs() << "Cloning "
923 << *CInst << "\n"
924 "And inserting clone at " << *InsertPos << "\n");
925 Worklist.push_back(std::make_pair(Clone, Incoming));
926 }
927 }
928 // Erase the original call.
929 DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
930 EraseInstruction(CInst);
931 continue;
932 }
933 }
934 } while (!Worklist.empty());
935 }
936 }
937
938 /// If we have a top down pointer in the S_Use state, make sure that there are
939 /// no CFG hazards by checking the states of various bottom up pointers.
CheckForUseCFGHazard(const Sequence SuccSSeq,const bool SuccSRRIKnownSafe,TopDownPtrState & S,bool & SomeSuccHasSame,bool & AllSuccsHaveSame,bool & NotAllSeqEqualButKnownSafe,bool & ShouldContinue)940 static void CheckForUseCFGHazard(const Sequence SuccSSeq,
941 const bool SuccSRRIKnownSafe,
942 TopDownPtrState &S,
943 bool &SomeSuccHasSame,
944 bool &AllSuccsHaveSame,
945 bool &NotAllSeqEqualButKnownSafe,
946 bool &ShouldContinue) {
947 switch (SuccSSeq) {
948 case S_CanRelease: {
949 if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) {
950 S.ClearSequenceProgress();
951 break;
952 }
953 S.SetCFGHazardAfflicted(true);
954 ShouldContinue = true;
955 break;
956 }
957 case S_Use:
958 SomeSuccHasSame = true;
959 break;
960 case S_Stop:
961 case S_Release:
962 case S_MovableRelease:
963 if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
964 AllSuccsHaveSame = false;
965 else
966 NotAllSeqEqualButKnownSafe = true;
967 break;
968 case S_Retain:
969 llvm_unreachable("bottom-up pointer in retain state!");
970 case S_None:
971 llvm_unreachable("This should have been handled earlier.");
972 }
973 }
974
975 /// If we have a Top Down pointer in the S_CanRelease state, make sure that
976 /// there are no CFG hazards by checking the states of various bottom up
977 /// pointers.
CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,const bool SuccSRRIKnownSafe,TopDownPtrState & S,bool & SomeSuccHasSame,bool & AllSuccsHaveSame,bool & NotAllSeqEqualButKnownSafe)978 static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,
979 const bool SuccSRRIKnownSafe,
980 TopDownPtrState &S,
981 bool &SomeSuccHasSame,
982 bool &AllSuccsHaveSame,
983 bool &NotAllSeqEqualButKnownSafe) {
984 switch (SuccSSeq) {
985 case S_CanRelease:
986 SomeSuccHasSame = true;
987 break;
988 case S_Stop:
989 case S_Release:
990 case S_MovableRelease:
991 case S_Use:
992 if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
993 AllSuccsHaveSame = false;
994 else
995 NotAllSeqEqualButKnownSafe = true;
996 break;
997 case S_Retain:
998 llvm_unreachable("bottom-up pointer in retain state!");
999 case S_None:
1000 llvm_unreachable("This should have been handled earlier.");
1001 }
1002 }
1003
1004 /// Check for critical edges, loop boundaries, irreducible control flow, or
1005 /// other CFG structures where moving code across the edge would result in it
1006 /// being executed more.
1007 void
CheckForCFGHazards(const BasicBlock * BB,DenseMap<const BasicBlock *,BBState> & BBStates,BBState & MyStates) const1008 ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
1009 DenseMap<const BasicBlock *, BBState> &BBStates,
1010 BBState &MyStates) const {
1011 // If any top-down local-use or possible-dec has a succ which is earlier in
1012 // the sequence, forget it.
1013 for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end();
1014 I != E; ++I) {
1015 TopDownPtrState &S = I->second;
1016 const Sequence Seq = I->second.GetSeq();
1017
1018 // We only care about S_Retain, S_CanRelease, and S_Use.
1019 if (Seq == S_None)
1020 continue;
1021
1022 // Make sure that if extra top down states are added in the future that this
1023 // code is updated to handle it.
1024 assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) &&
1025 "Unknown top down sequence state.");
1026
1027 const Value *Arg = I->first;
1028 const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
1029 bool SomeSuccHasSame = false;
1030 bool AllSuccsHaveSame = true;
1031 bool NotAllSeqEqualButKnownSafe = false;
1032
1033 succ_const_iterator SI(TI), SE(TI, false);
1034
1035 for (; SI != SE; ++SI) {
1036 // If VisitBottomUp has pointer information for this successor, take
1037 // what we know about it.
1038 const DenseMap<const BasicBlock *, BBState>::iterator BBI =
1039 BBStates.find(*SI);
1040 assert(BBI != BBStates.end());
1041 const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
1042 const Sequence SuccSSeq = SuccS.GetSeq();
1043
1044 // If bottom up, the pointer is in an S_None state, clear the sequence
1045 // progress since the sequence in the bottom up state finished
1046 // suggesting a mismatch in between retains/releases. This is true for
1047 // all three cases that we are handling here: S_Retain, S_Use, and
1048 // S_CanRelease.
1049 if (SuccSSeq == S_None) {
1050 S.ClearSequenceProgress();
1051 continue;
1052 }
1053
1054 // If we have S_Use or S_CanRelease, perform our check for cfg hazard
1055 // checks.
1056 const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe();
1057
1058 // *NOTE* We do not use Seq from above here since we are allowing for
1059 // S.GetSeq() to change while we are visiting basic blocks.
1060 switch(S.GetSeq()) {
1061 case S_Use: {
1062 bool ShouldContinue = false;
1063 CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame,
1064 AllSuccsHaveSame, NotAllSeqEqualButKnownSafe,
1065 ShouldContinue);
1066 if (ShouldContinue)
1067 continue;
1068 break;
1069 }
1070 case S_CanRelease: {
1071 CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S,
1072 SomeSuccHasSame, AllSuccsHaveSame,
1073 NotAllSeqEqualButKnownSafe);
1074 break;
1075 }
1076 case S_Retain:
1077 case S_None:
1078 case S_Stop:
1079 case S_Release:
1080 case S_MovableRelease:
1081 break;
1082 }
1083 }
1084
1085 // If the state at the other end of any of the successor edges
1086 // matches the current state, require all edges to match. This
1087 // guards against loops in the middle of a sequence.
1088 if (SomeSuccHasSame && !AllSuccsHaveSame) {
1089 S.ClearSequenceProgress();
1090 } else if (NotAllSeqEqualButKnownSafe) {
1091 // If we would have cleared the state foregoing the fact that we are known
1092 // safe, stop code motion. This is because whether or not it is safe to
1093 // remove RR pairs via KnownSafe is an orthogonal concept to whether we
1094 // are allowed to perform code motion.
