1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 // 1. The exit condition for the loop is canonicalized to compare the
17 // induction value against the exit value. This turns loops like:
18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 // 2. Any use outside of the loop of an expression derived from the indvar
20 // is changed to compute the derived value outside of the loop, eliminating
21 // the dependence on the exit value of the induction variable. If the only
22 // purpose of the loop is to compute the exit value of some derived
23 // expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopPass.h"
34 #include "llvm/Analysis/ScalarEvolutionExpander.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/Local.h"
53 #include "llvm/Transforms/Utils/LoopUtils.h"
54 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
55 using namespace llvm;
56
57 #define DEBUG_TYPE "indvars"
58
59 STATISTIC(NumWidened , "Number of indvars widened");
60 STATISTIC(NumReplaced , "Number of exit values replaced");
61 STATISTIC(NumLFTR , "Number of loop exit tests replaced");
62 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
63 STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
64
65 // Trip count verification can be enabled by default under NDEBUG if we
66 // implement a strong expression equivalence checker in SCEV. Until then, we
67 // use the verify-indvars flag, which may assert in some cases.
68 static cl::opt<bool> VerifyIndvars(
69 "verify-indvars", cl::Hidden,
70 cl::desc("Verify the ScalarEvolution result after running indvars"));
71
72 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
73 cl::desc("Reduce live induction variables."));
74
75 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
76
77 static cl::opt<ReplaceExitVal> ReplaceExitValue(
78 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
79 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
80 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
81 clEnumValN(OnlyCheapRepl, "cheap",
82 "only replace exit value when the cost is cheap"),
83 clEnumValN(AlwaysRepl, "always",
84 "always replace exit value whenever possible"),
85 clEnumValEnd));
86
87 namespace {
88 struct RewritePhi;
89
90 class IndVarSimplify : public LoopPass {
91 LoopInfo *LI;
92 ScalarEvolution *SE;
93 DominatorTree *DT;
94 TargetLibraryInfo *TLI;
95 const TargetTransformInfo *TTI;
96
97 SmallVector<WeakVH, 16> DeadInsts;
98 bool Changed;
99 public:
100
101 static char ID; // Pass identification, replacement for typeid
IndVarSimplify()102 IndVarSimplify()
103 : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
104 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
105 }
106
107 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
108
getAnalysisUsage(AnalysisUsage & AU) const109 void getAnalysisUsage(AnalysisUsage &AU) const override {
110 AU.addRequired<DominatorTreeWrapperPass>();
111 AU.addRequired<LoopInfoWrapperPass>();
112 AU.addRequired<ScalarEvolutionWrapperPass>();
113 AU.addRequiredID(LoopSimplifyID);
114 AU.addRequiredID(LCSSAID);
115 AU.addPreserved<GlobalsAAWrapperPass>();
116 AU.addPreserved<ScalarEvolutionWrapperPass>();
117 AU.addPreservedID(LoopSimplifyID);
118 AU.addPreservedID(LCSSAID);
119 AU.setPreservesCFG();
120 }
121
122 private:
releaseMemory()123 void releaseMemory() override {
124 DeadInsts.clear();
125 }
126
127 bool isValidRewrite(Value *FromVal, Value *ToVal);
128
129 void handleFloatingPointIV(Loop *L, PHINode *PH);
130 void rewriteNonIntegerIVs(Loop *L);
131
132 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
133
134 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
135 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
136
137 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
138 PHINode *IndVar, SCEVExpander &Rewriter);
139
140 void sinkUnusedInvariants(Loop *L);
141
142 Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
143 Instruction *InsertPt, Type *Ty);
144 };
145 }
146
147 char IndVarSimplify::ID = 0;
148 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
149 "Induction Variable Simplification", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)150 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
151 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
152 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
153 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
154 INITIALIZE_PASS_DEPENDENCY(LCSSA)
155 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
156 "Induction Variable Simplification", false, false)
157
158 Pass *llvm::createIndVarSimplifyPass() {
159 return new IndVarSimplify();
160 }
161
162 /// Return true if the SCEV expansion generated by the rewriter can replace the
163 /// original value. SCEV guarantees that it produces the same value, but the way
164 /// it is produced may be illegal IR. Ideally, this function will only be
165 /// called for verification.
isValidRewrite(Value * FromVal,Value * ToVal)166 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
167 // If an SCEV expression subsumed multiple pointers, its expansion could
168 // reassociate the GEP changing the base pointer. This is illegal because the
169 // final address produced by a GEP chain must be inbounds relative to its
170 // underlying object. Otherwise basic alias analysis, among other things,
171 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
172 // producing an expression involving multiple pointers. Until then, we must
173 // bail out here.
174 //
175 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
176 // because it understands lcssa phis while SCEV does not.
177 Value *FromPtr = FromVal;
178 Value *ToPtr = ToVal;
179 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
180 FromPtr = GEP->getPointerOperand();
181 }
182 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
183 ToPtr = GEP->getPointerOperand();
184 }
185 if (FromPtr != FromVal || ToPtr != ToVal) {
186 // Quickly check the common case
187 if (FromPtr == ToPtr)
188 return true;
189
190 // SCEV may have rewritten an expression that produces the GEP's pointer
191 // operand. That's ok as long as the pointer operand has the same base
192 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
193 // base of a recurrence. This handles the case in which SCEV expansion
194 // converts a pointer type recurrence into a nonrecurrent pointer base
195 // indexed by an integer recurrence.
196
197 // If the GEP base pointer is a vector of pointers, abort.
198 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
199 return false;
200
201 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
202 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
203 if (FromBase == ToBase)
204 return true;
205
206 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
207 << *FromBase << " != " << *ToBase << "\n");
208
209 return false;
210 }
211 return true;
212 }
213
214 /// Determine the insertion point for this user. By default, insert immediately
215 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
216 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
217 /// common dominator for the incoming blocks.
getInsertPointForUses(Instruction * User,Value * Def,DominatorTree * DT,LoopInfo * LI)218 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
219 DominatorTree *DT, LoopInfo *LI) {
220 PHINode *PHI = dyn_cast<PHINode>(User);
221 if (!PHI)
222 return User;
223
224 Instruction *InsertPt = nullptr;
225 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
226 if (PHI->getIncomingValue(i) != Def)
227 continue;
228
229 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
230 if (!InsertPt) {
231 InsertPt = InsertBB->getTerminator();
232 continue;
233 }
234 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
235 InsertPt = InsertBB->getTerminator();
236 }
237 assert(InsertPt && "Missing phi operand");
238
239 auto *DefI = dyn_cast<Instruction>(Def);
240 if (!DefI)
241 return InsertPt;
242
243 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
244
245 auto *L = LI->getLoopFor(DefI->getParent());
246 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
247
248 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
249 if (LI->getLoopFor(DTN->getBlock()) == L)
250 return DTN->getBlock()->getTerminator();
251
252 llvm_unreachable("DefI dominates InsertPt!");
253 }
254
255 //===----------------------------------------------------------------------===//
256 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
257 //===----------------------------------------------------------------------===//
258
259 /// Convert APF to an integer, if possible.
ConvertToSInt(const APFloat & APF,int64_t & IntVal)260 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
261 bool isExact = false;
262 // See if we can convert this to an int64_t
263 uint64_t UIntVal;
264 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
265 &isExact) != APFloat::opOK || !isExact)
266 return false;
267 IntVal = UIntVal;
268 return true;
269 }
270
271 /// If the loop has floating induction variable then insert corresponding
272 /// integer induction variable if possible.
273 /// For example,
274 /// for(double i = 0; i < 10000; ++i)
275 /// bar(i)
276 /// is converted into
277 /// for(int i = 0; i < 10000; ++i)
278 /// bar((double)i);
279 ///
handleFloatingPointIV(Loop * L,PHINode * PN)280 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
281 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
282 unsigned BackEdge = IncomingEdge^1;
283
284 // Check incoming value.
285 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
286
287 int64_t InitValue;
288 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
289 return;
290
291 // Check IV increment. Reject this PN if increment operation is not
292 // an add or increment value can not be represented by an integer.
293 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
294 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
295
296 // If this is not an add of the PHI with a constantfp, or if the constant fp
297 // is not an integer, bail out.
298 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
299 int64_t IncValue;
300 if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
301 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
302 return;
303
304 // Check Incr uses. One user is PN and the other user is an exit condition
305 // used by the conditional terminator.
306 Value::user_iterator IncrUse = Incr->user_begin();
307 Instruction *U1 = cast<Instruction>(*IncrUse++);
308 if (IncrUse == Incr->user_end()) return;
309 Instruction *U2 = cast<Instruction>(*IncrUse++);
310 if (IncrUse != Incr->user_end()) return;
311
312 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
313 // only used by a branch, we can't transform it.
314 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
315 if (!Compare)
316 Compare = dyn_cast<FCmpInst>(U2);
317 if (!Compare || !Compare->hasOneUse() ||
318 !isa<BranchInst>(Compare->user_back()))
319 return;
320
321 BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
322
323 // We need to verify that the branch actually controls the iteration count
324 // of the loop. If not, the new IV can overflow and no one will notice.
325 // The branch block must be in the loop and one of the successors must be out
326 // of the loop.
327 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
328 if (!L->contains(TheBr->getParent()) ||
329 (L->contains(TheBr->getSuccessor(0)) &&
330 L->contains(TheBr->getSuccessor(1))))
331 return;
332
333
334 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
335 // transform it.
336 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
337 int64_t ExitValue;
338 if (ExitValueVal == nullptr ||
339 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
340 return;
341
342 // Find new predicate for integer comparison.
343 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
344 switch (Compare->getPredicate()) {
345 default: return; // Unknown comparison.
346 case CmpInst::FCMP_OEQ:
347 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
348 case CmpInst::FCMP_ONE:
349 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
350 case CmpInst::FCMP_OGT:
351 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
352 case CmpInst::FCMP_OGE:
353 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
354 case CmpInst::FCMP_OLT:
355 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
356 case CmpInst::FCMP_OLE:
357 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
358 }
359
360 // We convert the floating point induction variable to a signed i32 value if
361 // we can. This is only safe if the comparison will not overflow in a way
362 // that won't be trapped by the integer equivalent operations. Check for this
363 // now.
364 // TODO: We could use i64 if it is native and the range requires it.
365
366 // The start/stride/exit values must all fit in signed i32.
367 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
368 return;
369
370 // If not actually striding (add x, 0.0), avoid touching the code.
371 if (IncValue == 0)
372 return;
373
374 // Positive and negative strides have different safety conditions.
375 if (IncValue > 0) {
376 // If we have a positive stride, we require the init to be less than the
377 // exit value.
378 if (InitValue >= ExitValue)
379 return;
380
381 uint32_t Range = uint32_t(ExitValue-InitValue);
382 // Check for infinite loop, either:
383 // while (i <= Exit) or until (i > Exit)
384 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
385 if (++Range == 0) return; // Range overflows.
386 }
387
388 unsigned Leftover = Range % uint32_t(IncValue);
389
390 // If this is an equality comparison, we require that the strided value
391 // exactly land on the exit value, otherwise the IV condition will wrap
392 // around and do things the fp IV wouldn't.
393 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
394 Leftover != 0)
395 return;
396
397 // If the stride would wrap around the i32 before exiting, we can't
398 // transform the IV.
399 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
400 return;
401
402 } else {
403 // If we have a negative stride, we require the init to be greater than the
404 // exit value.
405 if (InitValue <= ExitValue)
406 return;
407
408 uint32_t Range = uint32_t(InitValue-ExitValue);
409 // Check for infinite loop, either:
410 // while (i >= Exit) or until (i < Exit)
411 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
412 if (++Range == 0) return; // Range overflows.
413 }
414
415 unsigned Leftover = Range % uint32_t(-IncValue);
416
417 // If this is an equality comparison, we require that the strided value
418 // exactly land on the exit value, otherwise the IV condition will wrap
419 // around and do things the fp IV wouldn't.
420 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
421 Leftover != 0)
422 return;
423
424 // If the stride would wrap around the i32 before exiting, we can't
425 // transform the IV.
426 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
427 return;
428 }
429
430 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
431
432 // Insert new integer induction variable.
433 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
434 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
435 PN->getIncomingBlock(IncomingEdge));
436
437 Value *NewAdd =
438 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
439 Incr->getName()+".int", Incr);
440 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
441
442 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
443 ConstantInt::get(Int32Ty, ExitValue),
444 Compare->getName());
445
446 // In the following deletions, PN may become dead and may be deleted.
447 // Use a WeakVH to observe whether this happens.
448 WeakVH WeakPH = PN;
449
450 // Delete the old floating point exit comparison. The branch starts using the
451 // new comparison.
452 NewCompare->takeName(Compare);
453 Compare->replaceAllUsesWith(NewCompare);
454 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
455
456 // Delete the old floating point increment.
457 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
458 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
459
460 // If the FP induction variable still has uses, this is because something else
461 // in the loop uses its value. In order to canonicalize the induction
462 // variable, we chose to eliminate the IV and rewrite it in terms of an
463 // int->fp cast.
464 //
465 // We give preference to sitofp over uitofp because it is faster on most
466 // platforms.
467 if (WeakPH) {
468 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
469 &*PN->getParent()->getFirstInsertionPt());
470 PN->replaceAllUsesWith(Conv);
471 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
472 }
473 Changed = true;
474 }
475
rewriteNonIntegerIVs(Loop * L)476 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
477 // First step. Check to see if there are any floating-point recurrences.
478 // If there are, change them into integer recurrences, permitting analysis by
479 // the SCEV routines.
480 //
481 BasicBlock *Header = L->getHeader();
482
483 SmallVector<WeakVH, 8> PHIs;
484 for (BasicBlock::iterator I = Header->begin();
485 PHINode *PN = dyn_cast<PHINode>(I); ++I)
486 PHIs.push_back(PN);
487
488 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
489 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
490 handleFloatingPointIV(L, PN);
491
492 // If the loop previously had floating-point IV, ScalarEvolution
493 // may not have been able to compute a trip count. Now that we've done some
494 // re-writing, the trip count may be computable.
495 if (Changed)
496 SE->forgetLoop(L);
497 }
498
499 namespace {
500 // Collect information about PHI nodes which can be transformed in
501 // rewriteLoopExitValues.
502 struct RewritePhi {
503 PHINode *PN;
504 unsigned Ith; // Ith incoming value.
505 Value *Val; // Exit value after expansion.
506 bool HighCost; // High Cost when expansion.
507 bool SafePhi; // LCSSASafePhiForRAUW.
508
RewritePhi__anon4bb1d1520211::RewritePhi509 RewritePhi(PHINode *P, unsigned I, Value *V, bool H, bool S)
510 : PN(P), Ith(I), Val(V), HighCost(H), SafePhi(S) {}
511 };
512 }
513
expandSCEVIfNeeded(SCEVExpander & Rewriter,const SCEV * S,Loop * L,Instruction * InsertPt,Type * ResultTy)514 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
515 Loop *L, Instruction *InsertPt,
516 Type *ResultTy) {
517 // Before expanding S into an expensive LLVM expression, see if we can use an
518 // already existing value as the expansion for S.
519 if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L))
520 if (ExistingValue->getType() == ResultTy)
521 return ExistingValue;
522
523 // We didn't find anything, fall back to using SCEVExpander.
524 return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
525 }
526
527 //===----------------------------------------------------------------------===//
528 // rewriteLoopExitValues - Optimize IV users outside the loop.
529 // As a side effect, reduces the amount of IV processing within the loop.
530 //===----------------------------------------------------------------------===//
531
532 /// Check to see if this loop has a computable loop-invariant execution count.
533 /// If so, this means that we can compute the final value of any expressions
534 /// that are recurrent in the loop, and substitute the exit values from the loop
535 /// into any instructions outside of the loop that use the final values of the
536 /// current expressions.
537 ///
538 /// This is mostly redundant with the regular IndVarSimplify activities that
539 /// happen later, except that it's more powerful in some cases, because it's
540 /// able to brute-force evaluate arbitrary instructions as long as they have
541 /// constant operands at the beginning of the loop.
rewriteLoopExitValues(Loop * L,SCEVExpander & Rewriter)542 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
543 // Check a pre-condition.
544 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
545
546 SmallVector<BasicBlock*, 8> ExitBlocks;
547 L->getUniqueExitBlocks(ExitBlocks);
548
549 SmallVector<RewritePhi, 8> RewritePhiSet;
550 // Find all values that are computed inside the loop, but used outside of it.
551 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
552 // the exit blocks of the loop to find them.
553 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
554 BasicBlock *ExitBB = ExitBlocks[i];
555
556 // If there are no PHI nodes in this exit block, then no values defined
557 // inside the loop are used on this path, skip it.
558 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
559 if (!PN) continue;
560
561 unsigned NumPreds = PN->getNumIncomingValues();
562
563 // We would like to be able to RAUW single-incoming value PHI nodes. We
564 // have to be certain this is safe even when this is an LCSSA PHI node.
565 // While the computed exit value is no longer varying in *this* loop, the
566 // exit block may be an exit block for an outer containing loop as well,
567 // the exit value may be varying in the outer loop, and thus it may still
568 // require an LCSSA PHI node. The safe case is when this is
569 // single-predecessor PHI node (LCSSA) and the exit block containing it is
570 // part of the enclosing loop, or this is the outer most loop of the nest.
571 // In either case the exit value could (at most) be varying in the same
572 // loop body as the phi node itself. Thus if it is in turn used outside of
573 // an enclosing loop it will only be via a separate LCSSA node.
574 bool LCSSASafePhiForRAUW =
575 NumPreds == 1 &&
576 (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB));
577
578 // Iterate over all of the PHI nodes.
579 BasicBlock::iterator BBI = ExitBB->begin();
580 while ((PN = dyn_cast<PHINode>(BBI++))) {
581 if (PN->use_empty())
582 continue; // dead use, don't replace it
583
584 // SCEV only supports integer expressions for now.
585 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
586 continue;
587
588 // It's necessary to tell ScalarEvolution about this explicitly so that
589 // it can walk the def-use list and forget all SCEVs, as it may not be
590 // watching the PHI itself. Once the new exit value is in place, there
591 // may not be a def-use connection between the loop and every instruction
592 // which got a SCEVAddRecExpr for that loop.
593 SE->forgetValue(PN);
594
595 // Iterate over all of the values in all the PHI nodes.
596 for (unsigned i = 0; i != NumPreds; ++i) {
597 // If the value being merged in is not integer or is not defined
598 // in the loop, skip it.