1095 S.SetCFGHazardAfflicted(true);
1096 }
1097 }
1098 }
1099
VisitInstructionBottomUp(Instruction * Inst,BasicBlock * BB,BlotMapVector<Value *,RRInfo> & Retains,BBState & MyStates)1100 bool ObjCARCOpt::VisitInstructionBottomUp(
1101 Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains,
1102 BBState &MyStates) {
1103 bool NestingDetected = false;
1104 ARCInstKind Class = GetARCInstKind(Inst);
1105 const Value *Arg = nullptr;
1106
1107 DEBUG(dbgs() << " Class: " << Class << "\n");
1108
1109 switch (Class) {
1110 case ARCInstKind::Release: {
1111 Arg = GetArgRCIdentityRoot(Inst);
1112
1113 BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
1114 NestingDetected |= S.InitBottomUp(MDKindCache, Inst);
1115 break;
1116 }
1117 case ARCInstKind::RetainBlock:
1118 // In OptimizeIndividualCalls, we have strength reduced all optimizable
1119 // objc_retainBlocks to objc_retains. Thus at this point any
1120 // objc_retainBlocks that we see are not optimizable.
1121 break;
1122 case ARCInstKind::Retain:
1123 case ARCInstKind::RetainRV: {
1124 Arg = GetArgRCIdentityRoot(Inst);
1125 BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
1126 if (S.MatchWithRetain()) {
1127 // Don't do retain+release tracking for ARCInstKind::RetainRV, because
1128 // it's better to let it remain as the first instruction after a call.
1129 if (Class != ARCInstKind::RetainRV) {
1130 DEBUG(llvm::dbgs() << " Matching with: " << *Inst << "\n");
1131 Retains[Inst] = S.GetRRInfo();
1132 }
1133 S.ClearSequenceProgress();
1134 }
1135 // A retain moving bottom up can be a use.
1136 break;
1137 }
1138 case ARCInstKind::AutoreleasepoolPop:
1139 // Conservatively, clear MyStates for all known pointers.
1140 MyStates.clearBottomUpPointers();
1141 return NestingDetected;
1142 case ARCInstKind::AutoreleasepoolPush:
1143 case ARCInstKind::None:
1144 // These are irrelevant.
1145 return NestingDetected;
1146 case ARCInstKind::User:
1147 // If we have a store into an alloca of a pointer we are tracking, the
1148 // pointer has multiple owners implying that we must be more conservative.
1149 //
1150 // This comes up in the context of a pointer being ``KnownSafe''. In the
1151 // presence of a block being initialized, the frontend will emit the
1152 // objc_retain on the original pointer and the release on the pointer loaded
1153 // from the alloca. The optimizer will through the provenance analysis
1154 // realize that the two are related, but since we only require KnownSafe in
1155 // one direction, will match the inner retain on the original pointer with
1156 // the guard release on the original pointer. This is fixed by ensuring that
1157 // in the presence of allocas we only unconditionally remove pointers if
1158 // both our retain and our release are KnownSafe.
1159 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1160 const DataLayout &DL = BB->getModule()->getDataLayout();
1161 if (AreAnyUnderlyingObjectsAnAlloca(SI->getPointerOperand(), DL)) {
1162 auto I = MyStates.findPtrBottomUpState(
1163 GetRCIdentityRoot(SI->getValueOperand()));
1164 if (I != MyStates.bottom_up_ptr_end())
1165 MultiOwnersSet.insert(I->first);
1166 }
1167 }
1168 break;
1169 default:
1170 break;
1171 }
1172
1173 // Consider any other possible effects of this instruction on each
1174 // pointer being tracked.
1175 for (auto MI = MyStates.bottom_up_ptr_begin(),
1176 ME = MyStates.bottom_up_ptr_end();
1177 MI != ME; ++MI) {
1178 const Value *Ptr = MI->first;
1179 if (Ptr == Arg)
1180 continue; // Handled above.
1181 BottomUpPtrState &S = MI->second;
1182
1183 if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
1184 continue;
1185
1186 S.HandlePotentialUse(BB, Inst, Ptr, PA, Class);
1187 }
1188
1189 return NestingDetected;
1190 }
1191
VisitBottomUp(BasicBlock * BB,DenseMap<const BasicBlock *,BBState> & BBStates,BlotMapVector<Value *,RRInfo> & Retains)1192 bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
1193 DenseMap<const BasicBlock *, BBState> &BBStates,
1194 BlotMapVector<Value *, RRInfo> &Retains) {
1195
1196 DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n");
1197
1198 bool NestingDetected = false;
1199 BBState &MyStates = BBStates[BB];
1200
1201 // Merge the states from each successor to compute the initial state
1202 // for the current block.
1203 BBState::edge_iterator SI(MyStates.succ_begin()),
1204 SE(MyStates.succ_end());
1205 if (SI != SE) {
1206 const BasicBlock *Succ = *SI;
1207 DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
1208 assert(I != BBStates.end());
1209 MyStates.InitFromSucc(I->second);
1210 ++SI;
1211 for (; SI != SE; ++SI) {
1212 Succ = *SI;
1213 I = BBStates.find(Succ);
1214 assert(I != BBStates.end());
1215 MyStates.MergeSucc(I->second);
1216 }
1217 }
1218
1219 DEBUG(llvm::dbgs() << "Before:\n" << BBStates[BB] << "\n"
1220 << "Performing Dataflow:\n");
1221
1222 // Visit all the instructions, bottom-up.
1223 for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
1224 Instruction *Inst = &*std::prev(I);
1225
1226 // Invoke instructions are visited as part of their successors (below).
1227 if (isa<InvokeInst>(Inst))
1228 continue;
1229
1230 DEBUG(dbgs() << " Visiting " << *Inst << "\n");
1231
1232 NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
1233 }
1234
1235 // If there's a predecessor with an invoke, visit the invoke as if it were
1236 // part of this block, since we can't insert code after an invoke in its own
1237 // block, and we don't want to split critical edges.
1238 for (BBState::edge_iterator PI(MyStates.pred_begin()),
1239 PE(MyStates.pred_end()); PI != PE; ++PI) {
1240 BasicBlock *Pred = *PI;
1241 if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
1242 NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
1243 }
1244
1245 DEBUG(llvm::dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n");
1246
1247 return NestingDetected;
1248 }
1249
1250 bool
VisitInstructionTopDown(Instruction * Inst,DenseMap<Value *,RRInfo> & Releases,BBState & MyStates)1251 ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
1252 DenseMap<Value *, RRInfo> &Releases,
1253 BBState &MyStates) {
1254 bool NestingDetected = false;
1255 ARCInstKind Class = GetARCInstKind(Inst);
1256 const Value *Arg = nullptr;
1257
1258 DEBUG(llvm::dbgs() << " Class: " << Class << "\n");
1259
1260 switch (Class) {
1261 case ARCInstKind::RetainBlock:
1262 // In OptimizeIndividualCalls, we have strength reduced all optimizable
1263 // objc_retainBlocks to objc_retains. Thus at this point any
1264 // objc_retainBlocks that we see are not optimizable. We need to break since
1265 // a retain can be a potential use.