599 Value *InVal = PN->getIncomingValue(i);
600 if (!isa<Instruction>(InVal))
601 continue;
602
603 // If this pred is for a subloop, not L itself, skip it.
604 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
605 continue; // The Block is in a subloop, skip it.
606
607 // Check that InVal is defined in the loop.
608 Instruction *Inst = cast<Instruction>(InVal);
609 if (!L->contains(Inst))
610 continue;
611
612 // Okay, this instruction has a user outside of the current loop
613 // and varies predictably *inside* the loop. Evaluate the value it
614 // contains when the loop exits, if possible.
615 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
616 if (!SE->isLoopInvariant(ExitValue, L) ||
617 !isSafeToExpand(ExitValue, *SE))
618 continue;
619
620 // Computing the value outside of the loop brings no benefit if :
621 // - it is definitely used inside the loop in a way which can not be
622 // optimized away.
623 // - no use outside of the loop can take advantage of hoisting the
624 // computation out of the loop
625 if (ExitValue->getSCEVType()>=scMulExpr) {
626 unsigned NumHardInternalUses = 0;
627 unsigned NumSoftExternalUses = 0;
628 unsigned NumUses = 0;
629 for (auto IB = Inst->user_begin(), IE = Inst->user_end();
630 IB != IE && NumUses <= 6; ++IB) {
631 Instruction *UseInstr = cast<Instruction>(*IB);
632 unsigned Opc = UseInstr->getOpcode();
633 NumUses++;
634 if (L->contains(UseInstr)) {
635 if (Opc == Instruction::Call || Opc == Instruction::Ret)
636 NumHardInternalUses++;
637 } else {
638 if (Opc == Instruction::PHI) {
639 // Do not count the Phi as a use. LCSSA may have inserted
640 // plenty of trivial ones.
641 NumUses--;
642 for (auto PB = UseInstr->user_begin(),
643 PE = UseInstr->user_end();
644 PB != PE && NumUses <= 6; ++PB, ++NumUses) {
645 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
646 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
647 NumSoftExternalUses++;
648 }
649 continue;
650 }
651 if (Opc != Instruction::Call && Opc != Instruction::Ret)
652 NumSoftExternalUses++;
653 }
654 }
655 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
656 continue;
657 }
658
659 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
660 Value *ExitVal =
661 expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType());
662
663 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
664 << " LoopVal = " << *Inst << "\n");
665
666 if (!isValidRewrite(Inst, ExitVal)) {
667 DeadInsts.push_back(ExitVal);
668 continue;
669 }
670
671 // Collect all the candidate PHINodes to be rewritten.
672 RewritePhiSet.push_back(
673 RewritePhi(PN, i, ExitVal, HighCost, LCSSASafePhiForRAUW));
674 }
675 }
676 }
677
678 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
679
680 // Transformation.
681 for (const RewritePhi &Phi : RewritePhiSet) {
682 PHINode *PN = Phi.PN;
683 Value *ExitVal = Phi.Val;
684
685 // Only do the rewrite when the ExitValue can be expanded cheaply.
686 // If LoopCanBeDel is true, rewrite exit value aggressively.
687 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
688 DeadInsts.push_back(ExitVal);
689 continue;
690 }
691
692 Changed = true;
693 ++NumReplaced;
694 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
695 PN->setIncomingValue(Phi.Ith, ExitVal);
696
697 // If this instruction is dead now, delete it. Don't do it now to avoid
698 // invalidating iterators.
699 if (isInstructionTriviallyDead(Inst, TLI))
700 DeadInsts.push_back(Inst);
701
702 // If we determined that this PHI is safe to replace even if an LCSSA
703 // PHI, do so.
704 if (Phi.SafePhi) {
705 PN->replaceAllUsesWith(ExitVal);
706 PN->eraseFromParent();
707 }
708 }
709
710 // The insertion point instruction may have been deleted; clear it out
711 // so that the rewriter doesn't trip over it later.
712 Rewriter.clearInsertPoint();
713 }
714
715 /// Check whether it is possible to delete the loop after rewriting exit
716 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
717 /// aggressively.
canLoopBeDeleted(Loop * L,SmallVector<RewritePhi,8> & RewritePhiSet)718 bool IndVarSimplify::canLoopBeDeleted(
719 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
720
721 BasicBlock *Preheader = L->getLoopPreheader();
722 // If there is no preheader, the loop will not be deleted.
723 if (!Preheader)
724 return false;
725
726 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
727 // We obviate multiple ExitingBlocks case for simplicity.
728 // TODO: If we see testcase with multiple ExitingBlocks can be deleted
729 // after exit value rewriting, we can enhance the logic here.
730 SmallVector<BasicBlock *, 4> ExitingBlocks;
731 L->getExitingBlocks(ExitingBlocks);
732 SmallVector<BasicBlock *, 8> ExitBlocks;
733 L->getUniqueExitBlocks(ExitBlocks);
734 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
735 return false;
736
737 BasicBlock *ExitBlock = ExitBlocks[0];
738 BasicBlock::iterator BI = ExitBlock->begin();
739 while (PHINode *P = dyn_cast<PHINode>(BI)) {
740 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
741
742 // If the Incoming value of P is found in RewritePhiSet, we know it
743 // could be rewritten to use a loop invariant value in transformation
744 // phase later. Skip it in the loop invariant check below.
745 bool found = false;
746 for (const RewritePhi &Phi : RewritePhiSet) {
747 unsigned i = Phi.Ith;
748 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
749 found = true;
750 break;
751 }
752 }
753
754 Instruction *I;
755 if (!found && (I = dyn_cast<Instruction>(Incoming)))
756 if (!L->hasLoopInvariantOperands(I))
757 return false;
758
759 ++BI;
760 }
761
762 for (auto *BB : L->blocks())
763 if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); }))
764 return false;
765
766 return true;
767 }
768
769 //===----------------------------------------------------------------------===//
770 // IV Widening - Extend the width of an IV to cover its widest uses.
771 //===----------------------------------------------------------------------===//
772
773 namespace {
774 // Collect information about induction variables that are used by sign/zero
775 // extend operations. This information is recorded by CollectExtend and provides
776 // the input to WidenIV.
777 struct WideIVInfo {
778 PHINode *NarrowIV = nullptr;
779 Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext
780 bool IsSigned = false; // Was a sext user seen before a zext?
781 };
782 }
783
784 /// Update information about the induction variable that is extended by this
785 /// sign or zero extend operation. This is used to determine the final width of
786 /// the IV before actually widening it.
visitIVCast(CastInst * Cast,WideIVInfo & WI,ScalarEvolution * SE,const TargetTransformInfo * TTI)787 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
788 const TargetTransformInfo *TTI) {
789 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
790 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
791 return;
792
793 Type *Ty = Cast->getType();
794 uint64_t Width = SE->getTypeSizeInBits(Ty);
795 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
796 return;
797
798 // Cast is either an sext or zext up to this point.
799 // We should not widen an indvar if arithmetics on the wider indvar are more
800 // expensive than those on the narrower indvar. We check only the cost of ADD
801 // because at least an ADD is required to increment the induction variable. We
802 // could compute more comprehensively the cost of all instructions on the
803 // induction variable when necessary.
804 if (TTI &&
805 TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
806 TTI->getArithmeticInstrCost(Instruction::Add,
807 Cast->getOperand(0)->getType())) {
808 return;
809 }
810
811 if (!WI.WidestNativeType) {
812 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
813 WI.IsSigned = IsSigned;
814 return;
815 }
816
817 // We extend the IV to satisfy the sign of its first user, arbitrarily.
818 if (WI.IsSigned != IsSigned)
819 return;
820
821 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
822 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
823 }
824
825 namespace {
826
827 /// Record a link in the Narrow IV def-use chain along with the WideIV that
828 /// computes the same value as the Narrow IV def. This avoids caching Use*
829 /// pointers.
830 struct NarrowIVDefUse {
831 Instruction *NarrowDef = nullptr;
832 Instruction *NarrowUse = nullptr;
833 Instruction *WideDef = nullptr;
834
835 // True if the narrow def is never negative. Tracking this information lets
836 // us use a sign extension instead of a zero extension or vice versa, when
837 // profitable and legal.
838 bool NeverNegative = false;
839
NarrowIVDefUse__anon4bb1d1520511::NarrowIVDefUse840 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
841 bool NeverNegative)
842 : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
843 NeverNegative(NeverNegative) {}
844 };
845
846 /// The goal of this transform is to remove sign and zero extends without
847 /// creating any new induction variables. To do this, it creates a new phi of
848 /// the wider type and redirects all users, either removing extends or inserting
849 /// truncs whenever we stop propagating the type.
850 ///
851 class WidenIV {
852 // Parameters
853 PHINode *OrigPhi;
854 Type *WideType;
855 bool IsSigned;
856
857 // Context
858 LoopInfo *LI;
859 Loop *L;
860 ScalarEvolution *SE;
861 DominatorTree *DT;
862
863 // Result
864 PHINode *WidePhi;
865 Instruction *WideInc;
866 const SCEV *WideIncExpr;
867 SmallVectorImpl<WeakVH> &DeadInsts;
868
869 SmallPtrSet<Instruction*,16> Widened;
870 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
871
872 public:
WidenIV(const WideIVInfo & WI,LoopInfo * LInfo,ScalarEvolution * SEv,DominatorTree * DTree,SmallVectorImpl<WeakVH> & DI)873 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
874 ScalarEvolution *SEv, DominatorTree *DTree,
875 SmallVectorImpl<WeakVH> &DI) :
876 OrigPhi(WI.NarrowIV),
877 WideType(WI.WidestNativeType),
878 IsSigned(WI.IsSigned),
879 LI(LInfo),
880 L(LI->getLoopFor(OrigPhi->getParent())),
881 SE(SEv),
882 DT(DTree),
883 WidePhi(nullptr),
884 WideInc(nullptr),
885 WideIncExpr(nullptr),
886 DeadInsts(DI) {
887 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
888 }
889
890 PHINode *createWideIV(SCEVExpander &Rewriter);
891
892 protected:
893 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
894 Instruction *Use);
895
896 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
897 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
898 const SCEVAddRecExpr *WideAR);
899 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
900
901 const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse);
902
903 const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU);
904
905 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
906 unsigned OpCode) const;
907
908 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
909
910 bool widenLoopCompare(NarrowIVDefUse DU);
911
912 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
913 };
914 } // anonymous namespace
915
916 /// Perform a quick domtree based check for loop invariance assuming that V is
917 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
918 /// purpose.
isLoopInvariant(Value * V,const Loop * L,const DominatorTree * DT)919 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
920 Instruction *Inst = dyn_cast<Instruction>(V);
921 if (!Inst)
922 return true;
923
924 return DT->properlyDominates(Inst->getParent(), L->getHeader());
925 }
926
createExtendInst(Value * NarrowOper,Type * WideType,bool IsSigned,Instruction * Use)927 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
928 bool IsSigned, Instruction *Use) {
929 // Set the debug location and conservative insertion point.
930 IRBuilder<> Builder(Use);
931 // Hoist the insertion point into loop preheaders as far as possible.
932 for (const Loop *L = LI->getLoopFor(Use->getParent());
933 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
934 L = L->getParentLoop())
935 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
936
937 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
938 Builder.CreateZExt(NarrowOper, WideType);
939 }
940
941 /// Instantiate a wide operation to replace a narrow operation. This only needs
942 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
943 /// 0 for any operation we decide not to clone.
cloneIVUser(NarrowIVDefUse DU,const SCEVAddRecExpr * WideAR)944 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
945 const SCEVAddRecExpr *WideAR) {
946 unsigned Opcode = DU.NarrowUse->getOpcode();
947 switch (Opcode) {
948 default:
949 return nullptr;
950 case Instruction::Add:
951 case Instruction::Mul:
952 case Instruction::UDiv:
953 case Instruction::Sub:
954 return cloneArithmeticIVUser(DU, WideAR);
955
956 case Instruction::And:
957 case Instruction::Or:
958 case Instruction::Xor:
959 case Instruction::Shl:
960 case Instruction::LShr:
961 case Instruction::AShr:
962 return cloneBitwiseIVUser(DU);
963 }
964 }
965
cloneBitwiseIVUser(NarrowIVDefUse DU)966 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
967 Instruction *NarrowUse = DU.NarrowUse;
968 Instruction *NarrowDef = DU.NarrowDef;
969 Instruction *WideDef = DU.WideDef;
970
971 DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
972
973 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
974 // about the narrow operand yet so must insert a [sz]ext. It is probably loop
975 // invariant and will be folded or hoisted. If it actually comes from a
976 // widened IV, it should be removed during a future call to widenIVUse.
977 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
978 ? WideDef
979 : createExtendInst(NarrowUse->getOperand(0), WideType,
980 IsSigned, NarrowUse);
981 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
982 ? WideDef
983 : createExtendInst(NarrowUse->getOperand(1), WideType,
984 IsSigned, NarrowUse);
985
986 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
987 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
988 NarrowBO->getName());
989 IRBuilder<> Builder(NarrowUse);
990 Builder.Insert(WideBO);
991 WideBO->copyIRFlags(NarrowBO);
992 return WideBO;
993 }
994
cloneArithmeticIVUser(NarrowIVDefUse DU,const SCEVAddRecExpr * WideAR)995 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
996 const SCEVAddRecExpr *WideAR) {
997 Instruction *NarrowUse = DU.NarrowUse;
998 Instruction *NarrowDef = DU.NarrowDef;
999 Instruction *WideDef = DU.WideDef;
1000
1001 DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1002
1003 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1004
1005 // We're trying to find X such that
1006 //
1007 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1008 //
1009 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1010 // and check using SCEV if any of them are correct.
1011
1012 // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1013 // correct solution to X.
1014 auto GuessNonIVOperand = [&](bool SignExt) {
1015 const SCEV *WideLHS;
1016 const SCEV *WideRHS;
1017
1018 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1019 if (SignExt)
1020 return SE->getSignExtendExpr(S, Ty);
1021 return SE->getZeroExtendExpr(S, Ty);
1022 };
1023
1024 if (IVOpIdx == 0) {
1025 WideLHS = SE->getSCEV(WideDef);
1026 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1027 WideRHS = GetExtend(NarrowRHS, WideType);
1028 } else {
1029 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1030 WideLHS = GetExtend(NarrowLHS, WideType);
1031 WideRHS = SE->getSCEV(WideDef);
1032 }
1033
1034 // WideUse is "WideDef `op.wide` X" as described in the comment.
1035 const SCEV *WideUse = nullptr;
1036
1037 switch (NarrowUse->getOpcode()) {
1038 default:
1039 llvm_unreachable("No other possibility!");
1040
1041 case Instruction::Add:
1042 WideUse = SE->getAddExpr(WideLHS, WideRHS);
1043 break;
1044
1045 case Instruction::Mul:
1046 WideUse = SE->getMulExpr(WideLHS, WideRHS);
1047 break;
1048
1049 case Instruction::UDiv:
1050 WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1051 break;
1052
1053 case Instruction::Sub:
1054 WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1055 break;
1056 }
1057
1058 return WideUse == WideAR;
1059 };
1060
1061 bool SignExtend = IsSigned;
1062 if (!GuessNonIVOperand(SignExtend)) {
1063 SignExtend = !SignExtend;
1064 if (!GuessNonIVOperand(SignExtend))
1065 return nullptr;
1066 }
1067
1068 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1069 ? WideDef
1070 : createExtendInst(NarrowUse->getOperand(0), WideType,
1071 SignExtend, NarrowUse);
1072 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1073 ? WideDef
1074 : createExtendInst(NarrowUse->getOperand(1), WideType,
1075 SignExtend, NarrowUse);
1076
1077 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1078 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1079 NarrowBO->getName());
1080
1081 IRBuilder<> Builder(NarrowUse);
1082 Builder.Insert(WideBO);
1083 WideBO->copyIRFlags(NarrowBO);
1084 return WideBO;
1085 }
1086
getSCEVByOpCode(const SCEV * LHS,const SCEV * RHS,unsigned OpCode) const1087 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1088 unsigned OpCode) const {
1089 if (OpCode == Instruction::Add)
1090 return SE->getAddExpr(LHS, RHS);
1091 if (OpCode == Instruction::Sub)
1092 return SE->getMinusSCEV(LHS, RHS);
1093 if (OpCode == Instruction::Mul)
1094 return SE->getMulExpr(LHS, RHS);
1095
1096 llvm_unreachable("Unsupported opcode.");
1097 }
1098
1099 /// No-wrap operations can transfer sign extension of their result to their
1100 /// operands. Generate the SCEV value for the widened operation without
1101 /// actually modifying the IR yet. If the expression after extending the
1102 /// operands is an AddRec for this loop, return it.
getExtendedOperandRecurrence(NarrowIVDefUse DU)1103 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1104
1105 // Handle the common case of add<nsw/nuw>
1106 const unsigned OpCode = DU.NarrowUse->getOpcode();
1107 // Only Add/Sub/Mul instructions supported yet.
1108 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1109 OpCode != Instruction::Mul)
1110 return nullptr;
1111
1112 // One operand (NarrowDef) has already been extended to WideDef. Now determine
1113 // if extending the other will lead to a recurrence.
1114 const unsigned ExtendOperIdx =
1115 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1116 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1117
1118 const SCEV *ExtendOperExpr = nullptr;
1119 const OverflowingBinaryOperator *OBO =
1120 cast<OverflowingBinaryOperator>(DU.NarrowUse);
1121 if (IsSigned && OBO->hasNoSignedWrap())
1122 ExtendOperExpr = SE->getSignExtendExpr(
1123 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1124 else if(!IsSigned && OBO->hasNoUnsignedWrap())
1125 ExtendOperExpr = SE->getZeroExtendExpr(
1126 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1127 else
1128 return nullptr;
1129
1130 // When creating this SCEV expr, don't apply the current operations NSW or NUW
1131 // flags. This instruction may be guarded by control flow that the no-wrap
1132 // behavior depends on. Non-control-equivalent instructions can be mapped to
1133 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1134 // semantics to those operations.
1135 const SCEV *lhs = SE->getSCEV(DU.WideDef);
1136 const SCEV *rhs = ExtendOperExpr;
1137
1138 // Let's swap operands to the initial order for the case of non-commutative
1139 // operations, like SUB. See PR21014.