1266 break;
1267 case ARCInstKind::Retain:
1268 case ARCInstKind::RetainRV: {
1269 Arg = GetArgRCIdentityRoot(Inst);
1270 TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
1271 NestingDetected |= S.InitTopDown(Class, Inst);
1272 // A retain can be a potential use; proceed to the generic checking
1273 // code below.
1274 break;
1275 }
1276 case ARCInstKind::Release: {
1277 Arg = GetArgRCIdentityRoot(Inst);
1278 TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
1279 // Try to form a tentative pair in between this release instruction and the
1280 // top down pointers that we are tracking.
1281 if (S.MatchWithRelease(MDKindCache, Inst)) {
1282 // If we succeed, copy S's RRInfo into the Release -> {Retain Set
1283 // Map}. Then we clear S.
1284 DEBUG(llvm::dbgs() << " Matching with: " << *Inst << "\n");
1285 Releases[Inst] = S.GetRRInfo();
1286 S.ClearSequenceProgress();
1287 }
1288 break;
1289 }
1290 case ARCInstKind::AutoreleasepoolPop:
1291 // Conservatively, clear MyStates for all known pointers.
1292 MyStates.clearTopDownPointers();
1293 return false;
1294 case ARCInstKind::AutoreleasepoolPush:
1295 case ARCInstKind::None:
1296 // These can not be uses of
1297 return false;
1298 default:
1299 break;
1300 }
1301
1302 // Consider any other possible effects of this instruction on each
1303 // pointer being tracked.
1304 for (auto MI = MyStates.top_down_ptr_begin(),
1305 ME = MyStates.top_down_ptr_end();
1306 MI != ME; ++MI) {
1307 const Value *Ptr = MI->first;
1308 if (Ptr == Arg)
1309 continue; // Handled above.
1310 TopDownPtrState &S = MI->second;
1311 if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
1312 continue;
1313
1314 S.HandlePotentialUse(Inst, Ptr, PA, Class);
1315 }
1316
1317 return NestingDetected;
1318 }
1319
1320 bool
VisitTopDown(BasicBlock * BB,DenseMap<const BasicBlock *,BBState> & BBStates,DenseMap<Value *,RRInfo> & Releases)1321 ObjCARCOpt::VisitTopDown(BasicBlock *BB,
1322 DenseMap<const BasicBlock *, BBState> &BBStates,
1323 DenseMap<Value *, RRInfo> &Releases) {
1324 DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n");
1325 bool NestingDetected = false;
1326 BBState &MyStates = BBStates[BB];
1327
1328 // Merge the states from each predecessor to compute the initial state
1329 // for the current block.
1330 BBState::edge_iterator PI(MyStates.pred_begin()),
1331 PE(MyStates.pred_end());
1332 if (PI != PE) {
1333 const BasicBlock *Pred = *PI;
1334 DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
1335 assert(I != BBStates.end());
1336 MyStates.InitFromPred(I->second);
1337 ++PI;
1338 for (; PI != PE; ++PI) {
1339 Pred = *PI;
1340 I = BBStates.find(Pred);
1341 assert(I != BBStates.end());
1342 MyStates.MergePred(I->second);
1343 }
1344 }
1345
1346 DEBUG(llvm::dbgs() << "Before:\n" << BBStates[BB] << "\n"
1347 << "Performing Dataflow:\n");
1348
1349 // Visit all the instructions, top-down.
1350 for (Instruction &Inst : *BB) {
1351 DEBUG(dbgs() << " Visiting " << Inst << "\n");
1352
1353 NestingDetected |= VisitInstructionTopDown(&Inst, Releases, MyStates);
1354 }
1355
1356 DEBUG(llvm::dbgs() << "\nState Before Checking for CFG Hazards:\n"
1357 << BBStates[BB] << "\n\n");
1358 CheckForCFGHazards(BB, BBStates, MyStates);
1359 DEBUG(llvm::dbgs() << "Final State:\n" << BBStates[BB] << "\n");
1360 return NestingDetected;
1361 }
1362
1363 static void
ComputePostOrders(Function & F,SmallVectorImpl<BasicBlock * > & PostOrder,SmallVectorImpl<BasicBlock * > & ReverseCFGPostOrder,unsigned NoObjCARCExceptionsMDKind,DenseMap<const BasicBlock *,BBState> & BBStates)1364 ComputePostOrders(Function &F,
1365 SmallVectorImpl<BasicBlock *> &PostOrder,
1366 SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
1367 unsigned NoObjCARCExceptionsMDKind,
1368 DenseMap<const BasicBlock *, BBState> &BBStates) {
1369 /// The visited set, for doing DFS walks.
1370 SmallPtrSet<BasicBlock *, 16> Visited;
1371
1372 // Do DFS, computing the PostOrder.
1373 SmallPtrSet<BasicBlock *, 16> OnStack;
1374 SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
1375
1376 // Functions always have exactly one entry block, and we don't have
1377 // any other block that we treat like an entry block.
1378 BasicBlock *EntryBB = &F.getEntryBlock();
1379 BBState &MyStates = BBStates[EntryBB];
1380 MyStates.SetAsEntry();
1381 TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back());
1382 SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
1383 Visited.insert(EntryBB);
1384 OnStack.insert(EntryBB);
1385 do {
1386 dfs_next_succ:
1387 BasicBlock *CurrBB = SuccStack.back().first;
1388 TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back());
1389 succ_iterator SE(TI, false);
1390
1391 while (SuccStack.back().second != SE) {
1392 BasicBlock *SuccBB = *SuccStack.back().second++;
1393 if (Visited.insert(SuccBB).second) {
1394 TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
1395 SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
1396 BBStates[CurrBB].addSucc(SuccBB);
1397 BBState &SuccStates = BBStates[SuccBB];
1398 SuccStates.addPred(CurrBB);
1399 OnStack.insert(SuccBB);
1400 goto dfs_next_succ;
1401 }
1402
1403 if (!OnStack.count(SuccBB)) {
1404 BBStates[CurrBB].addSucc(SuccBB);
1405 BBStates[SuccBB].addPred(CurrBB);
1406 }
1407 }
1408 OnStack.erase(CurrBB);
1409 PostOrder.push_back(CurrBB);
1410 SuccStack.pop_back();
1411 } while (!SuccStack.empty());
1412
1413 Visited.clear();
1414
1415 // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
1416 // Functions may have many exits, and there also blocks which we treat
1417 // as exits due to ignored edges.