1140 if (ExtendOperIdx == 0)
1141 std::swap(lhs, rhs);
1142 const SCEVAddRecExpr *AddRec =
1143 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1144
1145 if (!AddRec || AddRec->getLoop() != L)
1146 return nullptr;
1147 return AddRec;
1148 }
1149
1150 /// Is this instruction potentially interesting for further simplification after
1151 /// widening it's type? In other words, can the extend be safely hoisted out of
1152 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1153 /// so, return the sign or zero extended recurrence. Otherwise return NULL.
getWideRecurrence(Instruction * NarrowUse)1154 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) {
1155 if (!SE->isSCEVable(NarrowUse->getType()))
1156 return nullptr;
1157
1158 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
1159 if (SE->getTypeSizeInBits(NarrowExpr->getType())
1160 >= SE->getTypeSizeInBits(WideType)) {
1161 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1162 // index. So don't follow this use.
1163 return nullptr;
1164 }
1165
1166 const SCEV *WideExpr = IsSigned ?
1167 SE->getSignExtendExpr(NarrowExpr, WideType) :
1168 SE->getZeroExtendExpr(NarrowExpr, WideType);
1169 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1170 if (!AddRec || AddRec->getLoop() != L)
1171 return nullptr;
1172 return AddRec;
1173 }
1174
1175 /// This IV user cannot be widen. Replace this use of the original narrow IV
1176 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
truncateIVUse(NarrowIVDefUse DU,DominatorTree * DT,LoopInfo * LI)1177 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1178 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
1179 << " for user " << *DU.NarrowUse << "\n");
1180 IRBuilder<> Builder(
1181 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1182 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1183 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1184 }
1185
1186 /// If the narrow use is a compare instruction, then widen the compare
1187 // (and possibly the other operand). The extend operation is hoisted into the
1188 // loop preheader as far as possible.
widenLoopCompare(NarrowIVDefUse DU)1189 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1190 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1191 if (!Cmp)
1192 return false;
1193
1194 // We can legally widen the comparison in the following two cases:
1195 //
1196 // - The signedness of the IV extension and comparison match
1197 //
1198 // - The narrow IV is always positive (and thus its sign extension is equal
1199 // to its zero extension). For instance, let's say we're zero extending
1200 // %narrow for the following use
1201 //
1202 // icmp slt i32 %narrow, %val ... (A)
1203 //
1204 // and %narrow is always positive. Then
1205 //
1206 // (A) == icmp slt i32 sext(%narrow), sext(%val)
1207 // == icmp slt i32 zext(%narrow), sext(%val)
1208
1209 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1210 return false;
1211
1212 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1213 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1214 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1215 assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
1216
1217 // Widen the compare instruction.
1218 IRBuilder<> Builder(
1219 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1220 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1221
1222 // Widen the other operand of the compare, if necessary.
1223 if (CastWidth < IVWidth) {
1224 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1225 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1226 }
1227 return true;
1228 }
1229
1230 /// Determine whether an individual user of the narrow IV can be widened. If so,
1231 /// return the wide clone of the user.
widenIVUse(NarrowIVDefUse DU,SCEVExpander & Rewriter)1232 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1233
1234 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1235 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1236 if (LI->getLoopFor(UsePhi->getParent()) != L) {
1237 // For LCSSA phis, sink the truncate outside the loop.
1238 // After SimplifyCFG most loop exit targets have a single predecessor.
1239 // Otherwise fall back to a truncate within the loop.
1240 if (UsePhi->getNumOperands() != 1)
1241 truncateIVUse(DU, DT, LI);
1242 else {
1243 PHINode *WidePhi =
1244 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1245 UsePhi);
1246 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1247 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1248 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1249 UsePhi->replaceAllUsesWith(Trunc);
1250 DeadInsts.emplace_back(UsePhi);
1251 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1252 << " to " << *WidePhi << "\n");
1253 }
1254 return nullptr;
1255 }
1256 }
1257 // Our raison d'etre! Eliminate sign and zero extension.
1258 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1259 Value *NewDef = DU.WideDef;
1260 if (DU.NarrowUse->getType() != WideType) {
1261 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1262 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1263 if (CastWidth < IVWidth) {
1264 // The cast isn't as wide as the IV, so insert a Trunc.
1265 IRBuilder<> Builder(DU.NarrowUse);
1266 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1267 }
1268 else {
1269 // A wider extend was hidden behind a narrower one. This may induce
1270 // another round of IV widening in which the intermediate IV becomes
1271 // dead. It should be very rare.
1272 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1273 << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1274 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1275 NewDef = DU.NarrowUse;
1276 }
1277 }
1278 if (NewDef != DU.NarrowUse) {
1279 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1280 << " replaced by " << *DU.WideDef << "\n");
1281 ++NumElimExt;
1282 DU.NarrowUse->replaceAllUsesWith(NewDef);
1283 DeadInsts.emplace_back(DU.NarrowUse);
1284 }
1285 // Now that the extend is gone, we want to expose it's uses for potential
1286 // further simplification. We don't need to directly inform SimplifyIVUsers
1287 // of the new users, because their parent IV will be processed later as a
1288 // new loop phi. If we preserved IVUsers analysis, we would also want to
1289 // push the uses of WideDef here.
1290
1291 // No further widening is needed. The deceased [sz]ext had done it for us.
1292 return nullptr;
1293 }
1294
1295 // Does this user itself evaluate to a recurrence after widening?
1296 const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse);
1297 if (!WideAddRec)
1298 WideAddRec = getExtendedOperandRecurrence(DU);
1299
1300 if (!WideAddRec) {
1301 // If use is a loop condition, try to promote the condition instead of
1302 // truncating the IV first.
1303 if (widenLoopCompare(DU))
1304 return nullptr;
1305
1306 // This user does not evaluate to a recurence after widening, so don't
1307 // follow it. Instead insert a Trunc to kill off the original use,
1308 // eventually isolating the original narrow IV so it can be removed.
1309 truncateIVUse(DU, DT, LI);
1310 return nullptr;
1311 }
1312 // Assume block terminators cannot evaluate to a recurrence. We can't to
1313 // insert a Trunc after a terminator if there happens to be a critical edge.
1314 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1315 "SCEV is not expected to evaluate a block terminator");
1316
1317 // Reuse the IV increment that SCEVExpander created as long as it dominates
1318 // NarrowUse.
1319 Instruction *WideUse = nullptr;
1320 if (WideAddRec == WideIncExpr
1321 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1322 WideUse = WideInc;
1323 else {
1324 WideUse = cloneIVUser(DU, WideAddRec);
1325 if (!WideUse)
1326 return nullptr;
1327 }
1328 // Evaluation of WideAddRec ensured that the narrow expression could be
1329 // extended outside the loop without overflow. This suggests that the wide use
1330 // evaluates to the same expression as the extended narrow use, but doesn't
1331 // absolutely guarantee it. Hence the following failsafe check. In rare cases
1332 // where it fails, we simply throw away the newly created wide use.
1333 if (WideAddRec != SE->getSCEV(WideUse)) {
1334 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1335 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1336 DeadInsts.emplace_back(WideUse);
1337 return nullptr;
1338 }
1339
1340 // Returning WideUse pushes it on the worklist.
1341 return WideUse;
1342 }
1343
1344 /// Add eligible users of NarrowDef to NarrowIVUsers.
1345 ///
pushNarrowIVUsers(Instruction * NarrowDef,Instruction * WideDef)1346 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1347 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1348 bool NeverNegative =
1349 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1350 SE->getConstant(NarrowSCEV->getType(), 0));
1351 for (User *U : NarrowDef->users()) {
1352 Instruction *NarrowUser = cast<Instruction>(U);
1353
1354 // Handle data flow merges and bizarre phi cycles.
1355 if (!Widened.insert(NarrowUser).second)
1356 continue;
1357
1358 NarrowIVUsers.push_back(
1359 NarrowIVDefUse(NarrowDef, NarrowUser, WideDef, NeverNegative));
1360 }
1361 }
1362
1363 /// Process a single induction variable. First use the SCEVExpander to create a
1364 /// wide induction variable that evaluates to the same recurrence as the
1365 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1366 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1367 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1368 ///
1369 /// It would be simpler to delete uses as they are processed, but we must avoid
1370 /// invalidating SCEV expressions.
1371 ///
createWideIV(SCEVExpander & Rewriter)1372 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1373 // Is this phi an induction variable?
1374 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1375 if (!AddRec)
1376 return nullptr;
1377
1378 // Widen the induction variable expression.
1379 const SCEV *WideIVExpr = IsSigned ?
1380 SE->getSignExtendExpr(AddRec, WideType) :
1381 SE->getZeroExtendExpr(AddRec, WideType);
1382
1383 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1384 "Expect the new IV expression to preserve its type");
1385
1386 // Can the IV be extended outside the loop without overflow?
1387 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1388 if (!AddRec || AddRec->getLoop() != L)
1389 return nullptr;
1390
1391 // An AddRec must have loop-invariant operands. Since this AddRec is
1392 // materialized by a loop header phi, the expression cannot have any post-loop
1393 // operands, so they must dominate the loop header.
1394 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1395 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1396 && "Loop header phi recurrence inputs do not dominate the loop");
1397
1398 // The rewriter provides a value for the desired IV expression. This may
1399 // either find an existing phi or materialize a new one. Either way, we
1400 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1401 // of the phi-SCC dominates the loop entry.
1402 Instruction *InsertPt = &L->getHeader()->front();
1403 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1404
1405 // Remembering the WideIV increment generated by SCEVExpander allows
1406 // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1407 // employ a general reuse mechanism because the call above is the only call to
1408 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1409 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1410 WideInc =
1411 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1412 WideIncExpr = SE->getSCEV(WideInc);
1413 }
1414
1415 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1416 ++NumWidened;
1417
1418 // Traverse the def-use chain using a worklist starting at the original IV.
1419 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1420
1421 Widened.insert(OrigPhi);
1422 pushNarrowIVUsers(OrigPhi, WidePhi);
1423
1424 while (!NarrowIVUsers.empty()) {
1425 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1426
1427 // Process a def-use edge. This may replace the use, so don't hold a
1428 // use_iterator across it.
1429 Instruction *WideUse = widenIVUse(DU, Rewriter);
1430
1431 // Follow all def-use edges from the previous narrow use.
1432 if (WideUse)
1433 pushNarrowIVUsers(DU.NarrowUse, WideUse);
1434
1435 // widenIVUse may have removed the def-use edge.
1436 if (DU.NarrowDef->use_empty())
1437 DeadInsts.emplace_back(DU.NarrowDef);
1438 }
1439 return WidePhi;
1440 }
1441
1442 //===----------------------------------------------------------------------===//
1443 // Live IV Reduction - Minimize IVs live across the loop.
1444 //===----------------------------------------------------------------------===//
1445
1446
1447 //===----------------------------------------------------------------------===//
1448 // Simplification of IV users based on SCEV evaluation.
1449 //===----------------------------------------------------------------------===//
1450
1451 namespace {
1452 class IndVarSimplifyVisitor : public IVVisitor {
1453 ScalarEvolution *SE;
1454 const TargetTransformInfo *TTI;
1455 PHINode *IVPhi;
1456
1457 public:
1458 WideIVInfo WI;
1459
IndVarSimplifyVisitor(PHINode * IV,ScalarEvolution * SCEV,const TargetTransformInfo * TTI,const DominatorTree * DTree)1460 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1461 const TargetTransformInfo *TTI,
1462 const DominatorTree *DTree)
1463 : SE(SCEV), TTI(TTI), IVPhi(IV) {
1464 DT = DTree;
1465 WI.NarrowIV = IVPhi;
1466 if (ReduceLiveIVs)
1467 setSplitOverflowIntrinsics();
1468 }
1469
1470 // Implement the interface used by simplifyUsersOfIV.
visitCast(CastInst * Cast)1471 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1472 };
1473 }
1474
1475 /// Iteratively perform simplification on a worklist of IV users. Each
1476 /// successive simplification may push more users which may themselves be
1477 /// candidates for simplification.
1478 ///
1479 /// Sign/Zero extend elimination is interleaved with IV simplification.
1480 ///
simplifyAndExtend(Loop * L,SCEVExpander & Rewriter,LoopInfo * LI)1481 void IndVarSimplify::simplifyAndExtend(Loop *L,
1482 SCEVExpander &Rewriter,
1483 LoopInfo *LI) {
1484 SmallVector<WideIVInfo, 8> WideIVs;
1485
1486 SmallVector<PHINode*, 8> LoopPhis;
1487 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1488 LoopPhis.push_back(cast<PHINode>(I));
1489 }
1490 // Each round of simplification iterates through the SimplifyIVUsers worklist
1491 // for all current phis, then determines whether any IVs can be
1492 // widened. Widening adds new phis to LoopPhis, inducing another round of
1493 // simplification on the wide IVs.
1494 while (!LoopPhis.empty()) {
1495 // Evaluate as many IV expressions as possible before widening any IVs. This
1496 // forces SCEV to set no-wrap flags before evaluating sign/zero
1497 // extension. The first time SCEV attempts to normalize sign/zero extension,
1498 // the result becomes final. So for the most predictable results, we delay
1499 // evaluation of sign/zero extend evaluation until needed, and avoid running
1500 // other SCEV based analysis prior to simplifyAndExtend.
1501 do {
1502 PHINode *CurrIV = LoopPhis.pop_back_val();
1503
1504 // Information about sign/zero extensions of CurrIV.
1505 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1506
1507 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor);
1508
1509 if (Visitor.WI.WidestNativeType) {
1510 WideIVs.push_back(Visitor.WI);
1511 }
1512 } while(!LoopPhis.empty());
1513
1514 for (; !WideIVs.empty(); WideIVs.pop_back()) {
1515 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1516 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1517 Changed = true;
1518 LoopPhis.push_back(WidePhi);
1519 }
1520 }
1521 }
1522 }
1523
1524 //===----------------------------------------------------------------------===//
1525 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1526 //===----------------------------------------------------------------------===//
1527
1528 /// Return true if this loop's backedge taken count expression can be safely and
1529 /// cheaply expanded into an instruction sequence that can be used by
1530 /// linearFunctionTestReplace.
1531 ///
1532 /// TODO: This fails for pointer-type loop counters with greater than one byte
1533 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1534 /// we could skip this check in the case that the LFTR loop counter (chosen by
1535 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1536 /// the loop test to an inequality test by checking the target data's alignment
1537 /// of element types (given that the initial pointer value originates from or is
1538 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1539 /// However, we don't yet have a strong motivation for converting loop tests
1540 /// into inequality tests.
canExpandBackedgeTakenCount(Loop * L,ScalarEvolution * SE,SCEVExpander & Rewriter)1541 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1542 SCEVExpander &Rewriter) {
1543 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1544 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1545 BackedgeTakenCount->isZero())
1546 return false;
1547
1548 if (!L->getExitingBlock())
1549 return false;
1550
1551 // Can't rewrite non-branch yet.
1552 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
1553 return false;
1554
1555 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
1556 return false;
1557
1558 return true;
1559 }
1560
1561 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
getLoopPhiForCounter(Value * IncV,Loop * L,DominatorTree * DT)1562 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1563 Instruction *IncI = dyn_cast<Instruction>(IncV);
1564 if (!IncI)
1565 return nullptr;
1566
1567 switch (IncI->getOpcode()) {
1568 case Instruction::Add:
1569 case Instruction::Sub:
1570 break;
1571 case Instruction::GetElementPtr:
1572 // An IV counter must preserve its type.
1573 if (IncI->getNumOperands() == 2)
1574 break;
1575 default:
1576 return nullptr;
1577 }
1578
1579 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1580 if (Phi && Phi->getParent() == L->getHeader()) {
1581 if (isLoopInvariant(IncI->getOperand(1), L, DT))
1582 return Phi;
1583 return nullptr;
1584 }
1585 if (IncI->getOpcode() == Instruction::GetElementPtr)
1586 return nullptr;
1587
1588 // Allow add/sub to be commuted.
1589 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1590 if (Phi && Phi->getParent() == L->getHeader()) {
1591 if (isLoopInvariant(IncI->getOperand(0), L, DT))
1592 return Phi;
1593 }
1594 return nullptr;
1595 }
1596
1597 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
getLoopTest(Loop * L)1598 static ICmpInst *getLoopTest(Loop *L) {
1599 assert(L->getExitingBlock() && "expected loop exit");
1600
1601 BasicBlock *LatchBlock = L->getLoopLatch();
1602 // Don't bother with LFTR if the loop is not properly simplified.
1603 if (!LatchBlock)
1604 return nullptr;
1605
1606 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1607 assert(BI && "expected exit branch");
1608
1609 return dyn_cast<ICmpInst>(BI->getCondition());
1610 }
1611
1612 /// linearFunctionTestReplace policy. Return true unless we can show that the
1613 /// current exit test is already sufficiently canonical.
needsLFTR(Loop * L,DominatorTree * DT)1614 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1615 // Do LFTR to simplify the exit condition to an ICMP.
1616 ICmpInst *Cond = getLoopTest(L);
1617 if (!Cond)
1618 return true;
1619
1620 // Do LFTR to simplify the exit ICMP to EQ/NE
1621 ICmpInst::Predicate Pred = Cond->getPredicate();
1622 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1623 return true;
1624
1625 // Look for a loop invariant RHS
1626 Value *LHS = Cond->getOperand(0);
1627 Value *RHS = Cond->getOperand(1);
1628 if (!isLoopInvariant(RHS, L, DT)) {
1629 if (!isLoopInvariant(LHS, L, DT))
1630 return true;
1631 std::swap(LHS, RHS);
1632 }
1633 // Look for a simple IV counter LHS
1634 PHINode *Phi = dyn_cast<PHINode>(LHS);
1635 if (!Phi)
1636 Phi = getLoopPhiForCounter(LHS, L, DT);
1637
1638 if (!Phi)
1639 return true;
1640
1641 // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1642 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1643 if (Idx < 0)
1644 return true;
1645
1646 // Do LFTR if the exit condition's IV is *not* a simple counter.
1647 Value *IncV = Phi->getIncomingValue(Idx);
1648 return Phi != getLoopPhiForCounter(IncV, L, DT);
1649 }
1650
1651 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1652 /// down to checking that all operands are constant and listing instructions
1653 /// that may hide undef.
hasConcreteDefImpl(Value * V,SmallPtrSetImpl<Value * > & Visited,unsigned Depth)1654 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1655 unsigned Depth) {
1656 if (isa<Constant>(V))
1657 return !isa<UndefValue>(V);
1658
1659 if (Depth >= 6)
1660 return false;
1661
1662 // Conservatively handle non-constant non-instructions. For example, Arguments
1663 // may be undef.
1664 Instruction *I = dyn_cast<Instruction>(V);
1665 if (!I)
1666 return false;
1667
1668 // Load and return values may be undef.