1418 SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
1419 for (BasicBlock &ExitBB : F) {
1420 BBState &MyStates = BBStates[&ExitBB];
1421 if (!MyStates.isExit())
1422 continue;
1423
1424 MyStates.SetAsExit();
1425
1426 PredStack.push_back(std::make_pair(&ExitBB, MyStates.pred_begin()));
1427 Visited.insert(&ExitBB);
1428 while (!PredStack.empty()) {
1429 reverse_dfs_next_succ:
1430 BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
1431 while (PredStack.back().second != PE) {
1432 BasicBlock *BB = *PredStack.back().second++;
1433 if (Visited.insert(BB).second) {
1434 PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
1435 goto reverse_dfs_next_succ;
1436 }
1437 }
1438 ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
1439 }
1440 }
1441 }
1442
1443 // Visit the function both top-down and bottom-up.
Visit(Function & F,DenseMap<const BasicBlock *,BBState> & BBStates,BlotMapVector<Value *,RRInfo> & Retains,DenseMap<Value *,RRInfo> & Releases)1444 bool ObjCARCOpt::Visit(Function &F,
1445 DenseMap<const BasicBlock *, BBState> &BBStates,
1446 BlotMapVector<Value *, RRInfo> &Retains,
1447 DenseMap<Value *, RRInfo> &Releases) {
1448
1449 // Use reverse-postorder traversals, because we magically know that loops
1450 // will be well behaved, i.e. they won't repeatedly call retain on a single
1451 // pointer without doing a release. We can't use the ReversePostOrderTraversal
1452 // class here because we want the reverse-CFG postorder to consider each
1453 // function exit point, and we want to ignore selected cycle edges.
1454 SmallVector<BasicBlock *, 16> PostOrder;
1455 SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
1456 ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
1457 MDKindCache.get(ARCMDKindID::NoObjCARCExceptions),
1458 BBStates);
1459
1460 // Use reverse-postorder on the reverse CFG for bottom-up.
1461 bool BottomUpNestingDetected = false;
1462 for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
1463 ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
1464 I != E; ++I)
1465 BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
1466
1467 // Use reverse-postorder for top-down.
1468 bool TopDownNestingDetected = false;
1469 for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
1470 PostOrder.rbegin(), E = PostOrder.rend();
1471 I != E; ++I)
1472 TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
1473
1474 return TopDownNestingDetected && BottomUpNestingDetected;
1475 }
1476
1477 /// Move the calls in RetainsToMove and ReleasesToMove.
MoveCalls(Value * Arg,RRInfo & RetainsToMove,RRInfo & ReleasesToMove,BlotMapVector<Value *,RRInfo> & Retains,DenseMap<Value *,RRInfo> & Releases,SmallVectorImpl<Instruction * > & DeadInsts,Module * M)1478 void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove,
1479 RRInfo &ReleasesToMove,
1480 BlotMapVector<Value *, RRInfo> &Retains,
1481 DenseMap<Value *, RRInfo> &Releases,
1482 SmallVectorImpl<Instruction *> &DeadInsts,
1483 Module *M) {
1484 Type *ArgTy = Arg->getType();
1485 Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
1486
1487 DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");
1488
1489 // Insert the new retain and release calls.
1490 for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) {
1491 Value *MyArg = ArgTy == ParamTy ? Arg :
1492 new BitCastInst(Arg, ParamTy, "", InsertPt);
1493 Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
1494 CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
1495 Call->setDoesNotThrow();
1496 Call->setTailCall();
1497
1498 DEBUG(dbgs() << "Inserting new Retain: " << *Call << "\n"
1499 "At insertion point: " << *InsertPt << "\n");
1500 }
1501 for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) {
1502 Value *MyArg = ArgTy == ParamTy ? Arg :
1503 new BitCastInst(Arg, ParamTy, "", InsertPt);
1504 Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
1505 CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
1506 // Attach a clang.imprecise_release metadata tag, if appropriate.
1507 if (MDNode *M = ReleasesToMove.ReleaseMetadata)
1508 Call->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), M);
1509 Call->setDoesNotThrow();
1510 if (ReleasesToMove.IsTailCallRelease)
1511 Call->setTailCall();
1512
1513 DEBUG(dbgs() << "Inserting new Release: " << *Call << "\n"
1514 "At insertion point: " << *InsertPt << "\n");
1515 }
1516
1517 // Delete the original retain and release calls.
1518 for (Instruction *OrigRetain : RetainsToMove.Calls) {
1519 Retains.blot(OrigRetain);
1520 DeadInsts.push_back(OrigRetain);
1521 DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
1522 }
1523 for (Instruction *OrigRelease : ReleasesToMove.Calls) {
1524 Releases.erase(OrigRelease);
1525 DeadInsts.push_back(OrigRelease);
1526 DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
1527 }
1528
1529 }
1530
PairUpRetainsAndReleases(DenseMap<const BasicBlock *,BBState> & BBStates,BlotMapVector<Value *,RRInfo> & Retains,DenseMap<Value *,RRInfo> & Releases,Module * M,SmallVectorImpl<Instruction * > & NewRetains,SmallVectorImpl<Instruction * > & NewReleases,SmallVectorImpl<Instruction * > & DeadInsts,RRInfo & RetainsToMove,RRInfo & ReleasesToMove,Value * Arg,bool KnownSafe,bool & AnyPairsCompletelyEliminated)1531 bool ObjCARCOpt::PairUpRetainsAndReleases(
1532 DenseMap<const BasicBlock *, BBState> &BBStates,
1533 BlotMapVector<Value *, RRInfo> &Retains,
1534 DenseMap<Value *, RRInfo> &Releases, Module *M,
1535 SmallVectorImpl<Instruction *> &NewRetains,
1536 SmallVectorImpl<Instruction *> &NewReleases,
1537 SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove,
1538 RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe,
1539 bool &AnyPairsCompletelyEliminated) {
1540 // If a pair happens in a region where it is known that the reference count
1541 // is already incremented, we can similarly ignore possible decrements unless
1542 // we are dealing with a retainable object with multiple provenance sources.
1543 bool KnownSafeTD = true, KnownSafeBU = true;
1544 bool MultipleOwners = false;
1545 bool CFGHazardAfflicted = false;
1546
1547 // Connect the dots between the top-down-collected RetainsToMove and
1548 // bottom-up-collected ReleasesToMove to form sets of related calls.
1549 // This is an iterative process so that we connect multiple releases
1550 // to multiple retains if needed.
1551 unsigned OldDelta = 0;
1552 unsigned NewDelta = 0;
1553 unsigned OldCount = 0;
1554 unsigned NewCount = 0;
1555 bool FirstRelease = true;
1556 for (;;) {
1557 for (SmallVectorImpl<Instruction *>::const_iterator
1558 NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
1559 Instruction *NewRetain = *NI;
1560 auto It = Retains.find(NewRetain);
1561 assert(It != Retains.end());
1562 const RRInfo &NewRetainRRI = It->second;
1563 KnownSafeTD &= NewRetainRRI.KnownSafe;
1564 MultipleOwners =
1565 MultipleOwners || MultiOwnersSet.count(GetArgRCIdentityRoot(NewRetain));
1566 for (Instruction *NewRetainRelease : NewRetainRRI.Calls) {
1567 auto Jt = Releases.find(NewRetainRelease);
1568 if (Jt == Releases.end())
1569 return false;
1570 const RRInfo &NewRetainReleaseRRI = Jt->second;
1571
1572 // If the release does not have a reference to the retain as well,
1573 // something happened which is unaccounted for. Do not do anything.
1574 //
1575 // This can happen if we catch an additive overflow during path count
1576 // merging.
1577 if (!NewRetainReleaseRRI.Calls.count(NewRetain))
1578 return false;
1579
1580 if (ReleasesToMove.Calls.insert(NewRetainRelease).second) {
1581
1582 // If we overflow when we compute the path count, don't remove/move
1583 // anything.
1584 const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()];
1585 unsigned PathCount = BBState::OverflowOccurredValue;
1586 if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
1587 return false;
1588 assert(PathCount != BBState::OverflowOccurredValue &&
1589 "PathCount at this point can not be "
1590 "OverflowOccurredValue.");
1591 OldDelta -= PathCount;
1592
1593 // Merge the ReleaseMetadata and IsTailCallRelease values.
1594 if (FirstRelease) {
1595 ReleasesToMove.ReleaseMetadata =
1596 NewRetainReleaseRRI.ReleaseMetadata;
1597 ReleasesToMove.IsTailCallRelease =
1598 NewRetainReleaseRRI.IsTailCallRelease;
1599 FirstRelease = false;
1600 } else {
1601 if (ReleasesToMove.ReleaseMetadata !=
1602 NewRetainReleaseRRI.ReleaseMetadata)
1603 ReleasesToMove.ReleaseMetadata = nullptr;
1604 if (ReleasesToMove.IsTailCallRelease !=
1605 NewRetainReleaseRRI.IsTailCallRelease)
1606 ReleasesToMove.IsTailCallRelease = false;
1607 }
1608
1609 // Collect the optimal insertion points.
1610 if (!KnownSafe)
1611 for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) {
1612 if (ReleasesToMove.ReverseInsertPts.insert(RIP).second) {
1613 // If we overflow when we compute the path count, don't
1614 // remove/move anything.
1615 const BBState &RIPBBState = BBStates[RIP->getParent()];
1616 PathCount = BBState::OverflowOccurredValue;
1617 if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
1618 return false;
1619 assert(PathCount != BBState::OverflowOccurredValue &&
1620 "PathCount at this point can not be "
1621 "OverflowOccurredValue.");
1622 NewDelta -= PathCount;
1623 }
1624 }
1625 NewReleases.push_back(NewRetainRelease);
1626 }
1627 }
1628 }
1629 NewRetains.clear();
1630 if (NewReleases.empty()) break;
1631
1632 // Back the other way.
1633 for (SmallVectorImpl<Instruction *>::const_iterator
1634 NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
1635 Instruction *NewRelease = *NI;
1636 auto It = Releases.find(NewRelease);
1637 assert(It != Releases.end());
1638 const RRInfo &NewReleaseRRI = It->second;
1639 KnownSafeBU &= NewReleaseRRI.KnownSafe;
1640 CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
1641 for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) {
1642 auto Jt = Retains.find(NewReleaseRetain);
1643 if (Jt == Retains.end())
1644 return false;
1645 const RRInfo &NewReleaseRetainRRI = Jt->second;
1646
1647 // If the retain does not have a reference to the release as well,
1648 // something happened which is unaccounted for. Do not do anything.
1649 //
1650 // This can happen if we catch an additive overflow during path count
1651 // merging.
1652 if (!NewReleaseRetainRRI.Calls.count(NewRelease))
1653 return false;
1654
1655 if (RetainsToMove.Calls.insert(NewReleaseRetain).second) {
1656 // If we overflow when we compute the path count, don't remove/move
1657 // anything.
1658 const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
1659 unsigned PathCount = BBState::OverflowOccurredValue;
1660 if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
1661 return false;
1662 assert(PathCount != BBState::OverflowOccurredValue &&
1663 "PathCount at this point can not be "
1664 "OverflowOccurredValue.");
1665 OldDelta += PathCount;
1666 OldCount += PathCount;
1667
1668 // Collect the optimal insertion points.
1669 if (!KnownSafe)
1670 for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) {
1671 if (RetainsToMove.ReverseInsertPts.insert(RIP).second) {
1672 // If we overflow when we compute the path count, don't
1673 // remove/move anything.
1674 const BBState &RIPBBState = BBStates[RIP->getParent()];
1675
1676 PathCount = BBState::OverflowOccurredValue;
1677 if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
1678 return false;
1679 assert(PathCount != BBState::OverflowOccurredValue &&
1680 "PathCount at this point can not be "
1681 "OverflowOccurredValue.");
1682 NewDelta += PathCount;
1683 NewCount += PathCount;
1684 }
1685 }
1686 NewRetains.push_back(NewReleaseRetain);
1687 }
1688 }
1689 }
1690 NewReleases.clear();
1691 if (NewRetains.empty()) break;
1692 }
1693
1694 // We can only remove pointers if we are known safe in both directions.
1695 bool UnconditionallySafe = KnownSafeTD && KnownSafeBU;
1696 if (UnconditionallySafe) {
1697 RetainsToMove.ReverseInsertPts.clear();
1698 ReleasesToMove.ReverseInsertPts.clear();
1699 NewCount = 0;
1700 } else {
1701 // Determine whether the new insertion points we computed preserve the
1702 // balance of retain and release calls through the program.
1703 // TODO: If the fully aggressive solution isn't valid, try to find a
1704 // less aggressive solution which is.
1705 if (NewDelta != 0)
1706 return false;
1707
1708 // At this point, we are not going to remove any RR pairs, but we still are
1709 // able to move RR pairs. If one of our pointers is afflicted with
1710 // CFGHazards, we cannot perform such code motion so exit early.
1711 const bool WillPerformCodeMotion = RetainsToMove.ReverseInsertPts.size() ||
1712 ReleasesToMove.ReverseInsertPts.size();
1713 if (CFGHazardAfflicted && WillPerformCodeMotion)
1714 return false;
1715 }
1716
1717 // Determine whether the original call points are balanced in the retain and
1718 // release calls through the program. If not, conservatively don't touch
1719 // them.
1720 // TODO: It's theoretically possible to do code motion in this case, as
1721 // long as the existing imbalances are maintained.
1722 if (OldDelta != 0)
1723 return false;
1724
1725 Changed = true;
1726 assert(OldCount != 0 && "Unreachable code?");
1727 NumRRs += OldCount - NewCount;
1728 // Set to true if we completely removed any RR pairs.
1729 AnyPairsCompletelyEliminated = NewCount == 0;
1730
1731 // We can move calls!
1732 return true;
1733 }
1734
1735 /// Identify pairings between the retains and releases, and delete and/or move
1736 /// them.