1669 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1670 return false;
1671
1672 // Optimistically handle other instructions.
1673 for (Value *Op : I->operands()) {
1674 if (!Visited.insert(Op).second)
1675 continue;
1676 if (!hasConcreteDefImpl(Op, Visited, Depth+1))
1677 return false;
1678 }
1679 return true;
1680 }
1681
1682 /// Return true if the given value is concrete. We must prove that undef can
1683 /// never reach it.
1684 ///
1685 /// TODO: If we decide that this is a good approach to checking for undef, we
1686 /// may factor it into a common location.
hasConcreteDef(Value * V)1687 static bool hasConcreteDef(Value *V) {
1688 SmallPtrSet<Value*, 8> Visited;
1689 Visited.insert(V);
1690 return hasConcreteDefImpl(V, Visited, 0);
1691 }
1692
1693 /// Return true if this IV has any uses other than the (soon to be rewritten)
1694 /// loop exit test.
AlmostDeadIV(PHINode * Phi,BasicBlock * LatchBlock,Value * Cond)1695 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1696 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1697 Value *IncV = Phi->getIncomingValue(LatchIdx);
1698
1699 for (User *U : Phi->users())
1700 if (U != Cond && U != IncV) return false;
1701
1702 for (User *U : IncV->users())
1703 if (U != Cond && U != Phi) return false;
1704 return true;
1705 }
1706
1707 /// Find an affine IV in canonical form.
1708 ///
1709 /// BECount may be an i8* pointer type. The pointer difference is already
1710 /// valid count without scaling the address stride, so it remains a pointer
1711 /// expression as far as SCEV is concerned.
1712 ///
1713 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1714 ///
1715 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1716 ///
1717 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1718 /// This is difficult in general for SCEV because of potential overflow. But we
1719 /// could at least handle constant BECounts.
FindLoopCounter(Loop * L,const SCEV * BECount,ScalarEvolution * SE,DominatorTree * DT)1720 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
1721 ScalarEvolution *SE, DominatorTree *DT) {
1722 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1723
1724 Value *Cond =
1725 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1726
1727 // Loop over all of the PHI nodes, looking for a simple counter.
1728 PHINode *BestPhi = nullptr;
1729 const SCEV *BestInit = nullptr;
1730 BasicBlock *LatchBlock = L->getLoopLatch();
1731 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1732
1733 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1734 PHINode *Phi = cast<PHINode>(I);
1735 if (!SE->isSCEVable(Phi->getType()))
1736 continue;
1737
1738 // Avoid comparing an integer IV against a pointer Limit.
1739 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1740 continue;
1741
1742 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1743 if (!AR || AR->getLoop() != L || !AR->isAffine())
1744 continue;
1745
1746 // AR may be a pointer type, while BECount is an integer type.
1747 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1748 // AR may not be a narrower type, or we may never exit.
1749 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1750 if (PhiWidth < BCWidth ||
1751 !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth))
1752 continue;
1753
1754 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1755 if (!Step || !Step->isOne())
1756 continue;
1757
1758 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1759 Value *IncV = Phi->getIncomingValue(LatchIdx);
1760 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1761 continue;
1762
1763 // Avoid reusing a potentially undef value to compute other values that may
1764 // have originally had a concrete definition.
1765 if (!hasConcreteDef(Phi)) {
1766 // We explicitly allow unknown phis as long as they are already used by
1767 // the loop test. In this case we assume that performing LFTR could not
1768 // increase the number of undef users.
1769 if (ICmpInst *Cond = getLoopTest(L)) {
1770 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1771 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1772 continue;
1773 }
1774 }
1775 }
1776 const SCEV *Init = AR->getStart();
1777
1778 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1779 // Don't force a live loop counter if another IV can be used.
1780 if (AlmostDeadIV(Phi, LatchBlock, Cond))
1781 continue;
1782
1783 // Prefer to count-from-zero. This is a more "canonical" counter form. It
1784 // also prefers integer to pointer IVs.
1785 if (BestInit->isZero() != Init->isZero()) {
1786 if (BestInit->isZero())
1787 continue;
1788 }
1789 // If two IVs both count from zero or both count from nonzero then the
1790 // narrower is likely a dead phi that has been widened. Use the wider phi
1791 // to allow the other to be eliminated.
1792 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1793 continue;
1794 }
1795 BestPhi = Phi;
1796 BestInit = Init;
1797 }
1798 return BestPhi;
1799 }
1800
1801 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
1802 /// the new loop test.
genLoopLimit(PHINode * IndVar,const SCEV * IVCount,Loop * L,SCEVExpander & Rewriter,ScalarEvolution * SE)1803 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1804 SCEVExpander &Rewriter, ScalarEvolution *SE) {
1805 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1806 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1807 const SCEV *IVInit = AR->getStart();
1808
1809 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1810 // finds a valid pointer IV. Sign extend BECount in order to materialize a
1811 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1812 // the existing GEPs whenever possible.
1813 if (IndVar->getType()->isPointerTy()
1814 && !IVCount->getType()->isPointerTy()) {
1815
1816 // IVOffset will be the new GEP offset that is interpreted by GEP as a
1817 // signed value. IVCount on the other hand represents the loop trip count,
1818 // which is an unsigned value. FindLoopCounter only allows induction
1819 // variables that have a positive unit stride of one. This means we don't
1820 // have to handle the case of negative offsets (yet) and just need to zero
1821 // extend IVCount.
1822 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1823 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1824
1825 // Expand the code for the iteration count.
1826 assert(SE->isLoopInvariant(IVOffset, L) &&
1827 "Computed iteration count is not loop invariant!");
1828 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1829 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1830
1831 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1832 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1833 // We could handle pointer IVs other than i8*, but we need to compensate for
1834 // gep index scaling. See canExpandBackedgeTakenCount comments.
1835 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1836 cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1837 && "unit stride pointer IV must be i8*");
1838
1839 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1840 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
1841 }
1842 else {
1843 // In any other case, convert both IVInit and IVCount to integers before
1844 // comparing. This may result in SCEV expension of pointers, but in practice
1845 // SCEV will fold the pointer arithmetic away as such:
1846 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1847 //
1848 // Valid Cases: (1) both integers is most common; (2) both may be pointers
1849 // for simple memset-style loops.
1850 //
1851 // IVInit integer and IVCount pointer would only occur if a canonical IV
1852 // were generated on top of case #2, which is not expected.
1853
1854 const SCEV *IVLimit = nullptr;
1855 // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1856 // For non-zero Start, compute IVCount here.
1857 if (AR->getStart()->isZero())
1858 IVLimit = IVCount;
1859 else {
1860 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1861 const SCEV *IVInit = AR->getStart();
1862
1863 // For integer IVs, truncate the IV before computing IVInit + BECount.
1864 if (SE->getTypeSizeInBits(IVInit->getType())
1865 > SE->getTypeSizeInBits(IVCount->getType()))
1866 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1867
1868 IVLimit = SE->getAddExpr(IVInit, IVCount);
1869 }
1870 // Expand the code for the iteration count.
1871 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1872 IRBuilder<> Builder(BI);
1873 assert(SE->isLoopInvariant(IVLimit, L) &&
1874 "Computed iteration count is not loop invariant!");
1875 // Ensure that we generate the same type as IndVar, or a smaller integer
1876 // type. In the presence of null pointer values, we have an integer type
1877 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1878 Type *LimitTy = IVCount->getType()->isPointerTy() ?
1879 IndVar->getType() : IVCount->getType();
1880 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1881 }
1882 }
1883
1884 /// This method rewrites the exit condition of the loop to be a canonical !=
1885 /// comparison against the incremented loop induction variable. This pass is
1886 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1887 /// determine a loop-invariant trip count of the loop, which is actually a much
1888 /// broader range than just linear tests.
1889 Value *IndVarSimplify::
linearFunctionTestReplace(Loop * L,const SCEV * BackedgeTakenCount,PHINode * IndVar,SCEVExpander & Rewriter)1890 linearFunctionTestReplace(Loop *L,
1891 const SCEV *BackedgeTakenCount,
1892 PHINode *IndVar,
1893 SCEVExpander &Rewriter) {
1894 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
1895
1896 // Initialize CmpIndVar and IVCount to their preincremented values.
1897 Value *CmpIndVar = IndVar;
1898 const SCEV *IVCount = BackedgeTakenCount;
1899
1900 // If the exiting block is the same as the backedge block, we prefer to
1901 // compare against the post-incremented value, otherwise we must compare
1902 // against the preincremented value.
1903 if (L->getExitingBlock() == L->getLoopLatch()) {
1904 // Add one to the "backedge-taken" count to get the trip count.
1905 // This addition may overflow, which is valid as long as the comparison is
1906 // truncated to BackedgeTakenCount->getType().
1907 IVCount = SE->getAddExpr(BackedgeTakenCount,
1908 SE->getOne(BackedgeTakenCount->getType()));
1909 // The BackedgeTaken expression contains the number of times that the
1910 // backedge branches to the loop header. This is one less than the
1911 // number of times the loop executes, so use the incremented indvar.
1912 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1913 }
1914
1915 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1916 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1917 && "genLoopLimit missed a cast");
1918
1919 // Insert a new icmp_ne or icmp_eq instruction before the branch.
1920 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1921 ICmpInst::Predicate P;
1922 if (L->contains(BI->getSuccessor(0)))
1923 P = ICmpInst::ICMP_NE;
1924 else
1925 P = ICmpInst::ICMP_EQ;
1926
1927 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1928 << " LHS:" << *CmpIndVar << '\n'
1929 << " op:\t"
1930 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1931 << " RHS:\t" << *ExitCnt << "\n"
1932 << " IVCount:\t" << *IVCount << "\n");
1933
1934 IRBuilder<> Builder(BI);
1935
1936 // LFTR can ignore IV overflow and truncate to the width of
1937 // BECount. This avoids materializing the add(zext(add)) expression.
1938 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1939 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1940 if (CmpIndVarSize > ExitCntSize) {
1941 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1942 const SCEV *ARStart = AR->getStart();
1943 const SCEV *ARStep = AR->getStepRecurrence(*SE);
1944 // For constant IVCount, avoid truncation.
1945 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1946 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
1947 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
1948 // Note that the post-inc value of BackedgeTakenCount may have overflowed
1949 // above such that IVCount is now zero.
1950 if (IVCount != BackedgeTakenCount && Count == 0) {
1951 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1952 ++Count;
1953 }
1954 else
1955 Count = Count.zext(CmpIndVarSize);
1956 APInt NewLimit;
1957 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
1958 NewLimit = Start - Count;
1959 else
1960 NewLimit = Start + Count;
1961 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
1962
1963 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n");
1964 } else {
1965 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1966 "lftr.wideiv");
1967 }
1968 }
1969 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1970 Value *OrigCond = BI->getCondition();
1971 // It's tempting to use replaceAllUsesWith here to fully replace the old
1972 // comparison, but that's not immediately safe, since users of the old
1973 // comparison may not be dominated by the new comparison. Instead, just
1974 // update the branch to use the new comparison; in the common case this
1975 // will make old comparison dead.
1976 BI->setCondition(Cond);
1977 DeadInsts.push_back(OrigCond);
1978
1979 ++NumLFTR;
1980 Changed = true;
1981 return Cond;
1982 }
1983
1984 //===----------------------------------------------------------------------===//
1985 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1986 //===----------------------------------------------------------------------===//
1987
1988 /// If there's a single exit block, sink any loop-invariant values that
1989 /// were defined in the preheader but not used inside the loop into the
1990 /// exit block to reduce register pressure in the loop.
sinkUnusedInvariants(Loop * L)1991 void IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1992 BasicBlock *ExitBlock = L->getExitBlock();
1993 if (!ExitBlock) return;
1994
1995 BasicBlock *Preheader = L->getLoopPreheader();
1996 if (!Preheader) return;
1997
1998 Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt();
1999 BasicBlock::iterator I(Preheader->getTerminator());
2000 while (I != Preheader->begin()) {
2001 --I;
2002 // New instructions were inserted at the end of the preheader.
2003 if (isa<PHINode>(I))
2004 break;
2005
2006 // Don't move instructions which might have side effects, since the side
2007 // effects need to complete before instructions inside the loop. Also don't
2008 // move instructions which might read memory, since the loop may modify
2009 // memory. Note that it's okay if the instruction might have undefined
2010 // behavior: LoopSimplify guarantees that the preheader dominates the exit
2011 // block.
2012 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2013 continue;
2014
2015 // Skip debug info intrinsics.
2016 if (isa<DbgInfoIntrinsic>(I))
2017 continue;
2018
2019 // Skip eh pad instructions.
2020 if (I->isEHPad())
2021 continue;
2022
2023 // Don't sink alloca: we never want to sink static alloca's out of the
2024 // entry block, and correctly sinking dynamic alloca's requires
2025 // checks for stacksave/stackrestore intrinsics.
2026 // FIXME: Refactor this check somehow?
2027 if (isa<AllocaInst>(I))
2028 continue;
2029
2030 // Determine if there is a use in or before the loop (direct or
2031 // otherwise).
2032 bool UsedInLoop = false;
2033 for (Use &U : I->uses()) {
2034 Instruction *User = cast<Instruction>(U.getUser());
2035 BasicBlock *UseBB = User->getParent();
2036 if (PHINode *P = dyn_cast<PHINode>(User)) {
2037 unsigned i =
2038 PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2039 UseBB = P->getIncomingBlock(i);
2040 }
2041 if (UseBB == Preheader || L->contains(UseBB)) {
2042 UsedInLoop = true;
2043 break;
2044 }
2045 }
2046
2047 // If there is, the def must remain in the preheader.
2048 if (UsedInLoop)
2049 continue;
2050
2051 // Otherwise, sink it to the exit block.
2052 Instruction *ToMove = &*I;
2053 bool Done = false;
2054
2055 if (I != Preheader->begin()) {
2056 // Skip debug info intrinsics.
2057 do {
2058 --I;
2059 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2060
2061 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2062 Done = true;
2063 } else {
2064 Done = true;
2065 }
2066
2067 ToMove->moveBefore(InsertPt);
2068 if (Done) break;
2069 InsertPt = ToMove;
2070 }
2071 }
2072
2073 //===----------------------------------------------------------------------===//
2074 // IndVarSimplify driver. Manage several subpasses of IV simplification.
2075 //===----------------------------------------------------------------------===//
2076
runOnLoop(Loop * L,LPPassManager & LPM)2077 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
2078 if (skipOptnoneFunction(L))
2079 return false;
2080
2081 // If LoopSimplify form is not available, stay out of trouble. Some notes:
2082 // - LSR currently only supports LoopSimplify-form loops. Indvars'
2083 // canonicalization can be a pessimization without LSR to "clean up"
2084 // afterwards.
2085 // - We depend on having a preheader; in particular,
2086 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
2087 // and we're in trouble if we can't find the induction variable even when
2088 // we've manually inserted one.
2089 if (!L->isLoopSimplifyForm())
2090 return false;
2091
2092 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2093 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2094 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2095 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2096 TLI = TLIP ? &TLIP->getTLI() : nullptr;
2097 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2098 TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2099 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2100
2101 DeadInsts.clear();
2102 Changed = false;
2103
2104 // If there are any floating-point recurrences, attempt to
2105 // transform them to use integer recurrences.
2106 rewriteNonIntegerIVs(L);
2107
2108 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2109
2110 // Create a rewriter object which we'll use to transform the code with.
2111 SCEVExpander Rewriter(*SE, DL, "indvars");
2112 #ifndef NDEBUG
2113 Rewriter.setDebugType(DEBUG_TYPE);
2114 #endif
2115
2116 // Eliminate redundant IV users.
2117 //
2118 // Simplification works best when run before other consumers of SCEV. We
2119 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2120 // other expressions involving loop IVs have been evaluated. This helps SCEV
2121 // set no-wrap flags before normalizing sign/zero extension.
2122 Rewriter.disableCanonicalMode();
2123 simplifyAndExtend(L, Rewriter, LI);
2124
2125 // Check to see if this loop has a computable loop-invariant execution count.
2126 // If so, this means that we can compute the final value of any expressions
2127 // that are recurrent in the loop, and substitute the exit values from the
2128 // loop into any instructions outside of the loop that use the final values of
2129 // the current expressions.
2130 //
2131 if (ReplaceExitValue != NeverRepl &&
2132 !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2133 rewriteLoopExitValues(L, Rewriter);
2134
2135 // Eliminate redundant IV cycles.
2136 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2137
2138 // If we have a trip count expression, rewrite the loop's exit condition
2139 // using it. We can currently only handle loops with a single exit.
2140 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) {
2141 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2142 if (IndVar) {
2143 // Check preconditions for proper SCEVExpander operation. SCEV does not
2144 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2145 // pass that uses the SCEVExpander must do it. This does not work well for
2146 // loop passes because SCEVExpander makes assumptions about all loops,
2147 // while LoopPassManager only forces the current loop to be simplified.
2148 //
2149 // FIXME: SCEV expansion has no way to bail out, so the caller must
2150 // explicitly check any assumptions made by SCEV. Brittle.
2151 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2152 if (!AR || AR->getLoop()->getLoopPreheader())
2153 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2154 Rewriter);
2155 }
2156 }
2157 // Clear the rewriter cache, because values that are in the rewriter's cache
2158 // can be deleted in the loop below, causing the AssertingVH in the cache to
2159 // trigger.
2160 Rewriter.clear();
2161
2162 // Now that we're done iterating through lists, clean up any instructions
2163 // which are now dead.
2164 while (!DeadInsts.empty())
2165 if (Instruction *Inst =
2166 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2167 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2168
2169 // The Rewriter may not be used from this point on.
2170
2171 // Loop-invariant instructions in the preheader that aren't used in the
2172 // loop may be sunk below the loop to reduce register pressure.
2173 sinkUnusedInvariants(L);
2174
2175 // Clean up dead instructions.
2176 Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2177
2178 // Check a post-condition.
2179 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
2180
2181 // Verify that LFTR, and any other change have not interfered with SCEV's
2182 // ability to compute trip count.
2183 #ifndef NDEBUG
2184 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2185 SE->forgetLoop(L);
2186 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2187 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2188 SE->getTypeSizeInBits(NewBECount->getType()))
2189 NewBECount = SE->getTruncateOrNoop(NewBECount,
2190 BackedgeTakenCount->getType());
2191 else
2192 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2193 NewBECount->getType());
2194 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2195 }
2196 #endif
2197
2198 return Changed;
2199 }
2200