PerformCodePlacement(DenseMap<const BasicBlock *,BBState> & BBStates,BlotMapVector<Value *,RRInfo> & Retains,DenseMap<Value *,RRInfo> & Releases,Module * M)1737 bool ObjCARCOpt::PerformCodePlacement(
1738 DenseMap<const BasicBlock *, BBState> &BBStates,
1739 BlotMapVector<Value *, RRInfo> &Retains,
1740 DenseMap<Value *, RRInfo> &Releases, Module *M) {
1741 DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n");
1742
1743 bool AnyPairsCompletelyEliminated = false;
1744 RRInfo RetainsToMove;
1745 RRInfo ReleasesToMove;
1746 SmallVector<Instruction *, 4> NewRetains;
1747 SmallVector<Instruction *, 4> NewReleases;
1748 SmallVector<Instruction *, 8> DeadInsts;
1749
1750 // Visit each retain.
1751 for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
1752 E = Retains.end();
1753 I != E; ++I) {
1754 Value *V = I->first;
1755 if (!V) continue; // blotted
1756
1757 Instruction *Retain = cast<Instruction>(V);
1758
1759 DEBUG(dbgs() << "Visiting: " << *Retain << "\n");
1760
1761 Value *Arg = GetArgRCIdentityRoot(Retain);
1762
1763 // If the object being released is in static or stack storage, we know it's
1764 // not being managed by ObjC reference counting, so we can delete pairs
1765 // regardless of what possible decrements or uses lie between them.
1766 bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
1767
1768 // A constant pointer can't be pointing to an object on the heap. It may
1769 // be reference-counted, but it won't be deleted.
1770 if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
1771 if (const GlobalVariable *GV =
1772 dyn_cast<GlobalVariable>(
1773 GetRCIdentityRoot(LI->getPointerOperand())))
1774 if (GV->isConstant())
1775 KnownSafe = true;
1776
1777 // Connect the dots between the top-down-collected RetainsToMove and
1778 // bottom-up-collected ReleasesToMove to form sets of related calls.
1779 NewRetains.push_back(Retain);
1780 bool PerformMoveCalls = PairUpRetainsAndReleases(
1781 BBStates, Retains, Releases, M, NewRetains, NewReleases, DeadInsts,
1782 RetainsToMove, ReleasesToMove, Arg, KnownSafe,
1783 AnyPairsCompletelyEliminated);
1784
1785 if (PerformMoveCalls) {
1786 // Ok, everything checks out and we're all set. Let's move/delete some
1787 // code!
1788 MoveCalls(Arg, RetainsToMove, ReleasesToMove,
1789 Retains, Releases, DeadInsts, M);
1790 }
1791
1792 // Clean up state for next retain.
1793 NewReleases.clear();
1794 NewRetains.clear();
1795 RetainsToMove.clear();
1796 ReleasesToMove.clear();
1797 }
1798
1799 // Now that we're done moving everything, we can delete the newly dead
1800 // instructions, as we no longer need them as insert points.
1801 while (!DeadInsts.empty())
1802 EraseInstruction(DeadInsts.pop_back_val());
1803
1804 return AnyPairsCompletelyEliminated;
1805 }
1806
1807 /// Weak pointer optimizations.
OptimizeWeakCalls(Function & F)1808 void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
1809 DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n");
1810
1811 // First, do memdep-style RLE and S2L optimizations. We can't use memdep
1812 // itself because it uses AliasAnalysis and we need to do provenance
1813 // queries instead.
1814 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
1815 Instruction *Inst = &*I++;
1816
1817 DEBUG(dbgs() << "Visiting: " << *Inst << "\n");
1818
1819 ARCInstKind Class = GetBasicARCInstKind(Inst);
1820 if (Class != ARCInstKind::LoadWeak &&
1821 Class != ARCInstKind::LoadWeakRetained)
1822 continue;
1823
1824 // Delete objc_loadWeak calls with no users.
1825 if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) {
1826 Inst->eraseFromParent();
1827 continue;
1828 }
1829
1830 // TODO: For now, just look for an earlier available version of this value
1831 // within the same block. Theoretically, we could do memdep-style non-local
1832 // analysis too, but that would want caching. A better approach would be to
1833 // use the technique that EarlyCSE uses.
1834 inst_iterator Current = std::prev(I);
1835 BasicBlock *CurrentBB = &*Current.getBasicBlockIterator();
1836 for (BasicBlock::iterator B = CurrentBB->begin(),
1837 J = Current.getInstructionIterator();
1838 J != B; --J) {
1839 Instruction *EarlierInst = &*std::prev(J);
1840 ARCInstKind EarlierClass = GetARCInstKind(EarlierInst);
1841 switch (EarlierClass) {
1842 case ARCInstKind::LoadWeak:
1843 case ARCInstKind::LoadWeakRetained: {
1844 // If this is loading from the same pointer, replace this load's value
1845 // with that one.
1846 CallInst *Call = cast<CallInst>(Inst);
1847 CallInst *EarlierCall = cast<CallInst>(EarlierInst);
1848 Value *Arg = Call->getArgOperand(0);
1849 Value *EarlierArg = EarlierCall->getArgOperand(0);
1850 switch (PA.getAA()->alias(Arg, EarlierArg)) {
1851 case MustAlias:
1852 Changed = true;
1853 // If the load has a builtin retain, insert a plain retain for it.
1854 if (Class == ARCInstKind::LoadWeakRetained) {
1855 Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
1856 CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
1857 CI->setTailCall();
1858 }
1859 // Zap the fully redundant load.
1860 Call->replaceAllUsesWith(EarlierCall);
1861 Call->eraseFromParent();
1862 goto clobbered;
1863 case MayAlias:
1864 case PartialAlias:
1865 goto clobbered;
1866 case NoAlias:
1867 break;
1868 }
1869 break;
1870 }
1871 case ARCInstKind::StoreWeak:
1872 case ARCInstKind::InitWeak: {
1873 // If this is storing to the same pointer and has the same size etc.
1874 // replace this load's value with the stored value.
1875 CallInst *Call = cast<CallInst>(Inst);
1876 CallInst *EarlierCall = cast<CallInst>(EarlierInst);
1877 Value *Arg = Call->getArgOperand(0);
1878 Value *EarlierArg = EarlierCall->getArgOperand(0);
1879 switch (PA.getAA()->alias(Arg, EarlierArg)) {
1880 case MustAlias:
1881 Changed = true;
1882 // If the load has a builtin retain, insert a plain retain for it.
1883 if (Class == ARCInstKind::LoadWeakRetained) {
1884 Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
1885 CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
1886 CI->setTailCall();
1887 }
1888 // Zap the fully redundant load.
1889 Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
1890 Call->eraseFromParent();
1891 goto clobbered;
1892 case MayAlias:
1893 case PartialAlias:
1894 goto clobbered;
1895 case NoAlias:
1896 break;
1897 }
1898 break;
1899 }
1900 case ARCInstKind::MoveWeak:
1901 case ARCInstKind::CopyWeak:
1902 // TOOD: Grab the copied value.
1903 goto clobbered;
1904 case ARCInstKind::AutoreleasepoolPush:
1905 case ARCInstKind::None:
1906 case ARCInstKind::IntrinsicUser:
1907 case ARCInstKind::User:
1908 // Weak pointers are only modified through the weak entry points
1909 // (and arbitrary calls, which could call the weak entry points).
1910 break;
1911 default:
1912 // Anything else could modify the weak pointer.
1913 goto clobbered;
1914 }
1915 }
1916 clobbered:;
1917 }
1918
1919 // Then, for each destroyWeak with an alloca operand, check to see if
1920 // the alloca and all its users can be zapped.
1921 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
1922 Instruction *Inst = &*I++;
1923 ARCInstKind Class = GetBasicARCInstKind(Inst);
1924 if (Class != ARCInstKind::DestroyWeak)
1925 continue;
1926
1927 CallInst *Call = cast<CallInst>(Inst);
1928 Value *Arg = Call->getArgOperand(0);
1929 if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
1930 for (User *U : Alloca->users()) {
1931 const Instruction *UserInst = cast<Instruction>(U);
1932 switch (GetBasicARCInstKind(UserInst)) {
1933 case ARCInstKind::InitWeak:
1934 case ARCInstKind::StoreWeak:
1935 case ARCInstKind::DestroyWeak:
1936 continue;
1937 default:
1938 goto done;
1939 }
1940 }
1941 Changed = true;
1942 for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) {
1943 CallInst *UserInst = cast<CallInst>(*UI++);
1944 switch (GetBasicARCInstKind(UserInst)) {
1945 case ARCInstKind::InitWeak:
1946 case ARCInstKind::StoreWeak:
1947 // These functions return their second argument.
1948 UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
1949 break;
1950 case ARCInstKind::DestroyWeak:
1951 // No return value.
1952 break;
1953 default:
1954 llvm_unreachable("alloca really is used!");
1955 }
1956 UserInst->eraseFromParent();
1957 }
1958 Alloca->eraseFromParent();
1959 done:;
1960 }
1961 }
1962 }
1963
1964 /// Identify program paths which execute sequences of retains and releases which
1965 /// can be eliminated.
OptimizeSequences(Function & F)1966 bool ObjCARCOpt::OptimizeSequences(Function &F) {
1967 // Releases, Retains - These are used to store the results of the main flow
1968 // analysis. These use Value* as the key instead of Instruction* so that the
1969 // map stays valid when we get around to rewriting code and calls get
1970 // replaced by arguments.
1971 DenseMap<Value *, RRInfo> Releases;
1972 BlotMapVector<Value *, RRInfo> Retains;
1973
1974 // This is used during the traversal of the function to track the
1975 // states for each identified object at each block.
1976 DenseMap<const BasicBlock *, BBState> BBStates;
1977
1978 // Analyze the CFG of the function, and all instructions.
1979 bool NestingDetected = Visit(F, BBStates, Retains, Releases);
1980
1981 // Transform.
1982 bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains,
1983 Releases,
1984 F.getParent());
1985
1986 // Cleanup.
1987 MultiOwnersSet.clear();
1988
1989 return AnyPairsCompletelyEliminated && NestingDetected;
1990 }
1991
1992 /// Check if there is a dependent call earlier that does not have anything in
1993 /// between the Retain and the call that can affect the reference count of their
1994 /// shared pointer argument. Note that Retain need not be in BB.
1995 static bool
HasSafePathToPredecessorCall(const Value * Arg,Instruction * Retain,SmallPtrSetImpl<Instruction * > & DepInsts,SmallPtrSetImpl<const BasicBlock * > & Visited,ProvenanceAnalysis & PA)1996 HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
1997 SmallPtrSetImpl<Instruction *> &DepInsts,
1998 SmallPtrSetImpl<const BasicBlock *> &Visited,
1999 ProvenanceAnalysis &PA) {
2000 FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
2001 DepInsts, Visited, PA);
2002 if (DepInsts.size() != 1)
2003 return false;
2004
2005 auto *Call = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2006
2007 // Check that the pointer is the return value of the call.
2008 if (!Call || Arg != Call)
2009 return false;
2010
2011 // Check that the call is a regular call.
2012 ARCInstKind Class = GetBasicARCInstKind(Call);
2013 if (Class != ARCInstKind::CallOrUser && Class != ARCInstKind::Call)
2014 return false;
2015
2016 return true;
2017 }
2018
2019 /// Find a dependent retain that precedes the given autorelease for which there
2020 /// is nothing in between the two instructions that can affect the ref count of
2021 /// Arg.
2022 static CallInst *
FindPredecessorRetainWithSafePath(const Value * Arg,BasicBlock * BB,Instruction * Autorelease,SmallPtrSetImpl<Instruction * > & DepInsts,SmallPtrSetImpl<const BasicBlock * > & Visited,ProvenanceAnalysis & PA)2023 FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
2024 Instruction *Autorelease,
2025 SmallPtrSetImpl<Instruction *> &DepInsts,
2026 SmallPtrSetImpl<const BasicBlock *> &Visited,
2027 ProvenanceAnalysis &PA) {
2028 FindDependencies(CanChangeRetainCount, Arg,
2029 BB, Autorelease, DepInsts, Visited, PA);
2030 if (DepInsts.size() != 1)
2031 return nullptr;
2032
2033 auto *Retain = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2034
2035 // Check that we found a retain with the same argument.
2036 if (!Retain || !IsRetain(GetBasicARCInstKind(Retain)) ||
2037 GetArgRCIdentityRoot(Retain) != Arg) {
2038 return nullptr;
2039 }
2040
2041 return Retain;
2042 }
2043
2044 /// Look for an ``autorelease'' instruction dependent on Arg such that there are
2045 /// no instructions dependent on Arg that need a positive ref count in between
2046 /// the autorelease and the ret.
2047 static CallInst *
FindPredecessorAutoreleaseWithSafePath(const Value * Arg,BasicBlock * BB,ReturnInst * Ret,SmallPtrSetImpl<Instruction * > & DepInsts,SmallPtrSetImpl<const BasicBlock * > & V,ProvenanceAnalysis & PA)2048 FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
2049 ReturnInst *Ret,
2050 SmallPtrSetImpl<Instruction *> &DepInsts,
2051 SmallPtrSetImpl<const BasicBlock *> &V,
2052 ProvenanceAnalysis &PA) {
2053 FindDependencies(NeedsPositiveRetainCount, Arg,
2054 BB, Ret, DepInsts, V, PA);
2055 if (DepInsts.size() != 1)
2056 return nullptr;
2057
2058 auto *Autorelease = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2059 if (!Autorelease)
2060 return nullptr;
2061 ARCInstKind AutoreleaseClass = GetBasicARCInstKind(Autorelease);
2062 if (!IsAutorelease(AutoreleaseClass))
2063 return nullptr;
2064 if (GetArgRCIdentityRoot(Autorelease) != Arg)
2065 return nullptr;
2066
2067 return Autorelease;
2068 }
2069
2070 /// Look for this pattern:
2071 /// \code
2072 /// %call = call i8* @something(...)
2073 /// %2 = call i8* @objc_retain(i8* %call)
2074 /// %3 = call i8* @objc_autorelease(i8* %2)
2075 /// ret i8* %3
2076 /// \endcode
2077 /// And delete the retain and autorelease.
OptimizeReturns(Function & F)2078 void ObjCARCOpt::OptimizeReturns(Function &F) {
2079 if (!F.getReturnType()->isPointerTy())
2080 return;
2081
2082 DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n");
2083
2084 SmallPtrSet<Instruction *, 4> DependingInstructions;
2085 SmallPtrSet<const BasicBlock *, 4> Visited;
2086 for (BasicBlock &BB: F) {
2087 ReturnInst *Ret = dyn_cast<ReturnInst>(&BB.back());
2088
2089 DEBUG(dbgs() << "Visiting: " << *Ret << "\n");
2090
2091 if (!Ret)
2092 continue;
2093
2094 const Value *Arg = GetRCIdentityRoot(Ret->getOperand(0));
2095
2096 // Look for an ``autorelease'' instruction that is a predecessor of Ret and
2097 // dependent on Arg such that there are no instructions dependent on Arg
2098 // that need a positive ref count in between the autorelease and Ret.
2099 CallInst *Autorelease = FindPredecessorAutoreleaseWithSafePath(
2100 Arg, &BB, Ret, DependingInstructions, Visited, PA);
2101 DependingInstructions.clear();
2102 Visited.clear();
2103
2104 if (!Autorelease)
2105 continue;
2106
2107 CallInst *Retain = FindPredecessorRetainWithSafePath(
2108 Arg, &BB, Autorelease, DependingInstructions, Visited, PA);
2109 DependingInstructions.clear();
2110 Visited.clear();
2111
2112 if (!Retain)
2113 continue;
2114
2115 // Check that there is nothing that can affect the reference count
2116 // between the retain and the call. Note that Retain need not be in BB.
2117 bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain,
2118 DependingInstructions,
2119 Visited, PA);
2120 DependingInstructions.clear();
2121 Visited.clear();
2122
2123 if (!HasSafePathToCall)
2124 continue;
2125
2126 // If so, we can zap the retain and autorelease.
2127 Changed = true;
2128 ++NumRets;
2129 DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: "
2130 << *Autorelease << "\n");
2131 EraseInstruction(Retain);
2132 EraseInstruction(Autorelease);
2133 }
2134 }
2135
2136 #ifndef NDEBUG
2137 void
GatherStatistics(Function & F,bool AfterOptimization)2138 ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) {
2139 llvm::Statistic &NumRetains =
2140 AfterOptimization? NumRetainsAfterOpt : NumRetainsBeforeOpt;
2141 llvm::Statistic &NumReleases =
2142 AfterOptimization? NumReleasesAfterOpt : NumReleasesBeforeOpt;
2143
2144 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2145 Instruction *Inst = &*I++;
2146 switch (GetBasicARCInstKind(Inst)) {
2147 default:
2148 break;
2149 case ARCInstKind::Retain:
2150 ++NumRetains;
2151 break;
2152 case ARCInstKind::Release:
2153 ++NumReleases;
2154 break;
2155 }
2156 }
2157 }
2158 #endif
2159
doInitialization(Module & M)2160 bool ObjCARCOpt::doInitialization(Module &M) {
2161 if (!EnableARCOpts)
2162 return false;
2163
2164 // If nothing in the Module uses ARC, don't do anything.
2165 Run = ModuleHasARC(M);
2166 if (!Run)
2167 return false;
2168
2169 // Intuitively, objc_retain and others are nocapture, however in practice
2170 // they are not, because they return their argument value. And objc_release
2171 // calls finalizers which can have arbitrary side effects.
2172 MDKindCache.init(&M);
2173
2174 // Initialize our runtime entry point cache.
2175 EP.init(&M);
2176
2177 return false;
2178 }
2179
runOnFunction(Function & F)2180 bool ObjCARCOpt::runOnFunction(Function &F) {
2181 if (!EnableARCOpts)
2182 return false;
2183
2184 // If nothing in the Module uses ARC, don't do anything.
2185 if (!Run)
2186 return false;
2187
2188 Changed = false;
2189
2190 DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() << " >>>"
2191 "\n");
2192
2193 PA.setAA(&getAnalysis<AAResultsWrapperPass>().getAAResults());
2194
2195 #ifndef NDEBUG
2196 if (AreStatisticsEnabled()) {
2197 GatherStatistics(F, false);
2198 }
2199 #endif
2200
2201 // This pass performs several distinct transformations. As a compile-time aid
2202 // when compiling code that isn't ObjC, skip these if the relevant ObjC
2203 // library functions aren't declared.
2204
2205 // Preliminary optimizations. This also computes UsedInThisFunction.
2206 OptimizeIndividualCalls(F);
2207
2208 // Optimizations for weak pointers.
2209 if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) |
2210 (1 << unsigned(ARCInstKind::LoadWeakRetained)) |
2211 (1 << unsigned(ARCInstKind::StoreWeak)) |
2212 (1 << unsigned(ARCInstKind::InitWeak)) |
2213 (1 << unsigned(ARCInstKind::CopyWeak)) |
2214 (1 << unsigned(ARCInstKind::MoveWeak)) |
2215 (1 << unsigned(ARCInstKind::DestroyWeak))))
2216 OptimizeWeakCalls(F);
2217
2218 // Optimizations for retain+release pairs.
2219 if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) |
2220 (1 << unsigned(ARCInstKind::RetainRV)) |
2221 (1 << unsigned(ARCInstKind::RetainBlock))))
2222 if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release)))
2223 // Run OptimizeSequences until it either stops making changes or
2224 // no retain+release pair nesting is detected.
2225 while (OptimizeSequences(F)) {}
2226
2227 // Optimizations if objc_autorelease is used.
2228 if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) |
2229 (1 << unsigned(ARCInstKind::AutoreleaseRV))))
2230 OptimizeReturns(F);
2231
2232 // Gather statistics after optimization.
2233 #ifndef NDEBUG
2234 if (AreStatisticsEnabled()) {
2235 GatherStatistics(F, true);
2236 }
2237 #endif
2238
2239 DEBUG(dbgs() << "\n");
2240
2241 return Changed;
2242 }
2243
releaseMemory()2244 void ObjCARCOpt::releaseMemory() {
2245 PA.clear();
2246 }
2247
2248 /// @}
2249 ///
2250